

MOST
Media Oriented Systems Transport

Multimedia and Control
Networking Technology

 MOST Dynamic Specification
Rev 3.0.2

10/2012

 Copyright 1999 - 2012 MOST Cooperation.

MOST®
DynamicSpecification

Legal Notice

COPYRIGHT

 Copyright 1999 - 2012 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:

 MOST Cooperation
 Administration
 Bannwaldallee 48
 D-76185 Karlsruhe
 Germany

 Tel: (+49) (0) 721 966 50 00

 E-mail: contact@mostcooperation.com
 Web: www.mostcooperation.com

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 2 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

 Copyright 1999 - 2012 MOST Cooperation.
All rights reserved

MOST is a registered trademark

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 3 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

Contents

DOCUMENT HISTORY..6

BIBLIOGRAPHY ... 16

1 INTRODUCTION.. 17

1.1 Purpose .. 17
1.2 Scope.. 17

2 MSC STRUCTURING .. 18

2.1 General MSCs vs. Scenario MSCs .. 18

3 NETWORK MANAGEMENT ... 19

3.1 NetworkMaster General MSCs... 19
3.1.1 Variables used in general NetworkMaster MSCs.. 19
3.1.2 High-level NetworkMaster MSC .. 20
3.1.3 Initializing the NetworkMaster ... 21
3.1.4 Requesting Configuration.. 22
3.1.5 Receiving Registrations... 23
3.1.6 Updating System State.. 26
3.1.7 Processing NCEs .. 27

3.2 NetworkMaster Scenario MSCs ... 28
3.2.1 Setting the System State to NotOK... 28
3.2.2 Initial Scan ... 29

3.2.2.1 Initial Scan ..29
3.2.3 Regular Scan... 30

3.2.3.1 Normal Scan...30
3.2.3.2 Mismatch in InstID in System State OK ..31
3.2.3.3 Collision between InstIDs ...32
3.2.3.4 Error when Node Registers an Invalid Node Address...33
3.2.3.5 Node Not Responding in System State NotOK...34
3.2.3.6 Node Not Responding in System State OK ..36
3.2.3.7 Node Reporting Error in System State NotOK..37
3.2.3.8 Node Reporting Error in System State OK ...38
3.2.3.9 Node causing NotOK too many times...39
3.2.3.10 Scan Interrupted by NCE..40
3.2.3.11 NCE in System State NotOK Resulting in System State OK ..41
3.2.3.12 NCE in System State OK Resulting in System State OK..42
3.2.3.13 NCE Resulting in System State NotOK ..43
3.2.3.14 Spontaneous Registration of a Node ..44

3.3 Variables used in NetworkSlave MSCs.. 45
3.4 NetworkSlave General MSCs... 45

3.4.1 High-level NetworkSlave MSC .. 46
3.4.2 Initializing the NetworkSlave ... 47
3.4.3 Node Running Operation... 49
3.4.4 Communicate .. 51

3.5 NetworkSlave Scenario MSCs ... 52
3.5.1 Startup scenarios... 52

3.5.1.1 Startup - OK..52
3.5.1.2 Startup - NotOK ..53

3.5.2 Communication Scenarios .. 54
3.5.2.1 Communicate with partner ..54

4 CONNECTION MANAGEMENT.. 55

4.1 Variables used in Connection Management MSCs.. 55
4.2 Normal Behavior ... 55

4.2.1 Connection Management General MSCs ... 56
4.2.1.1 Connecting a Sink...56
4.2.1.2 SourceActivity turned on...57

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 4 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.2.1.3 BuildConnection..58
4.2.1.4 Allocate...59
4.2.1.5 Removing a Synchronous Connection..60

4.2.1.5.1 Disconnecting a Sink ...61
4.2.1.5.2 Deallocation Procedure..62

4.3 DiscreteFrame Isochronous Connection Handling... 63
4.3.1 Data Source and Phase Source in One Device .. 63
4.3.2 Phase Information from a Third Device... 64

4.4 Error Handling... 65
4.4.1 Error Handling General MSCs... 65

4.4.1.1 CleanUp..65
4.4.2 Error Handling Scenario MSCs ... 66

4.4.2.1 Sink drop ..66
4.4.2.2 Source Malfunction ...67

4.5 Boundary Change... 68

5 POWER MANAGEMENT... 70

5.1 Introduction ... 70
5.2 Network shutdown .. 71
5.3 Device shutdown .. 74
5.4 Device wake up .. 75
5.5 Network shutdown due to over-temperature .. 76
5.6 Network restart after over-temperature shutdown.. 77

6 TIMERS.. 78

7 NAMING CONVENTIONS ... 78

8 APPENDIX A: INDEX OF FIGURES... 79

9 APPENDIX B: INDEX OF TABLES... 80

10 APPENDIX C: INDEX OF MSCS... 81

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 5 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

Document History

Changes MOST Dynamic Specification Rev 3.0.1 to MOST Dynamic Specification Rev 3.0.2

Change
Ref.

Section Changes

3V02_001 All  Correction of minor clerical errors.

3V02_002 Bibliography  Updated document version numbers.

3V02_003 3.1.3  Changed the precondition in the table to “NetInterface Init”

 Using “Initialize Central Registry” instead of “delete”.

 Using single NotOK message instead of reference to
NM_Gen_SystemConfigurationUpdate.

 Removed timer tWaitBeforeScan because it is not started.

 Split Decentral Registry action into two actions. “Derive NodeAddress” remains inside the
OPT box, “Initialize Decentral Registry” after the OPT inline expression.

3V02_004 3.1.5  Changed the precondition in the table to “Normal Operation”

 In the table under “Remarks”, “This process is not affected by an NCE.” becomes “In this
scenario, an NCE does not occur.” because an NCE would terminate this scenario.

 In the table, under “Description”, deleted “If a node registration is correct, it will always be
entered into the Central Registry independent of the state of the network.” because this
depends on the behavior of the Slave.

 To “when (Error in registration)—Duplicate or invalid NodeAddress.” added “or duplicate
or invalid NetBlock.InstID”.

 “Delete Decentral Registry and derive NodeAddress” - divide into two actions because
different parts perform those actions.

 “when (any InstID is invalid or duplicate)” becomes “when (any application InstID is
invalid or duplicate)”

 “Go to SystemState OK.”—the following setting condition was redundant. Removed
setting condition and changed comment to “Successful configuration update leads to
SystemState OK.”

3V02_005 3.1.6  Changed “Scan generated a fatal error.” to “Scan or single request generated an error.”

3V02_006 3.1.7  In the table, under “Description” changed “When an NCE is detected, the whole network
is rescanned.” to “When an NCE is detected, the NetworkMaster interrupts its action and
scans the network.”

3V02_007 3.2.1  In the table under “Remarks”, added “Spontaneous registrations do not occur.”

3V02_008 3.2.3.2  In the table under “Remarks”, added “The concrete values for FBlockID=0x22 and
InstID=0x01/0x02 are examples.”

3V02_009 3.2.3.3  Changed “when (NWM_supports_immediate_notification = true)” to “false” in the second
case.

 Using a PAR inline expression so that it looks more like the other MSCs and no
unnecessary order is imposed.

 In the table under “Remarks”, added “The concrete values for FBlockID=0x22 and
InstID=0x01/0x02 are examples.”

3V02_010 3.2.3.4  Changed “NetworkSlave_2 has recalculated its NodePosition.” to “Set logical node
address.” and made the text element an action.

3V02_011 3.2.3.5  In the table, under “Description”, changed “The NetworkMaster will allow this node and
continue to request its configuration.” to “The NetworkMaster continues to request its
configuration.”

 Removed “Allow missing node” action

 Deleted comment “Wait for tDelayCfgRequest to expire.”

 Added alternative with “NetworkSlave_2 registers no new FBlocks.” similar to
“NetworkSlave_2 registers new FBlocks correctly.” The NetworkMaster reacts by sending
NewExt with an empty list.

3V02_012 3.2.3.6  Changed “message to lost” so that it contains “0x102, FBlockID = 0x22 InstID = 0x01” as
registered.

 Removed action “Allow missing node”

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 6 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 7 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

3V02_013 3.2.3.7  Deleted both occurrences of “Allow node, treat as notresponding”

3V02_014 3.2.3.8  Deleted both occurrences of “Allow node, treat as notresponding”

3V02_015 3.2.3.9  Renamed the section to “Node causes NotOK too many times”

 Changed the name of the scenario to
NM_Sc_Scan_Node_Causes_NotOK_Too_Many_Times

 In the description, replaced “NetworkSlave_2 causes System State NotOK three times in
succession.” with “NetworkSlave_2 causes System State NotOK the maximum allowed
number of times.”

