MOST

Media Oriented Systems Transport
Multimedia and Control

Networking Technology
Recommended Communication
Profile Application Note

Rev. 1.0

07/2012

MOSTCO CONFIDENTIAL M@SE}

See page 3 for the terms of disclosure

COOPERATION

© Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

Legal Notice
COPYRIGHT
© Copyright 1999 - 2012 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:

MOST Cooperation
Administration
Bannwaldallee 48
D-76185 Karlsruhe
Germany

Tel: (+49) (0) 721 966 50 00

E-mail: contact@mostcooperation.com
Web: www.mostcooperation.com

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 2

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

This Specification is Confidential Information of the MOST
Cooperation. It may only be disclosed to member
companies. Member companies wishing to discuss these
Specifications with suppliers or other third parties must
ensure that a commercially standard form of non-disclosure
agreement has been previously executed by the party
receiving such Specifications. Use of these Specifications
may only be for purposes for which they are intended by the
MOST Cooperation. Unauthorized use or disclosure is a
violation of law.

© Copyright 1999 - 2012 MOST Cooperation
All rights reserved

MOST is a registered trademark

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 3

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION
Contents
DOCUMENT HISTORYcooiiiceiiiiiceiersssneesssssnssesssssse e sssssss e s sssss e s ssssnsessasssssesassnssesasssnsesssssnsensassnsnassnnenans 5
BIBLIOGRAPHYcoiiiiiiiiciteeiscssse s ssssse e s ssssse e s sssms e s sasms e e sssms e s sessnne e s ensaneessasaneessasansessasansessansessnsansessnnnns 6
T €11 = SRS 7
PR] (o] - To = SO SRRSO 7
L N o] o (N F= 11T 1 PP 7
LR T €1 0T 1T YRR 7
L U 1y oo 1T PSPPSR 7
2 MOST DATA TYPES ... ceoiircererrrsssreresssseresasssseesasssns e sssssss e e assssne s easssneeessssnsesssssnsesssssnnesssssnnensssnnens 9
211 @ 23 I = o Yo 1Y | o SRR 9
21.2 MOST Integer Data Types (Byte, Word and LONG)cccoiuiiiiiiiiiieiiiiiee i 9
2 I T V(O 1S IS T o = SR 11
P A =5 (= g To [=To [1Y/ 1@ 1 I Y/ o= 11
221 @ S 3 IS 1 =T o USSR 11
3 MOST COMMUNICATION........oiiiiccmrersssmrerssssmresssssnsesssssssessssssessasssseessssansessasansessassnsessassnsessassns 12
R Tt B =1 o I = Lo |1V RSP RR 12
3.11 TaS] =T g Lot | o F= g o |1 o o T PR 14
3.1.2 LOGICAI DEVICE ID....ccoi ettt e e e e e e e e s e et e e e e e e e seennraeaeeaaeeanes 14
I O 1o T-T - (o] T 1Y/ o1 SRR SSP 14
3.21 Operation TYpes for PrOPEITIESuvviiiiiieiiieceiee ettt e e e e e e 14
3.2.2 Operation Types for MethOdS..........coooiiiiii e 14
K TR N 4 o o o F=Ta o |1 T SRR 15
3.4 MOST FUNCHON CIASSES ... uuuiiiiiieiieiiiiiiiiee e ettt e e e et e e e e e e s et e e e ae e e s e snnntaeeeeaeeeeennneees 16
3.5 Notification — PUSh MOlo e 17
3.6 Communication Patterns ... e e e e 18
3.6.1 TIMEOUt NANAIING ... 19
R G 207 ©o 1411 4= 1 o SR 20
3.6.3 Command With ACKNOWIEAGEcoiiiiiiiii ettt 20
3.6.4 Bounded Request Response (ID restricted)ccoeeiiiiiriiiiiieicee e 21
3.6.5 Unbounded Request Response (ID unrestricted)ouveviiieiiiiiiiiiieiieeeeeceeee e 22
3.6.6 Property Get (PUll MOEI) ...t e e e e ennes 23
3.6.7 Property Subscription (Push Model)...........cuuiiiiiiiiii e 24
3.6.8 EVENt SUDSCIIPHION. ...t 25
4 FUNCTIONS ORGANIZATIONoooiiiiiiieirinsnresssssse s s ssss s s sms s s ms s s s sms e s s smmesssssmmn s sssssmnanas 27
4.1 L] (=T =T =SS 27
N | 1 (=1 7= Tt X Y=Y] (1) o) o 27
421 STAtIC DINAING ... e 28
422)Y aF=T o a1 To o] 1 o [1 o [U PRPRRP 29
G T |] 0 =41 = o o= USSP 30
Y /=1 1T] a1 aTo =T o] o o] SO PR SRRSP 30
4.5 Advanced Version SUPPOI ISSUESeeiiiiiiiiiiiiiiiiii e ettt e e e s e e e e e e s e e e e e s s ennnnes 32
4.6 Dynamic Interface RESOIULION...........ccuuiiiiiiie e 36
4.7 FUNCHON FKUDS......ooieiee ettt e e ettt e e e st e e e sttt e e e sbeeeeesaneeeesnteeeeenns 38
5 MOST HIGH PROTOCOL........cccooiiiiiieriismre s sssmse s sssms s s ssssms s ssssase s s sana s ssssans s s s sans e s ssssns s s snssnsessnnns 39
6 COMPATIBILITY WITH MOST SPECIFICATION........coccoii e eme e sssn e s e 40
APPENDIX B: INDEX OF FIGURESooiiiiriieririnsre e ssss s sssss s s ms s s sssms s s s s s s snssnnssns 41
APPENDIX C: INDEX OF TABLEScoccccieircetiirsceresrssss e s ssssss s e ss s sss e sssssns e sssssns e s ssssnsessnssnssnssssnnnenans 42
Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 4

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

Document History

Rev. 1.0
Change Section Changes
Ref.
1v0_001 General Initial Version.

Specification Document

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

CONFIDENTIAL
Page 5

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

Bibliography

All documents, which are referenced by this MOST document, are listed here along with their versions.
For the current release status please refer to the MOST Cooperation Document List.

Document Revision
3.0

[1] | MOST Specification

Table Bibliography-1: Document references

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 6

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

1 General

1.1 Storage

1.2 Abbreviations

Abbreviation

Description

RPC Remote Procedure Call

UTF UCS (Universal Character Set) Transformation Format

GB Guojia Biaozhun

FBlock Function Block or Server in Client-server model terminology
OPType Operation Type

FktIDs Function IDs

1.3 Glossary

Table 1-1: Abbreviations

Term

Description

GB 18030

Chinese Encoding Standard from 2000 for the support of its national
characters.

Function Block

Represents Server in Client-server model.

Shadow

Represents Client in Client-server model.

Operation Type

Gives message type more context.

Function IDs

Wellknown function implemented by each Function Block. Delivers all
functions implemented by Function Block.

1.4 Purpose

Table 1-2: Glossary

The Recommended Communication Profile specifies a limited set of MOST protocol mechanisms. The
reasons for doing this are the following:

a) Remove mechanisms which are not needed

b) Remove very complicated protocol parts

c) Try to close functional gaps

d) Remove ambiguous mechanisms

In other words, the Recommended Communication Profile tries to reduce itself to a subset of the
currently existing MOST mechanisms, which provide all necessary mechanisms for building distributed

infotainment systems.

