MOST

Media Oriented Systems Transport

Multimedia and Control
Networking Technology

Application Note UPnP over MOST
Rev. 1.0
06/2015

vosTco conFinenTaL MIOST

COOPERATION

© Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential



MOST® MOST

Application Note UPnP over MOST COOPERATION

Legal Notice
COPYRIGHT

© Copyright 1999 - 2015 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:

MOST Cooperation
Administration
Emmy-Noether-Str. 14
76131 Karlsruhe
Germany

Tel: (+49) (0) 721 966 50 00

E-mail: contact@mostcooperation.com
Web: www.mostcooperation.com

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Page 2 Application Note UPnP over MOST Rev. 1.0
06/2015



MOST® MOST

Application Note UPnP over MOST CODPERATION

This Specification is Confidential Information of the MOST
Cooperation. It may only be disclosed to member
companies. Member companies wishing to discuss these
Errata with suppliers or other third parties must ensure that
a commercially standard form of non-disclosure agreement
has been previously executed by the party receiving such
Errata. Use of these Errata may only be for purposes for
which they are intended by the MOST Cooperation.
Unauthorized use or disclosure is a violation of law.

© Copyright 1999 - 2015 MOST Cooperation
All rights reserved

MOST is a registered trademark

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Application Note UPnP over MOST Rev. 1.0 Page 3
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION
Contents
BIBLIOGRAPHY ...oeiiiiiii ittt e e e e s ettt e e e s e et te e e e e e e sasss e ta e e e eaeeeaaass e beaeeaaeesannsaetneeaeeessannssnneees 5
DOCUMENT HISTORY ...ttt e e st e e e e s e st e e e e e e s s ssa st eeeaeeessasssteeeeaeeessnnsnnaneeeeeessannsnnneees 5
I © XY 4 o Y 1 S 6
2 INTRODUGCTION. . cciiii ittt e ettt e e e e e e ettt e e e e e e e ettt e e e e eaeeesasbabaeeeaaeessassbaseeseaessasssbeaeeeaeesaansnes 6
3 THE UPNP STANDARD ... ..ttt ettt e e e e e et e e e e e e e e et e e e e e e e e s e eaatbaeeeeeeessatabbeeeaaaaaas 6
3.1 Standardized Device CONtrol ProtOCOIS.........coiviiiiiie e e e s e e e s nnnneneeaae s 7
3.1.1 Example: UPNP-CoNNECLIONMANAGET .......ccooiieriiiiieeeeieiiiiieeee e e e e sestaieeee e e e e s snnnnneeeeeeeessnnnsnneees 7
I B oAV o T D 1T o0 Y= YRR 9
4 ADAPTION TO THE UPNP STANDARD .....oiiiiiiii ettt ettt e e 10
/0 N = (0] (o ToT0] | 0] {0 I b e (=] 4 11 (o] o FA PP PTPRR 10
4.2 PUSKH AFCIITECIUIE ..covviiii ittt e e e e e e e e e e st s e e e e e e e ee bbb e e eeeeeessabannns 11
e B U || I 1 1 =Tod ([ (TSP PTPSRR 12
APPENDIX A: UPNP STACK FOR THE REFERENCE IMPLEMENTATION (INFORMATIVE).......... 13
Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential
Page 4 Application Note UPnP over MOST Rev. 1.0

06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

Bibliography

All documents, which are referenced by this MOST document, are listed here along with their versions.

Document Revision
[1] | MOST Specification 3.0
[2] | MOST FBlock template GeneralFBlock 3.0.6
[3] | “UPnP Device Architecture version 1.0” October 15, 2008. 1.0

[4]

Intel.com, “Open Software Projects”, http://opentools.homeip.net/dev-tools-for-upnp. -

[5]

Reiter, S et al.. UPnP Enables Universal Control of In-Vehicle MOST Devices. Special -
Edition March 2014, p. 31-33.

Table Bibliography-1: Document references

Document History

Revision 1.0
Change Section Changes
Ref.
1v0_001 Initial version.
Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Application Note UPnP over MOST Rev. 1.0 Page 5
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

1 Overview

This application note “UPnP over MOST” shows how to use the UPnP standard in a MOST based
environment. UPnP is used to control potential in-vehicle devices, to foster the extension of consumer
devices with controlling capability currently known from integrated head units. It is shown how the
UPNP Protocolinfo can be extended to cover MOST specific addressing, especially to support the use
of MOST synchronous connections.