3V02_016 3.2.3.11  Changed the precondition in the table to “NetInterface Normal Operation”

3V02_017 3.2.3.12  Changed the precondition in the table to “NetInterface Normal Operation”

 Changed "Thus, no message is sent after the System Scan is complete." to "Thus, no
Configuration.Status message is sent after the System Scan is complete."

3V02_018 3.4.1  Removed guarding condition with reference to SystemCommunicationInit

3V02_019 3.4.2  Changed the precondition in the table to “NetInterface Init”

 "SystemState is OK when Configuration.Status(NewExt) is received." becomes action
"Set System State OK".

 "SystemState is OK when Configuration.Status(Invalid) is received." becomes action "Set
System State OK".

 Removed reference to SystemCommunicationInit

 Replaced reference to NS_Gen_Reset by action "Perform Network Configuration Reset"
and add a comment "see MOST Specification for individual actions"

3V02_020 3.4.3  Change the precondition in the table to “NetInterface Normal Operation”

 Remove reference to SystemCommunicationInit.

 Remove Configuration.Status(OK) because this cannot be sent in System State OK.

 Add a remark for Configuration.Status(Invalid) that own configuration invalid handling is
not considered here.

 Extract messages that are independent of the system state and put them outside the
guarding conditions.

 For FBlockIDs.SetGet, Error is an alternative to Status. Add Error message.

3V02_021 -  From Dynamic Specification Rev. 3.0.2, removed section 3.4.4 Reset because it
contained no communication and can be replaced by an action in the referencing MSCs.

3V02_022 3.4.4  Using "0x42" for FBlockID and "_" for InstID; added comment: "Request TVTuner"

 In the condition “when (CR_Contains_NWSlave_2 = false)”, now using "NWSlave_1"
instead.

 In “CentralRegistry.Error(ErrorCode='0x07', ErrorInfo='0x01, 0x0n.01')” changed
ErrorInfo="0x01, _".

 “CentralRegistry.Status(FBlockInfoList='RxTxLog=NetworkSlave_1,FBlockID=0x0n,InstI
D=0x01')” - changed to "0x42, InstID=0x01"; added comment "found FBlockID 0x42,
InstID 0x01".

3V02_023 3.5.1.1  Set the precondition in the table to “NetInterface Init”

 Remove reference to SystemCommunicationInit

 Add OPT inline expression, containing action "Build Decentral Registry"

3V02_024 3.5.1.2  Set the precondition in the table to “NetInterface Init”

 Replaced reference to NS_Gen_Reset by action "Perform Network Configuration Reset"
- comment "see MOST Specification for individual actions"

 Removed reference to SystemCommunicationInit

3V02_025 3.5.2.1  In “CentralRegistry.Get(FBlockID='0x31', InstID='0x01')”, now using "InstID='_'"

3V02_026 4.2.1.1  Using ErrorAck with SenderHandle instead of Error.

3V02_027 4.2.1.2  Using ErrorAck with SenderHandle instead of Error.

3V02_028 4.2.1.3  Using ErrorAck with SenderHandle instead of Error.

MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 8 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

3V02_029 4.2.1.4  Using ErrorAck with SenderHandle instead of Error.

3V02_030 4.2.1.5  Using ErrorAck with SenderHandle instead of Error.

3V02_031 4.2.1.5.1  Using ErrorAck with SenderHandle instead of Error.

3V02_032 4.2.1.5.2  Using ErrorAck with SenderHandle instead of Error.

3V02_033 -  Replaced section 5.2, including the MSC, with “Switching on the network is described in
the MOST Specification.” because the MSC did not contain communication.

3V02_034 5.2  Added “Prior Condition” in table: “NetInterface Normal Operation”
 Added setting condition SystemState_NotOK after message

ShutDown.Start(Control='Execute').

3V02_035 5.3  Added “Prior Condition”: “NetInterface Normal Operation”

3V02_036 5.4  Added “Prior Condition” in table: “NetInterface Normal Operation”
 SystemCommunicationInit; becomes “perform SystemCommunicationInit”.

3V02_037 5.5  Added “Prior Condition”: “NetInterface Normal Operation”
 Changed comment from “Temperature near critical limit” to “Temperature near device-

specific critical limit.”
 Made EXC inline expression parallel to everything else so that critical temperature shuts

down anytime.

3V02_038 5.6  Made EXC inline expression parallel to everything else so that critical temperature shuts
down anytime.

3V02_039 -  Removed chapter “Function Blocks”.

Changes MOST Dynamic Specification Rev 3.0 to MOST Dynamic Specification Rev 3.0.1

Change
Ref.

Section Changes

3V01_001 All  Correction of typos and minor clerical errors.

 Removed “Communication Partner” row from all MSC tables because this information is
self-evident.

 MSC comments are now contained in “comment brackets” rather than referenced and
listed below the MSCs.

3V01_002 Bibliography  Added GeneralFBlock to document list.

3V01_003 3  Removed misleading note that stated that the information in the Central Registry was not
distributed.

3V01_004   Removed section “System States” because this is already contained in the MOST
Specification.

3V01_005 3.1.1  Changed description of variable doRequest.

 Added more variables to Table 3-1.

3V01_006 3.1.3  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

 tWaitBeforeScan, which previously was a timer, is now a timing condition.

3V01_007 3.1.5  Added tDelayCfgRequest timeout before “doRequest” is set to true.

3V01_008 3.2.1  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

 tWaitBeforeRescan, which previously was a timer, is now a timing condition.

3V01_009 3.2.2.1  Removed remark regarding addresses being stored, which no longer is the case.

 Added MSC reference to NM_Sc_Scan_SystemStatus_To_OK.

 tWaitBeforeScan, which previously was a timer, is now a timing condition.

3V01_010   Removed section “Initial Scan System State NotOK to OK” because of redundancy.

3V01_011 3.2.3.1  Renamed section from “Normal Scan without implications” to “Normal Scan”.

 Renamed MSC to NM_Sc_Scan_SystemState_To_OK.

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 9 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

3V01_012 3.2.3.2  Renamed MSC to NM_Sc_Scan_InstID_Mismatch_SystemState_OK.

3V01_013 3.2.3.3  Renamed MSC to NM_Sc_Scan_InstID_Collision_SystemState_To_OK.

3V01_014 3.2.3.6  Included “own configuration invalid” handling in MSC.

3V01_015 3.2.3.13  Using Configuration.Status(NewExt) instead of New.

3V01_016 3.3  New section “Variables used in NetworkSlave MSCs”.

3V01_017 3.4.2  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

3V01_018 3.4.3  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

3V01_019 3.4.4  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

3V01_020 3.4.5  Added condition for sending CentralRegistry.Error to a NetworkSlave.

3V01_021 3.5.1.1  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

3V01_022 3.5.1.2  Removed comment regarding addresses being static, stored, or calculated. Addresses
are no longer stored and the other two are obvious.

3V01_023   Removed section “Logical Model of Connection Management” because the information
contained here was not used.

3V01_024 4.1  Added more variables to Table 4-1.

3V01_025 4.2  Rephrased so that the notion of a “familiar system” is no longer used.

3V01_026 4.2.1.1  Renamed MSC to CM_Gen_Connect_StartResultAck.

3V01_027 4.2.1.2  Renamed MSC to CM_Gen_SourceActivity_StartResultAck.

3V01_028 4.2.1.4  Added remark regarding SourceActivity function.

 Renamed MSC to CM_Gen_Allocate_StartResultAck.

3V01_029 4.2.1.5.1  Renamed MSC to CM_Gen_DisConnect_StartResultAck.

3V01_030 4.2.1.5.2  Renamed MSC to CM_Gen_DeAllocate_StartResultAck.

 Added remark that the source stops routing and removes its channels.

3V01_031 4.3  Added section “DiscreteFrame Isochronous Connection Handling”.

3V01_032   Removed section “General Sink MSCs” because it was mostly redundant. Relevent part
were moved to the Connection Management section.

3V01_033   Removed section “General Source MSCs” because it was mostly redundant. Relevent
part were moved to the Connection Management section.

3V01_034 5.2  Removed use of PermissionToWake function, which no longer exists.

3V01_035 5.3  Extended MSC to consider the use cases “cancel shutdown” and “force shutdown”.

 Replaced tSuspend with tWaitSuspend.

3V01_036 5.4  Replaced tSuspend with tWaitSuspend.