This document serves as guideline that describes the proposed subset and also describes how
removed mechanisms can be compensated. The document is focused on following major MOST

mechanisms:

a) Addressing

Specification Document

CONFIDENTIAL
Page 7

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

b) MOST wire format (serialized format): Data Types, Function Classes, Operation Types

c) RPC mechanisms

The intention is to define a set of rules and mechanisms but at the same time keeping MOST
Specification 3.0 E2 [1] compatibility. Any device which uses the Recommended Communication

Profile must pass MOST Compliance testing.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 8
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

2 MOST Data Types

This chapter goes through all MOST Data Types which will be used inside the Recommended
Communication Profile.

The following data types will be explicitly removed and will not be discussed in the following sections:
a) BitField —This functionality can be built on top of the existing number types.

b) Enum - Instead, one of the six number data types can be used. This gives also additional
benefit in case enumeration uses more than 256 elements.

c) Classified Stream — This construct can be built by using other mechanisms.

This Recommended Communication Profile document distinguishes between scalar (base) data types
and extended data types. Scalar data types can be used inside other containers to build MOST
messages. Extended data types use scalar (basic) types for constructing payload.

The Recommended Communication Profile supports only one extended data type called MOST
Stream.

1.1 Scalar MOST Types

2.1.1 MOST Boolean

The Recommended Communication Profile specifies MOST Booleans as follows:
a) FALSE — Will be represented by 0.
b) TRUE — Represented by any other value from 0x01 to OxFF.

2.1.2 MOST Integer Data Types (Byte, Word and Long)

All existing integer data types are kept. The following six data number types will be supported:

Data Type Size in bytes Value Range

Unsigned Byte 1 0 to 255
Signed Byte 1 -128 to 127
Unsigned Word 2 0 to 65535
Signed Word 2 -32768 to 32767
Unsigned Long 4 0 to 4294967295
Signed Long 4 -2147483648 to 2147483647

Table 2-1: MOST Integer Data Types

All signed integer data types shall be interpreted as two’s complement. The following is an example for
8 bit two’s complement notation:

Binary Two’s complement
value interpretation
00000000 0
00000001 1
Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

Page 9

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

Binary Two’s complement

value interpretation

01111110 126

01111111 127

10000000 -128

10000001 -127

10000010 -126

11111110 -2

11111111 -1

Table 2-2: Two’s complement interpretation

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 10

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

2.1.3 MOST Strings

The MOST String data type will be limited to only UTF-8 encoding. Please note that UTF-8 is also
compatible with ASCII representation.

See the following example with UTF8 encoding used inside MOST String:

Identifier Content
UTF-8 “Hello, world\0”
0x02 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21 24 00

Table 2-3: UTF8 String Encoding Example

This makes string parsing easier because even without knowing MOST String representation, one
could just read up to the first zero terminator which terminates the string. Afterwards, the next MOST
parameter follows.

GB 18030-2005

GB 18030 is a new Chinese code page standard that extends GB 2312-1980 and GBK. GB 18030 is a
multi-byte encoding using 1, 2, and 4-byte codes (similar to UTF-8). It is mandatory to support GB
18030 for all software sold in China. It is still possible to use Unicode encoding internally
(communication, internal inter process communication, etc.) and to support GB 18030 at text input and
output points (text fields, text forms, etc.). That means to support GB 18030, only a conversion
between GB 18030 and ISO 10646/Unicode is needed. This is possible because of the definition of
GB 18030 with a mapping table to ISO 10646/Unicode.

2.2 Extended MOST Types

2.2.1 MOST Stream

The Recommended Communication Profile only uses the following MOST stream types:
a) Unstructured Stream

b) Simple Stream

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 11
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

3 MOST Communication

3.1 Session Handling

Session handling is added so that connection-oriented communication is fully supported.

The following MOST functions will be provided by each FBlock to support sessions:

Function Function Name Operation Type Paramaters

0xCO00 CreateSession StartResultAck (0x06) ClientID
ErrorAck (0x09) ClientID, ErrorCode, Errorinfo
ResultAck (0x0D) ClientID, SessionID

0xCO01 CloseSession StartResultAck (0x06) SessionlD
ErrorAck (0x09) SessionlD, ErrorCode, Errorinfo
ResultAck (0x0D) SessionlD

Table 3-1: Session handling functions

Parameter description:

Parameter |Data Type Parameter Description
Name
ClientID Unsigned Word Used only for creating a session. Needed to be able to

distinguish between two shadows with same 1D
(FBlocklID.InstancelD) in one device. For example, it could be
that two shadows with the same ID in one device send
CreateSession Method to an FBlock. The FBlock cannot
distinguish between these two Methods without ClientID.

The Shadow is responsible for ClientID uniqueness. The
following mechanisms are proposed to make ClientID unique:

a) Shadow resides in OSEK like system: OSEK Task ID
could be used.

b) Shadow resides in dynamic OS system which supports
Processes and Threads: ProcessID or ThreadlD could
be used (or a combination of the two).

c) Shadows use dedicated Middleware: Client handle
from existing Middleware infrastructure could be used.

SessionlD Unsigned Word SessionlD will be generated by the FBlock in the case that the
CreateSession function succeeds. SessionID is incremented
with each new session (pseudo randomized SessionlDs could
be used for secure applications).

Table 3-2: Session handling parameters
A session does not expire automatically. A session is invalidated, for example, in these situations:
a) The Shadow detects that the FBlock is not visible — the Shadow terminates the session.
b) The Shadow terminates the session automatically.

c) The FBlock receives CreateSession from a Shadow which already opened a session — the old
session is terminated on the FBlock side and a new session is generated.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 12

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

SessionlD will be used in all subsequent Methods as Shadow indicator.

See the following sequence diagram with two Shadows in one device and FBlock in separate one.

sd Addressing

Device A Boundary1
«MOST Shadow» «MOST Shadow» «MOST FBlock»
Shadow 0x40.0x01 Shadow 0x40.0x01 :FBlock
:Shadow :Shadow

I I I

| |
CreateSession_Request(42) :int :
|

|
CreateSession_Response(1)

CreateSession_Request(43) :int

CreateSession_Response(2)

|

I
0]

|

!
1

|

|

|

|

|

|

I
I
L
]
I
I
O
I
I

FBlock contains two sessions:
Session with ID 1 connected to the Shadow with TaskiD 42.
Session with ID 2 connected to the Shadow with TaskiD 43.

Figure 3-1: Addressing

To make the whole system backward compatible, all functions that contain Session ID and Client ID
will be inside the Proprietary (System Specific) Function ID range 0xC00 — OXEFF. The range from
0xCO00 — OxCFF will be reserved for housekeeping (functions that manage sessions).

SessionlD could be used by MOST middleware to find the correct Shadow for report OPTypes. To be
able to do that, the middleware needs to store SessionID together with the client context' of the
connected client.

SessionID will be generated on the FBlock (server) side. It needs to be ensured that SessionID is
unique for each registered Shadow. It is not allowed to interpret SessionID. It shall be used as handle.