2 Introduction

The UPnP communication is realized within MOST by using the MOST Ethernet Protocol (MEP). In
Figure 1 a sketch of the UPnP/AV scenario is shown. It consists of a UPnP control point, an audio
source, called media server, and an audio sink, called media renderer, which are connected by the
MOST bus. Each UPnP device implements a set of services, the media server e.g. a content directory
service and a connection manager, which are used for device control. The UPnP control point is used
to control both the media server and the media renderer using the according UPnP services. The
source provides the audio data and sends it over the MOST synchronous connection to the associated
audio sink.

AV Control Point

G
Standard

Media Server UPNP Actions Media Renderer

. MEP
ContentDirectory over ConnectionManagerp.gs
ConnectionManager s RenderingControl
AVTransport

Out-Of-Band Transfer over
MOST Synchronous Channel

Figure 1: Structure of the UPnP/AV Scenario

3 The UPnP Standard

The goal of Universal Plug and Play (UPnP) is to enable a manufacturer-independent control of
networked devices. The UPnP standard distinguishes two general device classes: controlled devices
and controlling devices. The controlled device provides functionality that is managed by a controlling
device or control point. UPnP defines protocols for the communication between a control point and the
controlled devices. These protocols handle device discovery, description, and controlling with the help
of internet protocols such as IP, TCP, UDP, and HTTP. Every transport channel that supports IP-
based communication is suited. To control a variety of devices across manufacturer domains, the
UPNP protocol specifies a set of Standardized Device Control Protocols (SDCP).

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Page 6 Application Note UPnP over MOST Rev. 1.0
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

3.1 Standardized Device Control Protocols

An SDCP is a set of standardized interfaces, which have to be provided on each UPnP device in order
to allow generic controlling of the latter. The SDCPs are grouped by their functionality such as A/V
systems, with media server and media renderer or HVAC (Heating, Ventilation and Air Conditioning)
systems. In the following, a few SDCPs of potential in-vehicle devices are listed. All SDCPs are
standardized and published by the UPnP forum.

e Basic_Device::BasicService
Provides no controlling functionality, used only to discover the device via UPnP
e DeviceManagement ::ConfigurationManagement
Allows for managing the configuration in terms of parameters supported by the device
e HVAC:HVAC_FanOperatingMode and HVAC::ControlValve
Different services can be used to control a HVAC system
e LightingControls::DimmableLight
Turn a light source on or off. Changing the intensity of the light source in intermediate steps

These UPnP services are used to control a single device. In the following, a more complex scenario is
regarded. In an audio/video scenario, two devices and the data transfer in between have to be
controlled. In an A/V system, the following SDCPs have to be provided (see Figure 1).

e MediaServerMediaRenderer::ConnectionManager

Perform capability matching between source/server devices and sink/renderer devices

Find information about ongoing transfers in the network

Set up and tear down connections between devices
e MediaServer::ContentDirectory

Enable browsing the objects stored on the media server such as songs, photos, videos or broadcast program
e MediaRenderer::RenderingControl

Control how the current content is rendered, e.g., brightness, contrast, volume, balance or equalizer settings
e MediaServerMediaRenderer::AVTransport

Enable control over the transport of audio and video streams

In the following example, the connection manager service is regarded more closely.

3.1.1 Example: UPnP-ConnectionManager

The minimal requirements to implement the connection manager service are presented in this section.
The UPNnP-ConnectionManager service is used for retrieving connection information or for
establishing/allocating a connection. It is the main service that is used for creating a connection
utilizing a MOST synchronous connection. To implement this service the standard specifies a set of
state variables and functions that have to be provided. Further variables and functions are declared
optional. The necessary state variables are shown in Table 2 and the required actions are highlighted
in Table 3.

Variable Name R/O Data Allowed Value
Type
SourceProtocollnfo R string CSV (string)
SinkProtocolinfo R string CSV (string)
CurrentConnectionIDs R string CSV (ui4)
FeatureList R string Features XML
Document

Table 2: Required state variables

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Application Note UPnP over MOST Rev. 1.0 Page 7
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

The state variables contain the source/sink protocol info which specifies the capabilities of the device,
for example, which media format can be sent or received (see end of this section).
CurrentConnectionIDs is a list of all currently managed connections. FeatureList contains the features
of the device, such as synchronized playback.