 ShutDown function uses OPTypes without SenderHandle again.

3V01_037 5.5  ShutDown function uses OPTypes without SenderHandle again.

 Added SystemCommunicationInit action after receiving wake-up from device shutdown.

3V01_038 5.6  ShutDown function uses OPTypes without SenderHandle again.

 theta_Critical replaces theta_Dead

 PermissionToWake is not used anymore.

3V01_039 5.7  ShutDown function uses OPTypes without SenderHandle again.

 PermissionToWake is not used anymore.

3V01_040 8  Removed GSI and GSO from Table 8-1 because these are no longer used.

MOST®
DynamicSpecification

Changes MOST Dynamic Specification Rev 1.3 to MOST Dynamic Specification Rev 3.0

Change
Ref.

Section Changes

3V0_001 General  Replaced non-Ack OPTypes with Ack-OPTypes because MOST Specification 3.0
recommends the use of Ack OPTypes.

 Changed instance name from AudioDiskPlayer to AudioDiscPlayer for consistency.

 Renamed function BuildSyncConnection to BuildConnection to match FBlock Bundle 3.0.

 Fixed clerical errors

3V0_002 3.1  Updated state chart to match MOST Specification Rev. 3.0.

3V0_003 3.2.6
3.3.2

 Configuration.Status Broadcast was sent to the environment. However, the MSC standard
requires that the resulting gate message is connected to every reference to this MSC. To
prevent this, the broadcast is no longer forwarded to the environment.

3V0_004 3.3.3.1  "when (Init Ready detected)" is an event in at least one other MSC. Using to event here
now, as well.

 Removed mention of Decentral Registry for initial scan because the concept of a stored
Decentral Registry was abandoned.

3V0_005 3.3.3.2  Removed mention of Decentral Registry for initial scan because the concept of a stored
Decentral Registry was abandoned.

3V0_006 -  Removed obsolete section “Initial Scan with Node Not Responding”.

3V0_007 -  Removed obsolete section “Error during Initial Scan with a stored Central Registry”

3V0_008 -  Secondary nodes are no longer supported. Deleted this MSC.

3V0_009 3.3.4.2  Configuration.Status(New) no longer used. Replaced with NewExt.

3V0_010 3.3.4.3  Configuration.Status(New) no longer used. Replaced with NewExt.

3V0_011 3.3.4.5  Configuration.Status(New) no longer used. Replaced with NewExt.

3V0_012 3.3.4.6  Configuration.Status(New) no longer used. Replaced with NewExt.

 Updated DeltaFBlocklist to match FBlock Bundle 3.0.

3V0_013 3.3.4.7 NM_Sc_Scan_Node_Reporting_Error_In_NotOK:

 Configuration.Status(New) no longer used. Replaced with NewExt.

 Secondary nodes are no longer supported; therefore, renamed this MSC.

3V0_014 3.3.4.8 NM_Sc_Scan_Node_Reporting_Error_In_OK:

 Configuration.Status(New) no longer used. Replaced with NewExt.

 Secondary nodes are no longer supported; therefore, renamed this MSC.

3V0_015 3.3.4.12  Configuration.Status(New) no longer used. Replaced with NewExt.

3V0_016 3.3.4.14  Configuration.Status(New) no longer used. Replaced with NewExt.

 Configuration.Status Broadcast is sent to the environment. However, the MSC standard
requires that the resulting gate message is connected to every reference to this MSC. To
prevent this, do not forward to environment.

3V0_017 3.4.1  Contains reference to secondary nodes. Secondary nodes are no longer supported.
Deleted corresponding path in the MSC.

3V0_018 3.4.2  Configuration.Status(New) no longer used. Replaced with NewExt.

 Contained Secondary Node paths. Removed them.

3V0_019 3.4.3 NS_Gen_RunningNode:

 Configuration.Status(New) no longer used. Replaced with NewExt.

 Changed guarding condition that checkes whether the node is a Primary node.

 Primary nodes are now called MOST nodes. Renamed MSC

3V0_020 -  NS_Gen_RunningSecondary: Secondary nodes are no longer supported. Deleted this
MSC.

3V0_021 3.4.4  Removed requirement for the source to route zeros.

3V0_022 3.4.5  NS_Gen_Communicate: "USERDEF.Msg" between two MOST nodes. Changed to an
exemplary message contained in FBlock Bundle 3.0.

3V0_023 -  Deleted obsolete section “NetworkSlave changes NodeAddress in SystemState OK”

3V0_024 -  Removed “Introduction” section of Connection Management because it described the
difference between SourceConnect and Allocate; however, SourceConnect is no longer
available.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 10 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 11 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

3V0_025 4.2  Removed SourceType variable because no distinction is required between
SourceConnect and Allocate anymore. SourceConnect is no longer available.

3V0_026 4.3  SourceConnect no longer available. Removed corresponding descriptions.

3V0_027 -  Removed CM_Gen_SC_BuildSyncConnection because SourceConnect is no longer
supported.

3V0_028 -  CM_Gen_SC_SourceInfo_Get removed because this MSC was only referenced by
SourceConnect scenarios, which are no longer supported.

3V0_029 -  CM_Gen_SC_SourceConnect_StartResult: SourceConnect approach no longer
supported. Deleted this MSC.

3V0_030 4.3.1.1  CM_Gen_Connect_StartResult: Updated parameter list for Connect to match FBlock
Bundle 3.0.

3V0_031 4.3.1.3  CM_Gen_BuildConnection: Renamed MSC and removed SourceConnect paths.
SourceConnect is no longer supported.

3V0_032 -  CM_Gen_M_Get_SourceType: Requesting SourceType refers to SourceConnect.
Deleted entire MSC.

3V0_033 -  CM_Gen_SC_SourceInfo_Get: MSC deleted because SourceConnect is no longer
supported.

3V0_034 4.3.1.4 CM_Gen_Allocate_StartResult

 Allocate contained old parameter list. Updated.

 Renamed MSC because “mixed systems” no longer exist after SourceConnect became
obsolete.

3V0_035 4.3.1.5  Changed description so that SourceConnect is no longer mentioned.

3V0_036 -  CM_Gen_SC_SourceDisConnect_StartResult: SourceConnect approach no longer
supported. Deleted this MSC.

3V0_037 4.3.1.5.2 CM_Gen_DeAllocate_StartResult:

 SourceConnect approach no longer supported. Removed the corresponding path.

 Renamed MSC.

3V0_038 -  CM_Sc_SC_Known: SourceConnect no longer supported. Deleted MSC.

3V0_039 -  CM_Sc_SC_Unknown: SourceConnect approach no longer supported. Deleted entire
MSC.

3V0_040 -  CM_Sc_Mixed_System: SourceConnect approach no longer supported. Deleted entire
MSC.

3V0_041 -  CM_Sc_RemoveConnection: SourceConnect approach no longer supported.Deleted
entire MSC.

3V0_042 -  CM_Gen_SC_CleanUp: SourceConnect approach is no longer supported. Deleted this
MSC.

3V0_043 -  CM_Sc_SourceDrop: Deleted MSC. Already not supported for MOST 50.

3V0_044 4.4.1  Removed description of use of Ack OPTypes. Those are no longer recommended.

3V0_045 4.4.1.1  CM_Gen_CleanUp: Removed SourceConnect path. Renamed MSC. Fixed dangling
reference.

3V0_046 4.4.2.1  CM_Sc_SinkDrop: SourceConnect approach no longer supported. Removed
corresponding path.

3V0_047 -  GSO_Ge_SourceConnect: SourceConnect approach no longer supported. Deleted this
MSC.

3V0_048 -  GSO_Ge_SourceDisconnect: SourceConnect approach no longer supported. Deleted this
MSC.

3V0_049 -  Removed empty section “Extended ConnectionMaster General MSCs”.

3V0_050 -  Removed empty section “Extended ConnectionMaster Scenarios”.

3V0_051 4.4.2.2  New MSC CM_Sc_Source_Malfunction.

3V0_052 5.3  PM_Gen_Network_Shutdown: In the referencing MSC PM_Gen_Overtemp_Shutdown
there are three NetBlock instances. Using one instance, matching it with an instance
parameter to the referenced MSC.

3V0_053 -  Removed chapter “Generic Management of Audio (Synchronous data)”.

MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 12 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

3V0_054 6.2.5  ADP_Sc_Search: "SearchDirection" not defined for Enum in DeckStatus. It is either
forward or backward. Using forward.

3V0_055 6.2.6  ADP_Sc_NewTrackUnchanged: User_selects_same_track is missing the USERDEF alias
name. Added USERDEF.