' This depends on the Operating System. This could be a file handle, a socket handle, or a connection
ID.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 13

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

3.1.1 Instance ID handling

Only static Instance IDs will be supported inside the Recommended Communication Profile.
Dynamically calculated instance IDs are not supported. This means that the System Integrator
chooses Instance IDs in static way.

There are some special Instance ID values (wildcards) that can be used when addressing FBlocks
(servers). Please note that this is used only when a Shadow addresses an FBlock and not vice versa.
The following are wildcard cases:

Wildcard Description

0x00 Message will be sent to any FBlock instance. The Recommended
Communication Profile recommends always using the lowest
available instance ID.

OxFF Message will be sent to all instances of the addressed FBlock.

Table 3-3: Wildcard addressing

All other rules and exceptions apply from MOST Specification [1].

3.1.2 Logical Device ID
The recommendation of the Recommended Communication Profile is that the Logical Device ID is

calculated in dynamic way. This means: based on node position. A Static Logical Device ID is also
supported. In this case, the Device ID is statically configured in Network Interface Controller (NIC).

3.2 Operation Types

The Recommended Communication Profile only uses a subset of existing Operation types (OPTypes).
The following chapters specify the used OPTypes for Properties and Methods. See also chapter
Compatibility with MOST Specification.

3.2.1 Operation Types for Properties

Commands

0x00 Set
0x01 Get
Reports

0x0C Status
OxO0F Error

Table 3-4: Operation types for Properties

3.2.2 Operation Types for Methods

Commands
0x06 StartResultAck
0x07 AbortAck
Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

Page 14

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note CODPERATION
Commands

0x08 StartAck

Reports

0x09 ErrorAck

0x0D ResultAck

Table 3-5: Operation types for Methods

3.3 Error handling

Errors are indicated through Error (0xOF) and ErrorAck (0x09) operation types. The Error format is
completely compatible with the MOST Specification [1]. On the other side, this is a quite restricted
definition. A main requirement is the possibility to extend error information but on the other side being
compatible with systems which do not support extended error information.

Therefore, the following will be done inside the Recommended Communication Profile. All errors will
be derived from MOSTBaseError. MOSTBaseError will contain the errorCode attribute. There is also
MOSTExtendedError, which derives from MOSTBaseError and which defines an additional attribute
errorinfo (as unstructured stream). This makes it possible to extend the MOSTBaseError class also for
some user defined errors. See also the following class diagram, which describes MOST error
hierarchy:

class Error Handling
MOSTBaseError

errorCode :MOST_UnsignedByte

«property get»

+ geterrorCode() :MOST_UnsignedByte

«property set»

+ seterorCode(MOST_UnsignedByte) :void

MOSTExtendedError
SystemintegratorSpecificError SupplierSpecificError

errorinfo :MOST_UnstructuredStream

«property get» «property get»
«property get» + geterrorCode() :MOST_UnsignedByte + geterrorCode() :MOST_UnsignedByte
+ geterrorinfo() :MOST_UnstructuredStream «property set» «property set»
«property set» + seterorCode(MOST_UnsignedByte) :void + setermorCode(MOST_UnsignedByte) :void
+ seterrorinfo(MOST_UnstructuredStream) :void

i

ExampleUserDefinedError

«errorinfo»
errorDescription :MOST_String

«property get»

+ geterrorCode() :MOST_UnsignedByte

+ geterrorDescription() :MOST_String

+ geterrorinfo() :MOST_UnstructuredStream
«property set»

+ seterrorCode(MOST_UnsignedByte) :void

+ seterorDescription(MOST_String) :void

+ setemorinfo(MOST_UnstructuredStream) :void

Figure 3-2: Error Handling

For example, if ExampleUserDefineError uses errorDescription instead of errorinfo, it does not
matter because ExampleUserDefinedError can be cast to MOSTExtendedError at any time. Instead

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 15
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

of errorinfo,

errorDescription will be transferred.
MOSTExtendedError, read the string as unstructured stream.

3.4 MOST Function Classes

The Recommended Communication Profile will use only the following MOST function classes:

Applications which support only

MOST Description Operation Types Payload
Function
Class
Container | Used for Set (0x00) MOST Stream
properties. Get (0x01)
This function
class can Status (0x0C) MOST Stream
contain only
stream. See
also 2.2.1.
Trigger Used for StartAck (0x06) 'SessionID
Method Metho_ds. ErrorAck (0x09) Session|D, MOST
Contains Extended E
optionally only xtended krror
Session ID. ResultAck (0x0D) SessionID
Sequence | Used for StartResultAck (0x06) SessionlID, [TransactionID],
Method Methods. MOST Stream
AbortAck (0x07) SessionID, [TransactionID],
MOST Stream
ErrorAck (0x09) SessionlD, [TransactionID],
MOST Extended Error
ResultAck (0x0D) SessionlID, [TransactionID],
MOST Stream

Table 3-6: Recommended Communication Profile Function Classes

Please note that parameters marked with [] brackets are optional (this depends on the concrete
communication pattern).

Some of the mechanisms described in section 3.1 use additional parameters inside MOST payload:
a) SessionlD — Addendum to the concept of SenderHandle.

b) ClientID — Replaces SenderHandle (just another name for it) in additional functions which
solve Addressing problem.

c) TransactionID — Added additionally to be able to distinguish between different Methods which
run in parallel.

All mentioned mechanisms are added only to Methods. That means, only MOST Methods are
connection oriented and have the ability to differentiate between different transactions in
parallel.

' In some communication patterns sessions are not used. In this case Dummy_Sender Handle will be
used. For more details please reference chapter 3.6.

Specification Document CONFIDENTIAL

Page 16

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

3.5 Notification — Push Model

The notification mechanism as defined inside MOST Specification 3.0 [1], has the deficiency that
notification is not closed. That means that a call to the Notification.Set() function is not closed with
Notification.Status(). Instead, it is closed with the concrete status of properties which were notified. For
example:

1) Notification.Set(PropertyA)
2) PropertyA.Status()

To be sure that Notification is closed, the Shadow should trigger the NotificationCheck function and
check explicitly if notification worked. For example:

1) Notification.Set(PropertyA)
2) NotificationCheck.Get(PropertyA)
3) NotificationCheck.Status(PropertyA)
4) PropertyA.Status()
Please note that the order of PropertyA and NotificationCheck status is not guaranteed.

The existing notification mechanism as defined in the MOST Specification [1] will be kept without any
changes. Notification will still stay connectionless and will not be able to distinguish between different
shadows in one device. The exception is the concept of the implicit notification. Implicit notifications
shall not be used in Recommended Communication Profile systems.

Please take care of the following critical issue when using the notification mechanism.
Example: There are two Shadows in one device. The FBlock resides in a separate device. One of the
Shadows clears natification. In this case, the FBlock does not distinguish between the two shadows
and clears notification for both of them. When this is done both shadows will be disconnected from the
FBlock. This is probably not the intention.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 17
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

3.6 Communication Patterns

This section will describe communication patterns that will be supported by the Recommended
Communication Profile and also concrete Recommended Communication Profile mechanisms which
will be used to implement one or the other pattern.