Action Name R/O | Parameter

GetProtocolinfo() R Source OUT | SourceProtocolinfo
Sink OUT | SinkProtocollnfo

PrepareForConnection() (@] Indicate whether or not it can establish a connection; used if multiple
connections are possible at the same time
RemoteProtocollnfo IN A_ARG_TYPE_Protocolinfo
PeerConnectionManager | IN A_ARG_TYPE_ConnectionManager
PeerConnectionlD IN A _ARG_TYPE_ConnectionID
ConnectionID OUT | A_ARG_TYPE_ConnectionID
AVTransportiD OUT | A_ ARG_TYPE_AVTransportlD
RcsID OUT | A_ARG_TYPE_RcsID

GetCurrentConnectionIDs() | R Comma-Separated Value list of ConnectionIDs

GetCurrentConnectioninfo() | R Returns associated information of the connection referred to by the
Connection|D

ConnectionComplete() (@)

GetFeatureList() R

Table 3: Required and optional actions

At least the functions in Table 3 marked with ‘R’ have to be provided for each connection manager.
They contain getter functions for the Sink/SourceProtocolinfo, FeaturelList, or the
CurrentConnectionIDs. GetCurrentConnectioninfo() can be used to get a detailed description of the
current connection. This function will be used to forward the connection label in the MOST
synchronous scenario. The optional functions PrepareForConnection() and ConnectionComplete() are
used to establish/allocate a connection or internal resource.

3.1.1.1 Protocolinfo

The UPnP-ConnectionManager service defines the notion of Protocollnfo as information required by a
control point in order to determine (a certain level of) compatibility between the streaming
mechanisms. A Protocolinfo entry is specified as string and formatted as follows:

<protocol>":'<network>":'<contentFormat>":'<additionallnfo>

Each of the four elements may be a wildcard *’. The matching between devices is performed by string
comparison operations. The Protocollnfo string consists of a <protocol>, <network>, <contentFormat>,
and <additionallnfo> field, where the <protocol> entry specifies the transfer protocol, e.g. ‘http-get’.
The <network> field specifies the used network, that is, in the case of TCP/IP, mostly a wildcard **,
because the devices belong to the same IP network, based on the UPnP device discovery. The
<contentFormat> describes the exchanged content format such as ‘audio/mpeg’. The <additionallnfo>
field conveys any additional information. Table 4 shows the general structure of the protocol
information string and an example of an http-get specification. The <additionallnfo> part does not need
to match between source and sink. Its purpose is to convey any additional information needed to set
up the out of band stream. The structure of the <additionallnfo> part is a list of values (separated by a
semi-colon) that has the following format:

<org-name>_<token-name>=<value>

The <org-name> is the ICANN-registered domain name, e.g., ‘upnp.org’. The <token-name> consists
of an alpha-numeric character sequence. There exists a set of specified protocols.

To establish a connection between two devices, the control point uses the GetProtocol() function to
retrieve information about the connection types a device supports either as sink or as source. To find a
pair that can communicate, the provided source protocols have to match the required sink protocols.

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Page 8 Application Note UPnP over MOST Rev. 1.0
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

The control point only compares the provided strings; to be more precise: the different strings of the
comma-separated list. Wildcards indicate that this field matches any entry. When a suitable pair of
devices is found, the control point can allocate a connection between these two devices. To this end,
the function PrepareForConnection() is used. It allocates a communication channel or resource within
the device. If the device does not provide such a function, a standard connection already exists and no
previous resource allocation is necessary. For example, in the case of an HTTP data exchange no
resources have to be allocated in advance as the TCP/IP connection is established when sending the
http-get request. Therefore, this function is optional. Similar to PrepareForConnection(), the function
ConnectionComplete() frees the previously allocated resource(s). If one of the functions shall be used,
both functions have to be implemented. The control point can get information about the current
allocated connections with the functions GetCurrentConnectionIDs() and GetCurrentConnectioninfo().

3.2 Device Discovery

The UPNP protocol handles device discovery. The interaction between control point und controllable
devices can be separated into 5 steps. In a first step, UPnP devices are detected. In the second step,
the control point detects the device capabilities. In step 3, the control point uses the SDCPs to interact
with the device. During communication the control point can listen to state changes in the UPnP
devices, called eventing (step 4).

After a controllable UPnP device is associated with an IP address, it starts advertising its services. On
the other hand, when a control point enters a network it sends a search command to find UPnP
devices within the network. Advertise and search messages are based on the Simple Service
Discovery Protocol (SSDP) and on multicast messages. The advertisements or the search responses
contain an URL for more information about the device, which is stored in a XML file. This root-
description can be downloaded by the control point with a separate http-get request. The root-
description contains an overview of the services provided by the device and an URL to download a
more detailed description of the provided service. After the receipt of the root-description the control
point starts downloading the service description with separate http-get requests. After receipt of all
service descriptions, the control point enters step 3, controlling the device.

Media Server Control Point
[

NOTIFY * HTTP/1.1

v .