3V0_056 6.2.7  ADP_Sc_StartScanDisc: User_pushes_the_scan_button is missing the USERDEF alias
name. Added USERDEF.

3V0_057 6.2.8  ADP_Sc_StopScanDisc: MOST.Scan_disc_ends is not a MOST message. Changed to
USERDEF.

3V0_058 6.2.9  ADP_Sc_StartRandom: User_selects_random is missing the USERDEF alias name.
Added USERDEF.

3V0_059 6.2.10  ADP_Sc_StopRandom: User_stops_random is missing the USERDEF alias name. Added
USERDEF.

3V0_060 6.2.11  ADP_Sc_StartRepeatTrack: User_selects_repeat_track is missing the USERDEF alias
name. Added USERDEF.

3V0_061 6.2.13  ADP_Sc_StopRepeat: User_turns_repeat_off is missing the USERDEF alias name.
Added USERDEF.

3V0_062 -  Removed section “Connection Management Naming Conventions” because the content
depended on the use of the SourceConnect approach.

Changes MOST Dynamic Specification Rev 1V2 to MOST Dynamic Specification Rev 1V3

Change
Ref.

Section Changes

1V3_001 General  Minor spelling and grammar corrections.

 Fixed parameters to match Function Library.

 Modified timer names to match the MOST Specification.

 Replaced "synchronous" with "streaming" to match the terminology of the MOST
Specification.

 Where applicable, added note that Secondary Nodes are not supported by MOST50.

 Removed elements/notes that mentioned the stored Registry. The concept of a stored
Central/Decentral Registry is no longer supported by the MOST Specification.

 Replaced NetOn event with Init Ready event.

 Replaced MOST.NCE with USERDEF.NCE because the NCE is not contained in any
function catalog.

 Changed channel info from "AudioAmplifier" to "MOST" to match other MSCs that belong
to the Dynamic Specification.

 Replaced "all bypass" with "bypass".

1V3_002 3.1  Updated System States diagram to include Shutdown.Start(Execute) transition.

1V3_003 3.2.2 NM_Gen_Startup

 Added end node to HMSC.

 Removed NetOn setting condition because the NetOn state is only reached after Init
Ready is received.

1V3_004 3.2.3 NM_Gen_Init

 Replaced when NetOn condition with reception of Init Ready event.

1V3_005 3.2.7 NM_Gen_ProcessNCE

 Changed single cast NCE into a broadcast message.

1V3_006 3.3.3.1 NM_Sc_Initial_Scan_CR_Not_Stored_SystemState_NotOK

 Modified and renamed to NM_Sc_Initial_Scan_NoNodeAddress_SystemState_NotOK
because Central Registry is no longer stored.

 Renamed section to “Initial Scan without Node Address”.

1V3_007 3.3.3.2 NM_Sc_Initial_Scan_CR_Stored_SystemState_NotOK_To_OK

 Modified and renamed to NM_Sc_Initial_Scan_SystemState_NotOK_To_OK because
Central Registry is no longer stored.

 Renamed section to “Initial Scan System State NotOK to OK”

1V3_008 - NM_Sc_Initial_Scan_CR_Stored_Node_Not_Responding

 MSC removed because the MOST Specification does not support a stored Central
Registry anymore.

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 13 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

1V3_009 3.3.3.4 NM_Sc_Initial_Scan_CR_Stored_Registration_Error

 MSC removed because the MOST Specification does not support a stored Central
Registry anymore.

1V3_010 3.4.1 NS_Gen_Startup

 Added HMSC End element.

 Added note that secondary nodes are not supported by MOST50.

 Removed NetOn condition because Init Ready event was received yet.

1V3_011 3.4.2 NS_Gen_Init

 Renamed NetOn_event to InitReady event. NetOn event is no longer used.

1V3_012 - NM_Sc_NS_Change_Of_NodeAddress

 This MSC has been removed from the collection due to lack of compliance with the MOST
Specification. A NetworkSlave is not allowed to change its NodeAddress during runtime.
The NetworkMaster would signal a transition to NotOK in such an error case, as soon as
the inconsistency is noticed.

1V3_013 3.5.1.1 NS_Sc_StartupOK

 Renamed NetOn_event to InitReady event. NetOn event is no longer used.

1V3_014 3.5.1.2 NS_Sc_StartupNotOK

 Renamed NetOn_event to InitReady event. NetOn event is no longer used.

1V3_015 4.4.1.1 CM_Gen_M_CleanUp

 Changed guarding condition "when (SourceType = Allocate)" to "otherwise".

1V3_016 4.7  Added new MSC CM_Boundary_Change.

1V3_017 5.5 PM_Gen_Device_WakeUp

 Modeled pre-condition as guarding condition.

1V3_018 5.6 PM_Gen_Overtemp_Shutdown:

 Changed AbilityToWake to PermissionToWake.

 Switching light off when theta_dead is reached is modeled as exception instead of a mere
parallel action.

1V3_019 5.7 PM_Gen_Restart_After_Overtemp_Shutdown

 Changed AbilityToWake to PermissionToWake.

 In those cases where no corresponding events are modeled, added comments, stating
that restarting the network is performed by the NetworkMaster.

 Added Over-Temperature-Shutdown broadcast message from device that is still in the
overtemperature state.

 The device that initiated the over temperature shutdown is allowed to wake up the
network.

 The PowerMaster may restart the network but is not required to do so.

 The network restart may be triggered by the user after tWaitAfterOverTemp has expired.

1V3_020 - NM_Sc_Avoiding_InstID_Collision

 This empty MSC was removed from the collection.

1V3_021 - NM_Gen_ScanType

 This outdated MSC was removed from the collection.

Changes MOST Dynamic Specification Rev 1V2 (04/2006) to MOST Dynamic Specification Rev
1V2 (06/2006)

Change
Ref.

Section Changes

1V2_06_001 3.3.4.12 Substituted unguarded OPT inline expression with additional branch in ALT inline expression
to make the behavior deterministic.

MOST®
DynamicSpecification

Changes MOST Dynamic Specification Rev 1V1 to MOST Dynamic Specification Rev 1V2

Change
Ref.

Section Changes

1V2_001 General Changed light to modulated signal.

1V2_002 Document
References

Added Function Blocks that also affects the Dynamic Specification.

1V2_003 3.2.3 Updated MSC comments and added timer t_WaitBeforeScan.

1V2_004 3.3.2 Changed order in MSC. Added timer t_WaitBeforeScan and action.

1V2_005 3.3.3.2, 3.3.3.3,
3.3.3.4

Added timer t_WaitBeforeScan.

1V2_006 3.3.4.16 Corrected typo in MSC.

1V2_007 3.4.4 Changed order in MSC and added remark.

1V2_008 3.5.1 Deleted section “Startup – Timeout” due to deletion of t_CfgStatus.

1V2_009 4.3.1.2, 4.3.1.5,
4.4.2.1-4.4.2.4,

4.9.3

Added remark that the source activity is optional.

1V2_010 5.3 Added timer t_SlaveShutdown.

1V2_011 4.4.2 Added Chapter and MSCs handling source and sink drop.

1V2_012 7 Updated Timers table.

1V2_013 3.3.4.3, 3.3.4.9 Deleted specific description of reasons for scan initiation.

1V2_014 3.4.2, 3.5.1.1,
3.5.1.2

Replaced tCfgStatus with tAnswer. tCfgStatus equivalent removed from MSCs.

1V2_015 5.4 MSC changed with respect to t_RetryShutdown timer.

1V2_016 General Unified spelling of NetworkMaster and ConnectionMaster.

1V2_017 3.2.3, 3.3.2,
3.3.3.2, 3.3.3.3,

3.3.3.4

Condition NotOK now set before timer t_WaitBeforeScan starts.

1V2_018 3.2.3 OPT inline expression with “Wait until NCE has not occurred…” action removed - already
covered by tWaitBeforeScan timer.

1V2_019 3.3.4.6, 3.3.4.8 Configuration.Status(invalid) now directly after Central Registry change detected, “No errors
occurred during…” text block removed.

1V2_020 3.3.4.4, 3.3.4.9,
3.3.4.10,
3.3.4.12

Added Remark: “This scenario is only valid for the mechanism of parallel scanning of the
system. It does not cover sequential scanning.”

1V2_021 3.4.4 Deleted Configuration.Status(NotOK) message - already contained in referencing MSCs.

1V2_022 5.2 MSC change: Removed the idle loop. Removed the alternative path that deals with devices
that do not have the permission to wake the network.