The following communication patterns will be supported on the higher level:
a) Command — Request without Response.

b) Command with Acknowledge — Request with Boolean Response (success, fail). It supports,
optionally, exceptions (ErrorAck for example).

c) Bounded Request Response (ID restricted) — Request and Response message contain data.
Request and Response have unique ID in scope of the current session. For example:

RequeSt sessionip, rransactiontp (INput Data) —> RESPONSE sessionip, Transactionrp (Output Data)
a. With time-out handling
Request sessionip, rransactionzp (Input Data) —> EIrIrOr sessionip, Transactionzp (Timeout)

d) Unbounded Request Response (ID unrestricted) — Similar to previous Request Response,
only without support for TransactionID and TimeOut. For example:

Request gessiontp (Data) —-> Response sessionrn, (Data)
The following example is for the session creation function:
Request ciientrp (Data) —-> Response gessionn, (Data)
e) Property Get (Pull Model) — Requests property without any input data.

f) Property Subscription (Push Model) — We have two types of requests here: Subscribe and
Unsubscribe.

g) Event Subscription — Very similar to (f) but has no current state and it is used to trigger an
event from the server side.

The following common terms will be used in subsequent sections:

- Service — This represents a service which implements functionality. In MOST terms this is an
FBlock.

- Client — This is a client which communicates with a service. In MOST terms this is a Shadow.

- Session — Represents a semi-permanent interactive information interchange. Also called
dialogue.

- Transaction — Identifies a Request/Response pair which builds a closed transaction unit (used
only in combination with Bounded Request Response).

All communication patterns that are session oriented will use the MOST function ID range from 0xC00
to OXEFF. The sub function range from 0xC00 to OxCFF will be reserved for housekeeping (functions
that manage sessions or some other functions which could be added in the future).

Some of the communication patterns need to contain a SenderHandle in payload just to keep
compatibility with the MOST Specification [1]. Operation types Start or StartResult could be used in
this case, but these operation types are deprecated. This SenderHandle is not interpreted and content
does not matter. This is called Dummy_SenderHandle. Dummy_SenderHandle should be always set
to value OxFFFF. Please note that SessionID could contain the same value. As noted before, this
value should not be interpreted.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 18
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

3.6.1 Timeout handling

In the MOST Specification [1], timeout is measured on the server side. Timeout is in this case used for
periodic notification if a Method still runs. This is indicated by sending back OPType Processing or
ProcessingAck. This concept is not used inside the Recommended Communication Profile. See also
section 3.2 Operation Types.

Timeout measurement is done only on the Shadow side. Timeout is defined optionally for Methods
where this is appropriate (Timeout handling is not done for properties). Per default, no timeout
measurement will be done on the Shadow side (unless otherwise defined). In the case that a timeout
is defined for a Method, it is mandatory to implement timeout handling on the Shadow side. This could
be defined inside, for example, the MOST Function Catalog.

Timeout handling must be used only in conjunction with the 3.6.4 Bounded Request Response (ID
restricted) communication pattern (a pattern which uses transaction).

Timeout measurement starts at the moment when a Method is triggered. In the case that timeout
elapses, the transaction will be terminated and will be considered as timed out. In the case that a
response arrives for an already timed out transaction, it will be ignored (additional assertions could be
performed inside the system to detect slow reaction of the FBlock/Server side).

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 19
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST®

MOST

Recommended Communication Profile Application Note COOPERATION

3.6.2 Command

Commands are used to trigger actions on the service side. There is no response when using the
command pattern. A command is executed immediately after reception on the service side.
Commands are not connected to any sessions or transactions. A command does not contain any
payload except Dummy_SenderHandle (for more details see 3.6).

Function class Trigger will be used in this case:

MOST Function Description Operation Types Payload

Class

Trigger StartAck StartAck (0x06) Dummy_SenderHandle
represents a
command.

Table 3-7: Command

3.6.3 Command with Acknowledge

Command with Acknowledge is used to trigger actions on the service side. The service returns a
response which contains one of the following two possible values:

a) Success — Operation succeeded

b) Failed — Operation failed

MOST Function Description Operation Types Payload

Class

SequenceMethod StartResultAck SessionlD, TransactionID
(0x06)

ErrorAck (0x09) SessionlD, TransactionID, MOST
Extended Error

ResultAck (0x0D) SessionlD, TransactionID, Status

Table 3-8: Command with Acknowledge

Parameter Name

Data Type Parameter Description

MOST Extended
Error

MOST Stream Stream contains ErrorCode and Errorlnformation.

Status

MOST Boolean | TRUE for success otherwise FALSE.

Table 3-9: Parameters for Command with Acknowledge

Specification Document
Page 20

© Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

sd Command with Acknowledge /

Device A Device B Device C
«MOST Shadow» «MOST Shadow» «MOST Shadow» «MOST FBlock»
Shadow 0x40.0x01 Shadow 0x40.0x01 Shadow 0x40.0x01 FBlock 0x40.0x01
:Shadow :Shadow :Shadow :FBlock

Command(1, 56)

Command(2, 473)

I

|

|

1

|

|

]

|

| |
0 Command(1, 1082)

I

|

|

|
=

i

|

|

|

|

|

|

|

| > 1

| L -

|

: I Command_Status(2, 473, true) :

| o< | gs|

| | | |

| | Command_Status(1, 1082, false)

| | |

! ! I R o

| | | |

| I Command_Status(1, 56, true) |
[(i iy it T g

|
| |

Figure 3-3: Command with Acknowledge

3.6.4 Bounded Request Response (ID restricted)

The Bounded Request Response (ID restricted) is a request response pattern. It is attached to one
session between Shadow and FBlock. Additionally, each Request-Response pair is handled as
separate Transaction. Transaction IDs are created on client side (Shadow). The server can use the
Transaction ID to distinguish between the transactions which run inside one session in parallel.

MOST Function Description Operation Types Possible Payload
Class
Sequence Method | Used for StartResultAck SessionlID, [TransactionID], Input data
Methods. (0x06) MOST Stream
AbortAck (0x07) SessionlD, [TransactionID], MOST
Stream

ErrorAck (0x09) SessionID, [TransactionID], MOST
Extended Error

ResultAck (0x0D) SessionlID, [TransactionID], Output
data, MOST Stream

Table 3-10: Bounded Request Response (ID restricted)

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 21
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

sd Bounded Request Response (ID restricted)/

Device A Device B Device C
«MOST Shado... «MOST Shado... «MOST Shado... «MOST FBlock»
Shadow 0x40.0x01 Shadow 0x40.0x01 Shadow 0x40.0x01 FBlock 0x40.0x01
:Shadow :Shadow :Shadow :FBlock

T T T
| |

Bounded_Request(1, 405, inputData)
T

|
Bounded_Request;(Z, 102, inputData)

|
Bounded_Request(1, 905, in

J-J

O

utData)

34

y
I

T
|
|
L
|
|
|
é]‘ Bounded_Response(2, 102, outputData)
|
| Bounded_Response(1, 905, outputData)
-
|
|

Bounded_Response(1, 405, outputData)
- . B
. L] i

+
%

Figure 3-4: Bounded Request Response

3.6.5 Unbounded Request Response (ID unrestricted)

The Unbounded Request Response (ID unrestricted) anticipates that a request is performed and waits
for the result. And whatever response is received, it is accepted whenever it is produced, no matter if it
is based on the previous identical request or the last request.