GET fupnp.xml HTTP/L.1
HTTP/1.1 2000K

I

|

|

|

|

==
<

Y

GET /AVTransport/scpd.xml HTTP/1.1

A

HTTP/1.1 2000K

\

GET /ContentDirectory/scpd.xml HTTP/1.1

A

HTTP/1.1 2000K

GET /ConnectionManager/scpd.xml HTTP/1.1

A

HTTP/1.12000K

R S N |

Figure 2: Device discovery sequence in the AV-scenario

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Application Note UPnP over MOST Rev. 1.0 Page 9
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

4 Adaption to the UPnP Standard

In order to be able to use the UPnP standard to control the MOST synchronous data transmission,
different extensions are necessary. The UPnP standard specifies the protocol information string for
different network types and media content. MOST is not natively supported by the standard. But there
are rules how vendor extensions can be made to the standard. In the first section the proposed
protocol information format is presented. In the next sections, it is shown how the standardized action
interfaces can be used to establish and transmit data via a MOST synchronous connection.

4.1 Protocolinfo Extension

UPnP standardizes the interfaces to control and manage the devices, but it does not describe
anything related to the out-of-band, non-UPnP transfer protocol, for transmission of the actual content.
The concept of the Protocolinfo is used to determine compatibility between the devices and initiate
transfers. The Protocolinfo is exchanged between media server and renderer to identify the device
capabilities or to establish the out-of-band connection. The control point uses only string operations to
handle the Protocolinfo to find compatible devices. The control point does not use any semantic
information. Exclusively, the media server and media renderer interpret the exchanged string, allowing
standard control points to handle a vendor specific Protocolinfo, for instance, the MOST extensions,
see section 3.1.1.1.

HTTP “http-get” o “audio/mpeg” o
ICANN Sourcelnfo:: Sourcelnfo:: ok
AT Domain Name TransmissionClass ContentType SRUrEEh T
“mostcooperation.com_
“Synchronous” “Audio” DataConnectionLabel
=66"
“mostcooperation. | “Packetizedlsochronous” @ “SPDIF” mo;tcooperatlcln.'f:om_
com” AudioChannels=6
“Asynchronous” “GenericPCM”

Table 4: Example of the MOST extensions for the Protocolinfo

MOST protocol information is not part of the UPnP standard, but the standard provides the ability to
realize a vendor-specific Protocollnfo structure. For the MOST extension, a structure based on the
Sourcelnfo (0x100) function of the GeneralFBlock is proposed. For vendor extensions, the <protocol>
field should contain the ICANN domain name of the vendor: ‘mostcooperation.com’.

The <network> field contains the Sourcelnfo::TransmissionClass information of the GeneralFBlock [2].
The <contentFormat> field is filled with the Sourcelnfo::ContentType information. The <additionallnfo>
field content is based on the <network> and <contentFormat> fields. The <contentFormat>
‘GenericPCM’ requires different additional information than the <contentFormat> ‘Audio’. The UPnP
standard allows a semicolon-separated list for specifying multiple entries. A single entry has the
following structure:

‘<org-name>_<token_name>=<value>'.

The ‘Synchronous’ network, for example, specifies the ‘DataConnectionLabel’ in the <additionallnfo>
field. The entry for a connection label 0x43 would be: ‘mostcooperation.com_DataConnectionLabel=66".

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Page 10 Application Note UPnP over MOST Rev. 1.0
06/2015



MOST® MOST

Application Note UPnP over MOST CODPERATION

4.2 Push Architecture

The most suited architecture for using MOST synchronous connections is the push architecture. In the
push architecture, the content provider controls the transmission of the content data, for example, it
starts/stops data streaming. Taking the MOST synchronous scenario, the content provider starts
streaming the audio content. When finished, the content provider, that is, the media server, stops the
media streaming. In this case, the responsibility to allocate a synchronous channel is with the media
server. The challenge for the UPnP control point is to forward the connection label from the media
server to the media renderer.

Media Server Control Point Media Renderer
CDS::Browse
CD o0t - 0
SN Content Objects > CM::GetProtocolinfo()
col afl )
* Protocol/Format List
‘ - CM::PrepareForConnection() -
g2 CM,AVT InstanciD =
»>
Create new entries CM::GetCurrentConnectioninfo()
AVT[InstancelD] r
Protocaol Information
CM[InstancelD] > CM::PrepareForConnection()._

CM,RCS InstanclD
AV::SetAvTransportURI() J nstanc

Create new entries

> RCS[InstancelD]
CM[InstancelD]
AV::Play()
-
|
Link AVT[InstancelD] i
with “localURI_af1" Out-Of-Band Transfer v

*1 ... <res protocollnfo="mostcooperation.com:Synchronous:Audio:*">localURI_afl</res> ...
*2 ... <Sink>mostcooperation.com:Synchronous:Audio:*</Sink> ...
*3 ... <Protocolinfo>
mosicooperation.com: Synchronous: Audio:mosicooperation.com_DataConnectinLabel=66
</Protocolinfo> ...