1V2_023 3.3.4.2 MSC change: Configuration.Status(Invalid) is now sent immediately after a conflict occurs.
At which point Configuration.Status(New) is sent now depends on whether the NetworkMaster
supports “immediate notification”.

1V2_024 3.3.4.3 SystemState(NotOK) event added as trigger for this MSC.
MSC change: At which point Configuration.Status(New) is sent now depends on whether the
NetworkMaster supports “immediate notification”.

1V2_025 3.3.4.11 Original section 3.3.4.12 NM_Sc_NCE_SystemState_To_OK has been split into two;
NM_Sc_NCE_SystemStateNotOK_To_OK now only deals with SystemState NotOK.

1V2_026 3.3.4.12 New section, derived from former section 3.3.4.12 NM_Sc_NCE_SystemState_To_OK.
Here, the focus is on SystemState OK. The MSC now differentiates between NetworkMasters
with or without the “immediate notification” feature.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 14 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 15 MOST Dynamic Specification Rev 3.0.2

10/2012

Change
Ref.

Section Changes

1V2_027 3.3.3.3, 3.3.4.5,
3.3.4.6, 3.3.4.7,

3.3.4.8

Corrected inconsistent use of timer t_DelayCfgRequest:
Timers t_DelayCfgRequest1 and t_DelayCfgRequest2 were renamed to t_DelayCfgRequest.
The latter is now initialized with values t_DelayCfgRequest1 and t_DelayCfgRequest2, in
accordance with 3.2.5 NM_Gen_ReceiveConfiguration.

Changed guarding condition “node has been scanned less than 20 times without answering”
to “ScansWithoutAnswer < 20” and added improved description as comment.

Changes MOST Dynamic Specification Rev. 1V0 to MOST Dynamic Specification Rev 1V1

Change
Ref.

Section Changes

1V1_001 General Deleted old chapters 3.1.1 and 3.1.2.

1V1_002 3 Changed un-initialized logical node address from 0x0FFD to 0xFFFF.

1V1_003 3.3.2 Changed order in MSC.

1V1_004 3.3.4.12 MSC23 compliant with MSC5.

1V1_005 4.3 Added chapter.

1V1_006 4.4 Timeout replaced abort in connection management.

1V1_007 4.4.1.2.1 Sink changed to source.

1V1_008 4.5 Timeout replaced abort in connection management.

1V1_009 5 Added chapter.

MOST®
DynamicSpecification

Bibliography

All documents, which are referenced by this MOST document, are listed here along with their versions.

Number Document Revision
[1] MOST Specification 3.0
[2] MOST FBlock NetworkMaster 3.0.2
[3] MOST FBlock ConnectionMaster 3.0.2
[4] MOST FBlock NetBlock 3.0.2
[5] MOST FBlock Template GeneralFBlock 3.0.4

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 16 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

1 Introduction

1.1 Purpose
The MOST Dynamic Specification is complementary to the MOST Specification and the MOST
Function Library. The behavior of Controller–Slave (FBlock) communication is described with Message
Sequence Charts (MSC).

1.2 Scope
The scope of MSCs in this specification is to describe dynamic communication sequences between
Controllers and Slaves. The Dynamic Specification covers the main scenarios.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 17 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

2 MSC Structuring
There are many different ways to describe a MOST System. In this specification, we look at the
system as consisting of Slaves or functional services (FBlocks) which are managed by different
Controllers.

When looking at the general behavior in a MOST Network (e.g., network startup procedures), all
NetworkSlaves are managed by the NetworkMaster.

The Connection Management manages all connections between Slaves.

Audio and video implemented in larger systems are managed by logical entities, Audio or Video
Management. The purpose of these is to control amplifiers and displays. In some systems, these are
implemented as a part of the HMI but could also be implemented as separate devices. Therefore,
Synchronous Management (Audio, Video, or Camera Management) is useful in order to keep complex
systems well structured.

After the startup of a MOST system, it is possible for different Controllers to act simultaneously. Timers
and other constraints may affect this behavior. Communication in the MOST System could, therefore,
be seen as consisting of many Controller–Slave communication sequences which are either
mandatory or optional.

2.1 General MSCs vs. Scenario MSCs

The purpose of the general MSCs is to describe—as completely as possible—the dynamic behavior of
the different functional areas (e.g., NetworkMaster, NetworkSlave, or Connection Management). All
relevant events and responses from the communication partner are considered. The high-level MSC
of a specific functional area shows how the general MSCs are combined to describe the complete
behavior of this area.

The purpose of the scenario MSCs is to extract a specific path from the general MSCs and thereby
show a simple case. To reduce the total number of MSCs, there can still be alternative or optional
paths inside the scenario MSCs (e.g., handle different responses to a sent message). However, the
intention is to describe the different example cases as simple as possible.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 18 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 19 MOST Dynamic Specification Rev 3.0.2

10/2012

3 Network Management
The MSCs in this section show how the NetworkMaster maintains the Central Registry by collecting
configuration information from all NetworkSlaves. The NetworkMaster then distributes information
about the System State to all NetworkSlaves.

3.1 NetworkMaster General MSCs
The general NetworkMaster MSCs are divided into two parallel processes. One process requests
configurations from the NetworkSlaves when required. The other process receives the registrations
when provided by the NetworkSlaves. The latter process checks the validity of the registrations. All
NetworkSlaves in the network are treated individually.

3.1.1 Variables used in general NetworkMaster MSCs

The general MSCs use variables to simplify the MSCs, as well as reduce the total number of MSCs.
Table 3-1 shows a list of the variables used in the general NetworkMaster MSCs. Figure 3-1 shows an
example of what a Central Registry using some of these variables may look like.

Note that these variables and the Central Registry in figure Table 3-1 and Figure 3-1, respectively, are
used only to show the behavior and do not specify the actual implementation of the NetworkMaster.

Variable Range Explanation
numErr_nodepos1 0...2 The number of times that this node has caused

Configuration.Status(NotOK) in succession. If the same node
causes Configuration.Status(NotOK) three times in succession,
then the node will be ignored until the next NCE or system restart.

request_nodepos1 True, False Holds information if this node should be scanned. If request_4 is
set to true, then the node at node position four should be scanned.

tnodepos
1 0...tWaitForAnswer This is a tWaitForAnswer for each node.

numCompScans 0… The number of times the NetworkMaster has made complementary
scans. The value of numCompScans affects the time between the
complementary scans. If the node has been scanned less than 20
times, then the tDelayCfgRequest1 is used, otherwise tDelayCfgRequest2 is used
instead.

doRequest True, False If true, this variable tells the NetworkMaster to scan all nodes that
have request_nodepos set to true.

ConfigUpdate Success,
Error

This variable indicates if the last registration was correct. It is used
when updating the configuration status of the network and
broadcasting the result of a scan or registration.

numNodes 1…64 The number of nodes to scan.
NWM_supports_immediate_notification True, False If this variable is true, the NetworkMaster notifies the

NetworkSlaves of FBlocks that were added to the Central Registry
immediately during a system scan. If it is false, the NetworkMaster
waits until the system scan has completed before

NewFBlocksRegistered True, False If true, new FBlocks were added to the Central Registry during a
system scan.

FBlocksRemoved True, False If true, FBlocks were removed from the Central Registry during a
system scan.

NoChangesToCentralRegistry True, False If true, the Central Registry has not changed during a system scan.

Table 3-1: Variables used in the general Network Management MSCs

Figure 3-1 shows a cleared Central Registry in a network with four nodes before the NetworkMaster
starts scanning the network. The example Central Registry uses some of the variables in Table 3-1.

Node position NodeAddres
s

FBlockID InstID request_nodepos numErr_nodepos tnodepos

0 - - - request_0 = True numErr_0 = 0 t_0
1 - - - request_1 = True numErr_1 = 0 t_1
2 - - - request_2 = True numErr_2 = 0 t_2
3 - - - request_3 = True numErr_3 = 0 t_3

Figure 3-1: An example of what a Central Registry may look like.

1 “nodepos” is replaced by the actual node position of the node.

MOST®
DynamicSpecification

3.1.2 High-level NetworkMaster MSC

General MSC: NM_Gen_Startup

Description: High-level MSC of NetworkMaster network configuration process. After detecting the Init Ready event,
the NetworkMaster initializes itself; this is shown in NM_Gen_Init.

When the NM_Gen_Init has completed, two parallel processes are started. One process
(NM_Gen_RequestConfiguration) asks nodes for their configuration and one process
(NM_Gen_ReceiveConfiguration) handles the reception of registration messages. These two
processes run in parallel until shutdown.