An unbounded request does not require a session to be opened. When an unbounded request is
used, it is not possible to establish a correlation between a specific Request and Response. But this
simplifies the code that supports this pattern, so the implementer does not need to take care of
request timeout, and the order of incoming and outgoing messages. It is useful for the data that is not
changing in the time, or users do not plan to ask to make the request with different parameters at the
same time.

Similar to the command, the unbounded request response will contain a Dummy_SenderHandle. The
reason is compatibility with the MOST Specification [1]. The content of this SenderHandle will not be
interpreted.

MOST Function |Description Operation Types Possible Payload
Class
Sequence Method | Used for StartResultAck Dummy_SenderHandle, Input data
Methods. (0x06)
ErrorAck (0x09) Dummy_SenderHandle, MOST
Extended Error
ResultAck (0x0D) Dummy_SenderHandle, Output data

Table 3-11: Unbounded Request Response (ID unrestricted)

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 22
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

sd Unbounded Request Response (ID unrestricted)/

4))

«MOST Shadow» «MOST FBlock»
Shadow 0x40.0x01 MOST FBlock 0x40.0x01

Unbounded__Request(IlnputData1)

Unbounded_Request(InputData2)

Unbounded_Responset() :OutputData2

. I S, -

Unbounded_Responset() :OutputData1

—---f---g---0--0--—
-

Figure 3-5: Unbounded Request Response

3.6.6 Property Get (Pull Model)

A Property has a current value and does not depend on an incoming parameter that belongs to a
request. So the pull model assumes a Get request 'without any input parameter and a Transaction
ID to trigger the transmission of a status message.

MOST Function Description Operation Types Possible Payload

Class

Container Used for Set (0x00) MOST Stream
properties. Get (0x01)

This function
class can contain
only stream. See
also 2.2.1.

Status (0x0C) MOST Stream

Table 3-12: Property Get (Pull Model)

Please note that Properties are connectionless and therefore there is no guarantee that a Property will
be changed by calling OPType Set (message could get lost). If in some use cases this needs to be
guaranteed, please use the Bounded Request Response pattern instead. In the case of Bounded

"In the case that a parameter is needed, property is not the right choice for this. It is also explicitely
forbidden in this specification. In this case, other communication patterns like Request Response
are more appropriate.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 23
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

Request Response, the Shadow always receives confirmation that an action is executed. If no
response is received, and this is critical, optionally, timeout handling can be activated for this method.

In some cases, confirmation is not needed. For example, if a Property is cyclically set every 100ms.

sd Unbounded Request Response (ID unrestricted)/

4 I 4 I
«MOST Shadow» «MOST FBlock»

Shadow 0x40.0x01 MOST FBlock 0x40.0x01
I
|
|
Get() |
g

Status() :Value

Figure 3-6: Pull Model

3.6.7 Property Subscription (Push Model)

In the push model, the value for the Property is transmitted by the FBlock, whenever natification is
necessary. The reason could be a property change or timer-caused notification. The push model can
be combined with the pull model; this means that the Property value can be requested by Get as well.

MOST Function Description Operation Types Possible Payload

Class

Container Used for Set (0x00) MOST Stream
properties.

This function Get (0x01)
class can contain
only stream. See | Status (0x0C)
also 2.2.1.

Table 3-13: Property Subscription (Push Model)

The Notification and Notification Check functions are also needed. See the MOST Specification [1] for
more details about these functions.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 24

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

sd Unbounded Request Response (ID unrestricted)/

4 N 4 I
«MOST Shadow» «MOST FBlock»
Shadow 0x40.0x01 MOST FBlock 0x40.0x01
I I
| |
| Subscribe() |
! Statu§() Value !
: Status() :Value :
L L
| |
I_‘i" Status() :Value /l_T|
| Set() |
T n
| |
- J - J

Figure 3-7: Push Model

3.6.8 Event Subscription

An event can be interpreted as a Property which has no current value and status, but the set of events
in time has meaning. There are no Set or Get operations for such properties but only Subscribe and
Status.

MOST Function Description Operation Types Possible Payload
Class
Container Used for Status (0x0C)

properties.

This function
class can contain
only stream. See
also 2.2.1.

Table 3-14: Event Subscription

The Notification and Notification Check functions are also needed. See the MOST Specification [1] for
more detail about these functions.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 25
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

sd Unbounded Request Response (ID unrestricted)/

-

-

«MOST Shadow»
Shadow 0x40.0x01

«MOST FBlock»
MOST FBlock 0x40.0x01

Sublscribe)

Status() :Value

Status() :Value

——O-O-o--1

SN NS U, S

Figure 3-8: Event

Specification Document

Page 26

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note

Rev. 1.0
07/2012

CONFIDENTIAL

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

4 Functions organization

4.1 Interfaces

Each Recommended Communication Profile FBlock implements its functionality by a set of incoming
and outgoing messages. These messages could be considered as protocol implemented by an
FBlock. Each message has an internal number unique within this FBlock, called function ID.

Some of the messages could be the same for different FBlocks, as Play, Pause, and Stop, so we
could define the sub protocol of the FBlock and put it out as separate contract that could be reused in
different FBlock. Such contracts can be interpreted as programming interfaces.

Each such interface consists of Methods and Properties, restricted by communication patterns
described above. The input parameters are transmitted by outgoing messages, the return value if
present by incoming messages for the FBlock’s client.

So Play, Pause, Stop functionality could be represented by interface in UML model.

class Interface Deﬁnition/

«K2LSInterface»
IPlayer

«K2LCommand»
+ Pause :void
+ Play :void
+ Stop :void

Figure 4-1: Interface

“K2LCommand” corresponds to Command communication pattern described in 3.6.2

4.2 Interfaces resolution

The interface is independent of an FBlock and it defines how the messages will obtain their function
IDs in a particular FBlock.

It is possible to say that each interface will implement a predefined set of function ID in each FBlocks.
Pause can take function ID 0x800, Play 0x801, and Stop 0x802 but it will be required to reserve some
ranges for dedicated function IDs and support its consistency, so that nobody can define interfaces
with the same IDs.

Another approach proposes a virtual function ID, like a virtual table in C++, where each method
(message) in the interface has only a relative function ID inside the interface, defined by the message
order. The real function ID is assigned to a method when it is implemented by a particular FBlock.

If an FBlock implements two interfaces, each method shall be sequential in one group (without any
gap).

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 27
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION
class Interface Definition /
«K2LSlInterface» «K2LSInterface»
IPlayer IDevice
«K2LCommand» «K2LCommand»
+ Pause :void + Awake :void
+ Play :void + StandBy :void
+ Stop :void 4
DY /
/
\\ /
\ /
\ /
«FBlock»
Player

Figure 4-2: FBlock implements interfaces

Interface Method Method number Function ID
IPlayer Pause 1 0xD10

Play 2 0xD11

Stop 3 0xD12
IDevice Awake 1 0xD13

Standby 2 0xD14

When modeling interfaces with a UML design tool, the number can be assigned to methods by tags to
avoid relying on sorting rules of the methods inside UML.