Figure 3: Connection establishment in a push architecture

In Figure 3, the sequence to establish a connection between the media server and the media renderer
is shown. First, the control point calls the media server and browses the content provided. Media
content is represented by a tree structure with containers (container col) and the actual content (audio
file afl, af2). The browse function is used to traverse the tree and display meta-information of the
different entries. Filters can be used to address dedicated information. Each content object, such as
an audio file, contains a URI, which is used to identify the content within the media server.
Additionally, it contains a Protocollnfo entry which defines how the content can be transferred; see *1
in Figure 3, which specifies that for the object with the URI ‘localURI_afl’, a MOST synchronous
connection has to be used. The control point now checks the media renderer whether the required
Protocolinfo is supported (*2 in Figure 3). The control point only compares the Protocolinfo of the
media server with the information of the media renderer. This comparison is based on string matching
with wildcards, so no semantic information is used by the control point. After a positive check, the
control point prepares the data transfer. In the case of MOST synchronous connections, it is advisable
to use the PrepareForConnection function. This allows media server and renderer to prepare for a
new connection; in the case of the synchronous channel, the requested bandwidth is allocated. If this
function is not provided, the media server and renderer have to use pre-allocated channels. The
function is called with the desired Protocolinfo and the requested direction of the connection. For
outgoing connections on the media server, the PrepareForConnection function allocates the MOST
synchronous connection and an internal connection (CM[InstancelD]) and AVTransport
(AVT[InstancelD]) instance. These instances contain all relevant information regarding one
connection. The return parameter is an instance ID that identifies this connection object within the
device. Meaning the returned instance IDs are only unique within one device. For each subsequent
call to the AVTransport or UPnP-ConnectionManager service, the instance ID is used to identify the
allocated instance. This enables parallel managing of multiple streams. With the

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Application Note UPnP over MOST Rev. 1.0 Page 11
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

GetProtocolConnectioninfo call, it is possible to retrieve detailed information about the connection.
This call is used to get information such as the MOST data connection label, which is returned within
the Protocolinfo field (compare *3 in Figure 3). With this information, the PrepareForConnection
function on the media renderer can be called. This time, an incoming connection shall be prepared,
therefore the contained Protocollnfo is used to connect to the previously allocated synchronous
channel. After this, the out-of-band connection is established and the data transfer can be initialized.
Therefore, the AVTransport service within the media server is called. The previous
connection/AVTransport object is associated with the content information URI returned by the browse
function. With the call SetAVTransportURI, the URI is set and a subsequent call of the function ‘play’
starts audio playback and streaming over the MOST synchronous connection.

The RenderingControl service of the media renderer provides functions for changing the volume.

4.3 Pull Architecture

In the pull architecture, the media renderer controls the data exchange. The pull architecture is not
recommended for MOST, thus not described here.

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Page 12 Application Note UPnP over MOST Rev. 1.0
06/2015



MOST® MOST

Application Note UPnP over MOST COOPERATION

Appendix A: UPnP Stack for the Reference
Implementation (Informative)

Different UPnP stacks have been evaluated. The final choice for the reference implementation was the
Developer Tools for UPnP™ Technologies from [3]. This is a set of development and reference tools
for creating software that is compatible with the UPnP specifications. Especially, it is possible to
generate source code for an UPnP stack which contains all UPnP service descriptions. Therefore, no
file system has to be provided. Stub functions are created to handle the service requests.

Specification Document © Copyright 1999 - 2015 MOST Cooperation MOSTCO Confidential

Application Note UPnP over MOST Rev. 1.0 Page 13
06/2015



	Bibliography
	Document History
	1 Overview
	2 Introduction
	3 The UPnP Standard
	3.1 Standardized Device Control Protocols
	3.1.1 Example: UPnP-ConnectionManager
	3.1.1.1 ProtocolInfo


	3.2 Device Discovery

	4 Adaption to the UPnP Standard
	4.1 ProtocolInfo Extension
	4.2 Push Architecture
	4.3 Pull Architecture

	Appendix A: UPnP Stack for the Reference Implementation (Informative)