Prior Condition: 

Initiator: 

Events Init Ready

Timers/Timing

constraints


Remarks: 

msc NM_Gen_Startup

NM_Gen_Init

NM_Gen_RequestConfiguration NM_Gen_ReceiveConfiguration

MSC 1: NM_Gen_Startup

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 20 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.1.3 Initializing the NetworkMaster

General MSC: NM_Gen_Init

Description: The NetworkMaster initializes its node address and resets all variables used during scanning. It also
sets “request_nodepos” for all nodes; this leads to all nodes being scanned, as well as setting
“doRequest” which triggers the scanning process.

Prior Condition: NetInterface Init

Initiator: 

Events Init Ready

Timers/Timing

constraints
tWaitBeforeScan

Remarks: 

msc NM_Gen_Init

NetworkMaster NetworkSlave

All nodes in the network,
treated individually.

InitReady_event

when SystemState_NotOK T he system state is
always NotOK following
the Ini t Ready event.

Derive NodeAddress

opt All NodeAddresses have
to be recalculated and all
Decentral Registries have
to be c leared.

when (NodeAddress = 0xFFFF)

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Derive NodeAddress
Derive NodeAddress

Initialize Central Regis try
Initialize Central Regis try

loop <1,
nodes_in_network>

Nodepos is incremented
for each node.

numErr_nodepos := 0 Number of times a node
has caused a
Configuration.
Status(NotOK).

reques t_nodepos := true All nodes will be
requested.

numCompScans := 0 Number of
complementary scans

performed since s tartup.

doRequest := true Run configuration request
of nodes.

InitComplete

MSC 2: NM_Gen_Init

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 21 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.1.4 Requesting Configuration

General MSC: NM_Gen_RequestConfiguration

Description: This process requests the configuration from nodes that have their “request_nodepos” set.

Prior Condition: doRequest = True

Initiator: NetworkMaster

Events NCE

Timers/Timing

constraints

 tDelayCfgRequest
 tWaitAfterNCE
 tWaitForAnswer

Remarks:  An NCE interrupts this process.
 tDelayCfgRequest and tWaitAfterNCE never run simultaneously. Please refer to section 3.1.7.

msc NM_Gen_RequestConfiguration

NetworkMaster NetworkSlave

All nodes in the network,
treated individually.

par

when (doReques t = true)

doRequest := false

alt Only wait if an
appropriate timer is
running.when (tWaitAfterNCE is running)

tWaitAfterNCE

when (tDelayCfgRequest is running)

tDelayCfgReques t

increment numCompScans Number of scans
determines the timer
value.

numNodes := Number of nodes to
scan

Nodes that have
reques t_nodepos = true.

loop <1,
numNodes>

Request is sent by node
position addressing. An
appropriate delay can be
used between each
single request.

FBlockIDs.Get To each nodepos that
should be reques ted.tnodepos

nodepos is replaced by
currently requested
nodeposition.

[tWaitForAnswer]

exc The whole MSC will be
aborted by an NCE.

B NCE
Event

NCE
NM_Gen_ProcessNCE

MSC 3: NM_Gen_RequestConfiguration

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 22 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.1.5 Receiving Registrations

General MSC: NM_Gen_ReceiveConfiguration

Description: This process handles the reception of registration messages from the NetworkSlaves.

Prior Condition: Normal Operation

Initiator: Any NetworkSlave

Events 

Timers/Timing

constraints

 tWaitForAnswer
 tDelayCfgRequest

Remarks: In this scenario, an NCE does not occur.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 23 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

msc NM_Gen_ReceiveConfiguration page 1 of 2

NetworkMaster NetworkSlave

A node in the network.

alt

alt

FBlockIDs.Status
(FBlockIDList=_)

FBlockIDs.Error
(ErrorCode=_, ErrorInfo=_)

tnodepos
nodepos is the position of
the node that sent the
message.

alt

when (Error in registration) Duplicate or inval id
NodeAddress or duplicate
or invalid NetBlock.InstID

exc

when (numErr_nodepos < 3) Since last NCE or startup.

Increment numErr_nodepos Reset on NCE, startup, or
accepted answer.

NM_Gen_SystemConfigurationUpdate
(variables 'ConfigUpdate' = 'Error')

SystemState_NotOK

Derive NodeAddress
Derive NodeAddress

Initialize Central Regis try
Initialize Central Regis try

loop <1,
nodes_in_network>

tnodepos

reques t_nodepos := true

doRequest := true

Ignore this node until next NCE or
startup

when (any application InstID is
invalid or duplicate)

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, NewIns tID=_)tnodepos

[tWaitForAnswer]

Update Central Registry If any new useable
information was obtained.

reques t_nodepos := false This node needs not to
be requested in the next
reques t run.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 24 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

page 2 of 2

NetworkMaster NetworkSlave

numErr_nodepos := 0 T his is cleared since i t
only counts successive
errors that generate a
Configuration.
Status(NotOK).

tnodepos
The node will be
reques ted again in the
next complementary
scan.

alt

when SystemState NotOK

opt

when (All nodes have answered OR
all tnodepos have run out)

NM_Gen_SystemConfigurationUpdate
(variables 'ConfigUpdate' = 'Success')

Successful configuration
update leads to
SystemState OK.

when SystemState_OK

opt

when (Central Registry was updated)

NM_Gen_SystemConfigurationUpdate
(variables 'ConfigUpdate' = 'Success')

Broadcast new
information.

opt

when (All tnodepos have run out AND any
reques t_nodepos = true)

T here is at least one node
that has not answered.

alt Set timeout for the
complementary scan.

when (numCompScans < 20)

tDelayCfgReques t

[tDelayCfg
Request1]

otherwise

tDelayCfgReques t

[tDelayCfg
Request2]

tDelayCfgReques t

doRequest := true Complementary scan is
started when
tDelayCfgReques t has
run out.

MSC 4: NM_Gen_ReceiveConfiguration

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 25 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.1.6 Updating System State

General MSC: NM_Gen_SystemConfigurationUpdate

Description: This MSC shows how the NetworkMaster determines the value of the ConfigurationControl parameter
of the Configuration.Status() message. The value of the ConfigurationControl parameter depends on
the current System State and the value of ConfigUpdate.

Prior Condition: 

Initiator: 

Events 

Timers/Timing

constraints


Remarks: 

msc NM_Gen_SystemConfigurationUpdate(variables 'ConfigUpdate': 'enumeration';) page 1 of 1

NetworkMaster NetworkSlave

All nodes in the network,
treated individually.

alt

when (ConfigUpdate = Success) Scan or single request
generated no error.

alt

when SystemState NotOK

B Configuration.Status
(ConfigurationControl='OK', ...)

SystemState OK

when SystemState OK

opt

when (FBlocks were removed)

B Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

opt

when (FBlocks were added OR
node without FBlocks

registered)

B Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

when (ConfigUpdate = Error) Scan or single request
generated an error.

B Configuration.Status
(ConfigurationControl='NotOK', ...)

SystemState NotOK

MSC 5: NM_Gen_SystemConfigurationUpdate

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 26 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.1.7 Processing NCEs

General MSC: NM_Gen_ProcessNCE

Description: When an NCE is detected, the NetworkMaster interrupts its action and scans the network. This MSC
shows how the NetworkMaster resets and sets the relevant properties.

Prior Condition: 

Initiator: Any node switching its bypass.

Events NCE

Timers/Timing

constraints

 tDelayCfgRequest
 tWaitAfterNCE
 tWaitForAnswer (t_nodepos)

Remarks: 

msc NM_Gen_ProcessNCE

NetworkMaster

B NCE

tWaitAfterNCE

[]

opt

when (tDelayCfgRequest is running)

tDelayCfgReques t
Not necessary to wait for
after a NCE.

loop <1,
nodes_in_network>

tnodepos

numErr_nodepos := 0 Reset since a node might
have changed position.

reques t_nodepos := true Rescan all nodes.

doRequest := true Restart requesting.

MSC 6: NM_Gen_ProcessNCE

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 27 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2 NetworkMaster Scenario MSCs

This section contains a selection of scenarios that describe the basic behavior of the NetworkMaster.

3.2.1 Setting the System State to NotOK

This scenario is used in the other scenarios whenever the system is reset from a network point of
view.

Scenario MSC: NM_Sc_Set_SystemState_NotOK

Description: This scenario shows what happens in the network when the NetworkMaster broadcasts
Configuration.Status(NotOK).
 The Central Registry is cleared.
 All Decentral Registries are cleared.
 All nodes recalculate their node address.
 The System State is set to NotOK.