4.2.1 Static binding

When production code is generated from the model, the FBlock will obtain all function IDs for all
messages inside its protocol; apart from that, these messages will be known to the client proxy, called
Shadow in MOST. Such an approach does not require any additional interface resolution in the link of
the Shadow and FBlock.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 28
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

Figure 4-3: Shadow and FBlock have the same functionID table

class Interface Deﬁnition/

Client Device

Player Shadow

IPlayer IPlayer

Player Shadow :: o Player F_Block::
IDevice IDevide IDevice Device

+ Awake = 0x013 + Awake = 0x013

+ Standby = 0x014 + Standby 0x014

4.2.2 Dynamic binding

If the number of function ID of the particular interface that is implemented by an FBlock is not known at

the moment of code compilation, it is possible to resolve the interface dynamically.

In such a case, the Shadow shall know only the Device ID and FBlock ID. It can use a special set of
defined functions that shall be implemented by the FBlock if it supports dynamic resolution.

Knowing the relative number of each method in the interface, the shadow can ask the FBlock of the

start number of the particular interface and create function IDs dynamically for it.

That allows working with different FBlocks via a well-known interface without creating the precompiled

Shadow for each.

The following table defines resolution functions:

Function ID Parameters Result

IsA 0xCO03 | String name of the interface. True or False
The proposed name could be
Company.Product.Interface

Resolve 0xC04 | String name of the interface. The list of pairs:

The proposed name could be

Company.Product.Interface and

<Parent Interface> — <Start function ID>

<Interface> — <Start function ID>
*See the Versioning Support

Table 4-1: Dynamic binding

Specification Document

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

CONFIDENTIAL
Page 29

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

4.3 Inheritance

Determining a subset of FBlock functionality as an interface allows applying the powerful OOD feature
— inheritance.

class Interface Definition ~

«K2LSInterface» «K2LSInterface»
IPlayer IDevice
«K2LCommand» «K2LCommand»
+ Pause :void + Awake :void
+ Play :void + StandBy :void
+ Stop :void 4
1
/
!
1
«K2LSInterface» II
IPlayerEx /
«K2LCommand» /
+ Back :void /
& /
/

«FBlock»
Player

Figure 4-4: Interface inheritance

Virtual inheritance will not be supported. In case of parent interface resolution, implemented in more
than one child interface, the function ID for the first implementer will be returned.

4.4 Versioning support

Inheritance is a private case of versioning, where an FBlock can be updated by either extending one
of its interfaces or adding a new interface. In this case, backward compatibility at the level of a set of
functions shall be supported to allow for old shadows to communicate with the new version of an

FBlock.

For backward compatibility, the protocol is not allowed to change the order of existent messages
(functions inside interfaces), but it may be extended. That means that all new added members of each
added interface shall achieve function ID numbers greater than all from the previous version.

The following rules shall be applied to interfaces:
1. ltis not possible to extend the existing interface or delete any method from it.

2. Toadd new functionality, the new interface shall inherit the older version of the
interface and new functionality is contained only in the new interface.

3. The FBlock model element in a UML design tool shall keep the sequence of
implemented interfaces (this could be done by using tags). .

The extended interface part will be placed in the function table above previously implemented
interfaces.

This will allow the old Shadow to work with a new FBlock using the same function IDs. Dynamic
resolution for IPlayerEx will return start functionlD for its parent IPlayer and functionID for IPlayerEx
part.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 30
Recommended Communication Profile Application Note

Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

Figure 4-5: FBlock of new version extends its table of functionIDs

class Interface Deﬁnition/

Client

Player Shadow

IPlayer

Player Shadow::
IDevice IDevice

+ Awake = 0x013
+ Standby = 0x014

| ew

IPlayer

IDevice

IPlayerEx

Device

Player FBlock::
IDevice

+ Awake = 0x013
+ Standby 0x014

Specification Document

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note

Rev. 1.0
07/2012

CONFIDENTIAL
Page 31

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

4.5 Advanced Version Support Issues

«K2LSInterface»
IPlayer
«K2LCommand»
+ Pause() :void
+ Play() :void

+ Stop() :void

A

Player FBlock

«K2LSInterface»
IPlayer

«K2LCommand»
+ Pause() :void
+ Play() :void
+ Stop() :void

class Interface versioning /
class Iteration 0 / class lteration1 / class lteration2 /

«K2LSInterface»

IPlayer

«K2LCommand»
+ Pause() :void
+ Play() :void
+ Stop() :void

«K2LEnume...

«K2LSInterface»
IPlayer

PlayMode
Player FBlock «use»” |+ Curent :int
+ Rundom :int
I
|
I
|
Player FBlock
class lteration 3 /

«K2LSInterface»
IPlayer2

«K2LCq

«K2LCc

+ Pause() :void
+ Play() :void
+ Stop() :void

«use»

+ MoveBack() :void
+ MoveForward() :void
+ Play(Mode :PlayMode, iPlaySpeed :int) :void

! |
/ |
/ |
! I
/ |
«use» !
/ |
/ I
/ |
! I
L// |
I
«K2LEnume... :
PlayMode |
+ Current :int :
+ Rundom :int |
|
I
|
!
~~_
S~
=4 Player FBlock

Figure 4-6: Interface evolution

The picture above shows the complex design evolution from IPlayer through IPlayer1 to IPlayer1x1 as
one branch and as IPlayer2 as an orthogonal branch of the IPlayer. IPlayer2 does not inherit any ads
made in IPlayer1... series. This scenario could apply if one developer updates the trunk from IPlayer to

IPlayer 2 and another provides bug fixing and minor interface changes at the same time.

The major issue would be to support backward compatibility for the released devices.

If the clients released for IPlayer1x1 are deployed and the next major release is planned to support
IPlayer2, the released server (FBlock) shall support both IPlayer1x1 and IPlayer2. In terms of protocol
that means that the protocol for the new FBlock shall contain messages for IPlayer, IPlayer1,
IPlayer1x1 and IPlayer2. And the IDs (FunctionlDs) of those messages should remain the same as for

Specification Document

Page 32

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note

Rev. 1.0
07/2012

CONFIDENTIAL

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

previous releases of the same FBlock. This means that the protocol is combined in the same order as
it was combined for previous releases and all additions shall be placed at the end.

Here is the evolution in details:

There is the table of the protocol for the initial FBlock that supports only IPlayer. The table shows the
relative message number, assigned to a command (method) in the interface and provides the absolute
number inside this particular FBlock.

Function (message) Relative number Absolute number (Function
ID) in FBlock

IPlayer

Pause 0x1 0xD10

Play 0x2 0xD12

Stop 0x3 0xD13

Table 4-2: IPlayer implementation

It is assumed that the FBlock for IPlay is released and clients were written to it. And after that, the
development is started for the next generation of the FBlock, for planned version IPlayer2. But in the
meantime, the support team decided to fix a design error in the IPlayer interface and extend the
method Play with parameter for play speed.