Prior Condition: An error occurred during the system scan.

Initiator: NetworkMaster

Events 

Timers/Timing

constraints
tWaitBeforeScan

Remarks:  This scenario is valid for all System States.
 Spontaneous registrations do not occur.

msc NM_Sc_Set_SystemState_NotOK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

SystemState NotOK

Delete the Central Registry
Delete Decentral Regis try

Delete Decentral Regis try
Delete Decentral Regis try

Derive NodeAddress
Derive NodeAddress

Derive NodeAddress
Derive NodeAddress

doRequest := true

[tWaitBefore
Rescan]

MSC 7: NM_Sc_Set_SystemState_NotOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 28 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.2.2 Initial Scan

Initial scans follow directly after an Init Ready event until a Configuration.Status() message is
transmitted.

3.2.2.1 Initial Scan

Scenario MSC: NM_Sc_Initial_Scan_ SystemState_NotOK

Description: This scenario is started by the Init Ready event.

When the Init Ready event is detected, the NetworkMaster broadcasts Configuration.Status(NotOK) to
re-initialize the system. The NetworkMaster then starts a Regular scan.

Prior Condition: 

Initiator: NetworkMaster

Events Init Ready

Timers/Timing

constraints


Remarks: 

msc NM_Sc _Initial_Scan_SystemState_NotOK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

InitReady_event

SystemState NotOK T he SystemState is
always NotOK directly
after the Init Ready event.

opt

when (LogicalNodeAddress = Valid)

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Delete the Central Registry
Delete Decentral Regis try

Delete Decentral Regis try
Delete Decentral Regis try

Derive NodeAddress
Derive NodeAddress

Derive NodeAddress
Derive NodeAddress

doRequest := true

NM_Sc_Scan_SystemState_T o_OK A regular scan wi ll now
be performed in
SystemState NotOK.

[tWaitBefore
Scan]

MSC 8: NM_Sc_Initial_Scan_SystemState_NotOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 29 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3 Regular Scan

3.2.3.1 Normal Scan

Scenario MSC: NM_Sc_Scan_SystemState_To_OK

Description: The NetworkMaster initiates a scan.

Prior Condition: 

Initiator: NetworkMaster

Events Application request (optional) or Configuration.Status(NotOK)

Timers/Timing

constraints


Remarks:  This scenario is valid for all System States.
 All nodes respond correctly and on time.

msc NM_Sc_Scan_SystemState_To_OK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

par This parallel part can also
be done sequentially or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

All nodes have registered without errors.

opt

when SystemState NotOK

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

SystemState OK

MSC 9: NM_Sc_Scan_SystemState_To_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 30 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.2.3.2 Mismatch in InstID in System State OK

Scenario MSC: NM_Sc_Scan_InstID_Mismatch_SystemState_OK

Description: NetworkSlave_1 submits a registration with an InstID mismatch from a previous registration. The
NetworkMaster will accept the new registration and broadcast Configuration.Status(Invalid) and
Configuration.Status(New). Other nodes register with an FBlockIDList identical to the previous scan.

Prior Condition: System State OK

Initiator: NetworkMaster

Events NCE or an application request (optional)

Timers/Timing

constraints


Remarks:  This scenario assumes that the InstID of NetworkSlave_2 does not collide with another FBlock.
 This scenario shows the behavior during a scan but the behavior is also applicable on a single node

making a registration in System State OK.
 The concrete values for FBlockID=0x22 and InstID=0x01/0x02 are examples.

msc NM_Sc_Scan_InstID_Mismatch_SystemState_OK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState OK

par T his parallel part can also
be done sequentially or a
mixture of both.Previously s tored info regarding

NetworkSlave_1:
FBlockID=0x22,InstID=0x02

FBlockIDs.Get Addressing is done by
using node position
address.FBlockIDs.Status

(FBlockIDList='FBlockID=0x22,InstID=
0x01')

Mismatch in InstID

Update the Central Registry If the new InstID coll ides
with a previously
registered FBlock, the
NetworkMaster may
resolve this by assigning
a new InstID.

B Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

opt

when (NWM_supports_immediate_
notification = true)

B Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

opt

when
(NWM_supports_immediate_notifi cation =

false)

B Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

MSC 10: NM_Sc_Scan_InstID_Mismatch_SystemState_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 31 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3.3 Collision between InstIDs

Scenario MSC: NM_Sc_Scan_InstID_Collision_SystemState_To_OK

Description: The NetworkMaster scans the network and NetworkSlave_2 registers an FBlock with an InstID that
collides with an FBlock instance in NetworkSlave_1. In case there is a collision between two InstIDs,
the NetworkMaster can set a new InstID for the colliding FBlock. The NetworkMaster reports the
changes to the network differently depending on the current System State.

Prior Condition: 

Initiator: NetworkMaster

Events: NCE, application request (optional), or Configuration.Status(NotOK)

Timers/Timing

constraints:


Remarks:  This scenario is valid for all System States.
 The concrete values for FBlockID=0x22 and InstID=0x01/0x02 are examples.

msc NM_Sc_Scan_InstID_Collision_SystemState_T o_OK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

par

FBlockIDs.Get Addressing is done by
using node position
address.FBlockIDs.Status

(FBlockIDList='FBlockID=0x22,InstID=
0x01')

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=0x01')

Collision with Ins tID of FBlock in
NetworkSlave_1

Decide new InstID

FBlockIDs.SetGet
(FBlockID='0x22', OldInstID='0x01', NewInstID='0x02')

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=0x02')

Update the Central Registry

opt

when SystemState_OK

when (NWM_supports_immediate_
notification = true)

B Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

All nodes have registered without errors.
Broadcast Configuration.Status(OK).

alt

when SystemState_OK

opt

when (NWM_supports_immediate_
notification = false)

B Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,
FBlockID=0x22, InstID=0x02')

otherwise SystemState NotOK

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

SystemState_OK

MSC 11: NM_Sc_Scan_InstID_Collision_SystemState_To_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 32 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.2.3.4 Error when Node Registers an Invalid Node Address

Scenario MSC: NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress

Description: In this scenario, NetworkSlave_2 makes a registration with an invalid node address.

Prior Condition: System State NotOK

Initiator: NetworkMaster

Events 

Timers/Timing

constraints


Remarks: This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover
sequential scanning.

msc NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress page 1 of 1

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState_NotOK

FBlockIDs.Get Addressing is done by
using node position
address.

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=0x01')

NodeAddress = 0xFFFF

T he registered NodeAddress is ill egal. Set SystemState to NotOK.

opt A registration of a
NetworkSlave can be
ignored if it is received
after the detection of an
error.

FBlockIDs.Status
(FBlockIDList=_)

Response ignored

NM_Sc_Set_SystemState_NotOK

SystemState_NotOK

Set logical node address.

MSC 12: NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 33 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3.5 Node Not Responding in System State NotOK

Scenario MSC: NM_Sc_Scan_Node_Not_Responding_In_NotOK

Description: The NetworkMaster scans the system in System State NotOK. NetworkSlave_2 does not answer the
request in time. The NetworkMaster continues to request its configuration.

Prior Condition: System State NotOK

Initiator: NetworkMaster

Events 

Timers/Timing

constraints

 tWaitForAnswer
 tDelayCfgRequest

Remarks: See also scenario in section 3.2.3.6.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 34 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

msc NM_Sc_Scan_Node_Not_Responding_In_NotOK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState_NotOK

par This parallel part can also
be done sequentially or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get
tWaitForAnswer

[] FBlockIDs.Status
(FBlockIDList=_)

Message lost or not sent.

tWaitForAnswer

Allow missing node

tDelayCfgReques t
Use tDelayCfgRequest1
since it is the firs t time
this scan that the node is
scanned.

[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

No errors occured during scan. Broadcast
Configuration.Status(OK).

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

SystemState_OK

loop

when (NetworkSlave_2 has not responded)

tDelayCfgReques t

FBlockIDs.Get

tWaitForAnswer

[]

alt

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave_2 registers
new FBlocks correctly.

Update the Central Registry

B Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave_2 registers
no new FBlocks.

B Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

DeltaFBlockList is empty
because the Central
Registry remains
unchanged.