They decided to release this interface before IPlayer2

Function (message) Relative number Absolute number (Function
ID) in FBlock

IPlayer

Pause 0x1 0xD10
Play 0x2 0xD12
Stop 0x3 0xD13
IPlayer1

Play(int iPlaySpeed) Ox4 0xD14

Table 4-3: IPlayer1 implementation

In terms of interfaces, IPlayer1.Play(int iPlaySpeed) overwrites IPlayer.Play() but in terms of protocol,
these are different messages, that shall be supported both in the device for compatibility.

All old clients, which contain table 1 will work with new FBlocks, which contain table 2.

Furthermore, before the release of IPlayer2, the support team wanted to extend the IPlayer1 interface
with another overwritten method.

Function (message) Relative number Absolute number (Function
ID) in FBlock

IPlayer
Pause 0x1 0xD10
Play 0x2 0xD12
Stop 0x3 0xD13
IPlayer1

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

Page 33

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

Function (message) Relative number Absolute number (Function
ID) in FBlock

Play(int iPlaySpeed) 0x4 0xD14

IPlayer1x1

Play(PlayMode mode) 0x5 0xD15

Table 4-4: IPlayer1x1 implementation
The new method/message is added to the end of the protocol.
If the FBlock released, this order of methods/messages shall be kept during all of its lifecycle if the
compatibility is anticipated.

At the end, the development department wants to release IPlayer2, but it is based on |IPlayer and has
not IPlayer1 and IPlayer1x1, because it is redesigned.However, it is still required that clients which
were released for IPlayer1 an IPlayer1x1 can work with new FBlock. It means that the new FBlock
shall implement all of the interfaces and its protocol should be the following:

Function (message) Relative number Absolute number (Function
ID) in FBlock

IPlayer

Pause 0x1 0XD10

Play 0x2 0XD12

Stop 0x3 0xD13

IPlayer1

Play(int iPlaySpeed) Ox4 0xD14

IPlayer1x1

Play(PlayMode mode) 0x5 0xD15

IPlayer2

MoveBack (inherits IPlayer) 0x4 0xD16

MoveForward 0x5 0xD17

Play(int iPlaySpeed, PlayMode mode) 0x6 0xD18

Table 4-5: IPlayer2 implementation

FBlock compatibility rule: The absolute number of messages (Function IDs) for an FBlock’s protocol
(the full bunch of the interfaces it implements) shall be kept among the versions, where new messages
shall be added to the end of the protocol.

Any shadow that supports only IPlayer2, will skip the IPlayer1 and IPlayer1x1. Message numbers will
be the same on Shadow and FBlock side.

It shall be possible to select a subset of interfaces inside a particular FBlock that will be supported by
the Shadow. This is typicaly done to reduce Shadow size. For example, an FBlock implements
multiple interfaces but a specific Shadow needs only one of these interfaces. This is usually needed
when generating runnable code from a UML design model .

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 34

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

The table of such a Shadow will be the following:

Function (message) Relative number Absolute number
(Function Id) in FBlock

IPlayer

Pause 0x1 0xD10

Play 0x2 0xD12

Stop 0x3 0xD13

IPlayer2

MoveBack (inherits IPlayer) Ox4 0xD16

MoveForward 0x5 0xD17

Play(int iPlaySpeed, PlayMode mode) 0x6 0xD18

Table 4-6: Message table for Shadows which support only IPlayer2

Specification Document

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

CONFIDENTIAL

Page 35

MOST®

Recommended Communication Profile Application Note

MOST

4.6 Dynamic Interface Resolution

Dynamic resolution means that a client during compilation does not know with which particular
FBlocks it will communicate with. What is known, is the common interface which defines the set of
methods/messages and rules for serialization of its parameters. See section 4.2.2 for more details.
The set of messages means that the client knows only relative message number from the beginning of

the interface and does not know the real Function ID of the particular device.

To obtain the real Function ID, the client resolves the known interface of an FBlock with known
address and by using dynamic resolution mechanisms (see Dynamic binding). The FBlock provides
the starting Message ID for this interface and all of its ancestors (see previous chapter on inheritance).

The client calculates the Function ID for this block dynamically.

cmp Dynamic Resolution/

«interface»
IContentProvider

+ o+ o+ o+

GetContentltemsCount() :Uint32
GetContentltem() :String
ExecuteContent(UInt32)
FindContent(String) :Uint32[]

Client r

IPlayer

)
N\

IContentProvider

o—

DVD Player

)

IRadio

IContentProvider
)

Radio

N4

IContentProvider

©

IContentProvider

IContentProvider

Figure 4-7: Dynamic resolution: Component Model

For instance, there are is a concrete FBlock, which implements the common |ContentProvider

interface that is used for querying a media library.

The interface could be represented as

Function (message) Relative Description
number
UInt32 GetContentltemsCount() 0x1 | Return amount of available items
String GetContentltem(UInt32) 0x2 | Return context description
EexecuteContext(UInt32) 0x3 | Perform device-specific action for
context
UInt32[] FindContents(String) 0x4 | Find items suting the filter

Specification Document
Page 36

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note

Rev. 1.0
07/2012

COOPERATION

CONFIDENTIAL

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

sd Dynamic Resolution/

Client DVD Player

[FID=0xCO03]:IsA('IContentProvider’) :bool
»J_

[FID=0xC04]:Resolve('IContentProvider') :string

L
|
|

1
[FID= (10 + 3) 13]:FindContent(MUSIC') :Uint32]
>J_

{102, 103
w2103 |

[FID=(10 + 1) 11]:GetConte:nt(102) :string

»—

‘'Wonderful song'
e - - 2

L]
[FID=(10 + 2) 12]:ExecuteContent(102)

|

|

|

|

|
[FID=0xCO03]:IsA('IContentProvider’)

t

[FID=0xCO4]:Resolve('ICoritentProvider') :string

|
1
:{'IContentPrc_J:/idel‘, start=5}

- —— = [T
|
[FID= (5 + 3) 13]:FindContent(MUSIC') :Uint32]
|
(521}
- —— = S
1
[FID=(5 + 1) 6]:GetContent(521) :string
|
|
Sad song
- —— = T-——————————==

Figure 4-8: Dynamic resolution: Sequence chart

The diagram shows that the client asks for each available device if it implements the IContentProvider
interface. It dynamically detects the Function ID on the device. It allows executing known functions
and using known serialization code.

Specification Document

© Copyright 1999 - 2012 MOST Cooperation

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

CONFIDENTIAL
Page 37

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

4.7 Function FktIDs

It is mandatory that an FBlock implements function FktIDs. Nevertheless, it is important to note that
this function will not be used to make any assumptions about implemented interfaces on the Shadow
side. That means, the Shadow is not allowed to make any assumptions based on the content of
FktiDs.Status. Instead, the Shadow should use the previously mentioned Interface Resolution
approaches described in Interfaces resolution.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 38

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

5 MOST High Protocol

The MOST High Protocol (MHP) supports data transfers up to 65535 (OxFFFF) bytes in one chunk.
MHP supports also transfers that are bigger than 65535 bytes. In this case, one message is
transferred in multiple chunks. Because it is impractical to allocate memory for messages bigger than
64KBytes, structured data is limited to only one chunk meaning 65535 bytes. Only Unstructured
Streams are supported for transfers bigger than 65535 bytes. Additionally, practice is that data is read
in blocks. For example, if the use case is reading a 5 MByte file and sending it to the other MOST
device, it can be accomplished by reading blocks of 64KBytes and sending each block until the
complete file is transferred. It is impractical to allocate memory for 5MBytes and read the file from disk
into a 5MByte region before sending.

From the perspective of developer, the the Recommended Communication Profile environment could
provide the stream of bytes, which will receive long bunch of data. The stream shall take care of
MOST High Protocol manipulation, in order to hold on the transmission if the incoming buffer is close
to being overrun.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 39

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

6 Compatibility with MOST Specification

The Recommended Communication Profile uses only one part of the OPTypes defined inside MOST
Specification [1]. It is possible that some FBlocks use some of the OPTypes not specified in the
Recommended Communication Profile (for example SetGet). To be compatible with MOST
Specification 3.0 [1], deviations will be allowed for some FBlocks. Deviations are allowed for following

FBlocks:
1) NetBlock
2) ConnectionMaster
3) PowerMaster
4) EnhancedTestability
5) NetworkMaster

This is nevertheless no problem because these FBlocks are implemented inside the Middleware and
not Customer Applications.

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 40

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note COOPERATION

Appendix B: Index of Figures

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:

o (o[1117 o T I USRI 13

=gy o] gl F=TaTo |1 T PRI 15
Command With ACKNOWIEAJE.........ccoiuiiiiiii e 21
Bounded RequESt RESPONSEooiiiiiiiiiit et e e e e 22
Unbounded Request RESPONSE......oooii et 23

PUITMOGEI ... e e 24

T [T E T Y= o | SO SPPPURPEPR 26
1o 10 T e Tl 10 =Y o = Lo = YU OPPPPPRRR 27
Figure 4-2: FBlock implements iINterfaCesuuuiiiiii it a e 28
Figure 4-3: Shadow and FBlock have the same functionID tablecccocciiiiiie, 29
Figure 4-4: Interface INNEIITANCEcoouiiiiii e 30
Figure 4-5: FBlock of new version extends its table of functionIDs............ccoccoiiiiiiii 31
Figure 4-6: Interface EVOIULION..........ooi e 32
Figure 4-7: Dynamic resolution: Component MOdel ... 36
Figure 4-8: Dynamic resolution: SEqUENCE Chartooiiiiiiiiiii e 37
Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

Page 41

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST®

Recommended Communication Profile Application Note

MOST

COOPERATION

Appendix C: Index of Tables

Table Bibliography-1: DOCUMENL r&fErENCEScoiiii i e e 6
BLIE= o] L= B T o] o =Y = 1T 1SS 7
TADIE 1-2: GIOSSAIYeeeiieiiiiee ettt h et e e e a bt e e e ea b et e e e e a bt e e e e b bt e e bbe e e e e nre e e e e nreas 7
Table 2-1: MOST Integer Data TYPESccooiuiiiiiiieie ettt neeas 9
Table 2-2: Two’s complement interpretation ... 10
Table 2-3: UTF8 String ENcoding EXamPIE.......ccuiiiiiiiiie ettt 11
Table 3-1: Session handling fUNCHONSoiiiiiiiie e e e s e e e seeaeens 12
Table 3-2: Session handling ParamMeLErS..........coiuiiii it e e s e e e stae e e s sreee e 12
Table 3-3: Wildcard addreSSiNg..........eeeiieiiiiiiiiieiee ettt e e e e e e st e e e e e e e e s eaba e e e e e s snnrnreees 14
Table 3-4: Operation types fOr ProOpertie€scoii i 14
Table 3-5: Operation types for Methods..........ooouiiiiiiii e 15
Table 3-6: Recommended Communication Profile Function Classes...........cccoiieiiiiiiiii e, 16
BLIE= Lo L= S 0 0o 431 47T T S 20
Table 3-8: Command with ACKNOWIEAGE...........ocuuiiiiiiiiie e 20
Table 3-9: Parameters for Command with Acknowledge..............coooiiiiiiiiiiii e 20
Table 3-10: Bounded Request Response (ID restricted)cooveiviiiiiiiiiiiiieeiiee e 21
Table 3-11: Unbounded Request Response (ID unrestricted)..........occvveiiiiiieiiiiiiee e 22
Table 3-12: Property Get (PUll MOAEI)..........ooiiiiiiie ettt ettt e e et e e e snae e e e enreeaeens 23
Table 3-13: Property Subscription (PUSh MOEI)ooiiiiiiiieiiie e 24
Table 3-14: Event SUDSCIIPLIONuuiiiiii i e e e e e e e e e e e e s e e e e e s enrnreees 25
Table 4-1: DynamiC DiNAING........ccuiiiiiiiee et e e e e e e e e e e s e e e e e e e e s enrnreees 29
Table 4-2: IPlayer implemeEntation.............ooi i e e e e e st e e e e e 33
Table 4-3: IPlayer1 implementation...........oo i e e e e e e e e e eneneeees 33
Table 4-4: IPlayer1x1 implementation ... 34
Table 4-5: IPlayer2 implementation...........ooo e e e e e e e e e e e e eennneeees 34
Table 4-6: Message table for Shadows which support only IPlayer2 ... 35
Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL

Page 42

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

MOST® MOST

Recommended Communication Profile Application Note CODPERATION

Notes:

Specification Document © Copyright 1999 - 2012 MOST Cooperation CONFIDENTIAL
Page 43

Recommended Communication Profile Application Note
Rev. 1.0
07/2012

	Document History
	Bibliography
	1 General
	1.1 Storage
	1.2 Abbreviations
	1.3 Glossary
	1.4 Purpose

	2 MOST Data Types
	2.1.1 MOST Boolean
	2.1.2 MOST Integer Data Types (Byte, Word and Long)
	2.1.3 MOST Strings
	2.2 Extended MOST Types
	2.2.1 MOST Stream

	3 MOST Communication
	3.1 Session Handling
	3.1.1 Instance ID handling
	3.1.2 Logical Device ID

	3.2 Operation Types
	3.2.1 Operation Types for Properties
	3.2.2 Operation Types for Methods

	3.3 Error handling
	3.4 MOST Function Classes
	3.5 Notification – Push Model
	3.6 Communication Patterns
	3.6.1 Timeout handling
	3.6.2 Command
	3.6.3 Command with Acknowledge
	3.6.4 Bounded Request Response (ID restricted)
	3.6.5 Unbounded Request Response (ID unrestricted)
	3.6.6 Property Get (Pull Model)
	3.6.7 Property Subscription (Push Model)
	3.6.8 Event Subscription

	4 Functions organization
	4.1 Interfaces
	4.2 Interfaces resolution
	4.2.1 Static binding
	4.2.2 Dynamic binding

	4.3 Inheritance
	4.4 Versioning support
	4.5 Advanced Version Support Issues
	4.6 Dynamic Interface Resolution
	4.7 Function FktIDs

	5 MOST High Protocol
	6 Compatibility with MOST Specification
	Appendix B: Index of Figures
	Appendix C: Index of Tables