FBlockIDs.Status
(FBlockIDList=_)tWaitForAnswer

alt

when
(ScansWithoutAnswer < 20)

Node has not answered
during 20 system scans
since the network entered
the
state NormalOperation.

tDelayCfgReques t

[tDelayCfg
Request1]

otherwise

tDelayCfgReques t

[tDelayCfg
Request2]

MSC 13: NM_Sc_Scan_Node_Not_Responding_In_NotOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 35 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3.6 Node Not Responding in System State OK

Scenario MSC: NM_Sc_Scan_Node_Not_Responding_In_OK

Description: The NetworkMaster scans the system in System State OK. NetworkSlave_2 does not answer the
request in time. The NetworkMaster includes this node and continues to request its configuration but it
will inform the network of the invalid FBlocks that were previously registered in NetworkSlave_2.

Prior Condition: System State OK

Initiator: NetworkMaster

Events NCE or an application request (optional)

Timers/Timing

constraints

 tWaitForAnswer
 tDelayCfgRequest

Remarks: See also scenario in section 3.2.3.5.

msc NM_Sc_Scan_Node_Not_Responding_In_OK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState_OK

par T his parallel part can also
be done sequentially or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

Update the Central Registry

NetworkSlave_2 is registered in the Central Registry as having NodeAddress = 0x102, FBlockID = 0x22 InstID = 0x01.

FBlockIDs.Get
tWaitForAnswer

[] FBlockIDs.Status
(FBlockIDList='0x102, FBlockID

= 0x22, InstID = 0x01')

Message lost or not sent.

tWaitForAnswer

B Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Reinitialize applications. Perform "own
configuration invalid"
handling.

tDelayCfgRequest
Use tDelayCfgRequest1
since it is the firs t scan
the node disappeared.

[tDelayCfg
Request1]

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave_2 sends an
empty list.

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

loop

when (NetworkSlave_2 has not responded)

tDelayCfgRequest
Wait for
tDelayCfgRequest to
expire.

FBlockIDs.Get
tWaitForAnswer

[]

alt

FBlockIDs.Status
(FBlockIDList='FBlock=0x22,InstID=0x01')

NetworkSlave_2 registers
new FBlocks correctly.

Update the Central Registry

B Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

FBlockIDs.Status
(FBlockIDList=_)tWaitForAnswer

alt

when
(ScansWithoutAnswer < 20)

Node has not answered
during 20 system scans
since the network entered
the
state NormalOperation.

tDelayCfgRequest

[tDelayCfg
Request1]

otherwise

tDelayCfgRequest

[tDelayCfg
Request2]

MSC 14: NM_Sc_Scan_Node_Not_Responding_In_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 36 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.2.3.7 Node Reporting Error in System State NotOK

Scenario MSC: NM_Sc_Scan_Node_Reporting_Error_In_NotOK

Description: The NetworkMaster scans the system in System State NotOK. NetworkSlave_2 reports Error when the
NetworkMaster requests its configuration. The NetworkMaster will treat this node as a non-responding
node, and continue requesting FBlockIDs from this node. After 20 retries timer tDelayCfgRequest will change
value.

Prior Condition: System State NotOK

Initiator: NetworkMaster

Events 

Timers/Timing

constraints
tDelayCfgRequest

Remarks: 

msc NM_Sc_Scan_Node_Reporting_Error_In_NotOK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState_NotOK

par This parallel part can also
be done sequential ly or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Error
(...)

tDelayCfgReques t
Use tDelayCfgRequest1
since it is the firs t time
this scan that the node is
scanned.

[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

No errors occured during scan. Broadcast
Configuration.Status(OK).

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

SystemState_OK

loop

when (NetworkSlave_2 has not responded)

tDelayCfgReques t
Wait for
tDelayCfgReques t to
expire.

FBlockIDs.Get

alt

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave_2 registers
new FBlocks correctly.

Update the Central Registry

B Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

FBlockIDs.Error
(...)

alt

when
(ScansWithoutAnswer < 20)

Node has not answered
during 20 system scans
since the network entered
the
state NormalOperation.

tDelayCfgReques t

[tDelayCfg
Request1]

otherwise

tDelayCfgReques t

[tDelayCfg
Request2]

MSC 15: NM_Sc_Scan_Node_Reporting_Error_In_NotOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 37 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3.8 Node Reporting Error in System State OK

Scenario MSC: NM_Sc_Scan_Node_Reporting_Error_In_OK

Description: The NetworkMaster scans the system in System State OK. NetworkSlave_2 reports FBlockIDs.Error()
(not ErrorCode 0xA0) when the NetworkMaster requests its configuration. Since NetworkSlave_2 is
registered in the Central Registry, the NetworkMaster has to inform the other NetworkSlaves that the
FBlock in NetworkSlave_2 is invalid. The NetworkMaster will treat this node as a non-responding node,
and continue requesting FBlockIDs from this node. After 20 retries timer tDelayCfgRequest will change value.

Prior Condition: System State OK

Initiator: NetworkMaster

Events NCE or an application request (optional)

Timers/Timing

constraints
tDelayCfgRequest

Remarks: 

msc NM_Sc_Scan_Node_Reporting_Error_In_OK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState_OK

par This parallel part can also
be done sequentially or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

Update the Central Registry

NetworkSlave_2 is registered in the Central Registry as having NodeAddress = 0x102, FBlockID = 0x22 InstID = 0x01.

FBlockIDs.Get

FBlockIDs.Error
(...)

B Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Configuration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

tDelayCfgReques t
Use tDelayCfgRequest1
since it is the firs t time
this scan that the node
has reported error this
time around.

[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

loop

when (NetworkSlave_2 has not responded)

tDelayCfgReques t
Wait for
tDelayCfgReques t to
expire.

FBlockIDs.Get

alt

FBlockIDs.Status
(FBlockIDList='FBlock=0x22,InstID=0x01')

NetworkSlave_2 registers
new FBlocks correctly.

Update the Central Registry

B Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

Configuration.Status
(ConfigurationControl='NewExt',
DeltaFBlockList='RxTxLog=_,

FBlock=0x22, InstID=0x01')

FBlockIDs.Error
(...)

alt

when
(ScansWithoutAnswer < 20)

Node has not answered
during 20 system scans
since the network entered
the
state NormalOperation.

tDelayCfgReques t

[tDelayCfg
Request1]

otherwise

tDelayCfgReques t

[tDelayCfg
Request2]

MSC 16: NM_Sc_Scan_Node_Reporting_Error_In_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 38 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 39 MOST Dynamic Specification Rev 3.0.2

10/2012

3.2.3.9 Node causing NotOK too many times

Scenario: NM_Sc_Scan_Node_Causes_NotOK_Too_Many_Times

Description: NetworkSlave_2 causes System State NotOK the maximum allowed number of times. The node will be
ignored until the next system start or NCE.

Prior Condition: 

Initiator: NetworkMaster

Events NCE

Timers/Timing

constraints


Remarks:  This scenario is valid for all System States.
 This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover

sequential scanning.

msc NM_Sc_Scan_Node_Causes_NotOK_Too_Many_T imes

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

loop <max, max>

FBlockIDs.Get
Addressing is done by
using node position
address.

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList=_)

NodeAddress = 0xFFFF

Error in registration

NM_Sc_Set_SystemState_NotOK

alt

when (IncludeNodeInFinalScan = 'false')

NetworkSlave_2 has caused Configuration.Status(NotOK) the maximum allowed number of times . Ignore this node unti l Init Ready or NCE.

par

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

otherwise

par

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

NodeAddress = 0xFFFF

Error in registration

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

NetworkSlave_2 has caused Configuration.Status(NotOK) the maximum allowed number of times . Ignore this node unti l Init Ready or NCE.

B Configuration.Status
(ConfigurationControl='OK')

Configuration.Status
(ConfigurationControl='OK')

Configuration.Status
(ConfigurationControl='OK')

Configuration.Status
(ConfigurationControl='OK')

SystemState OK

MSC 17: NM_Sc_Scan_Node_Causes_NotOK_Too_Many_Times

MOST®
DynamicSpecification

3.2.3.10 Scan Interrupted by NCE

Scenario MSC: NM_Sc_Scan_NCE_Interruption

Description: A scan is interrupted by a NCE. Any current scan is restarted when it is interrupted by a NCE
regardless of the System State.

Prior Condition: 

Initiator: Any node switching its bypass

Events NCE

Timers/Timing

constraints
tWaitAfterNCE

Remarks:  This scenario is valid for all System States
 This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover

sequential scanning.

msc NM_Sc_Scan_NCE_Interruption

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

FBlockIDs.Get Addressing is done by
using node position
address.

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

B NCE NCE NCE NCE
T he NCE occurs during
the scanning process.

tWaitAfterNCE

[]

opt

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry T he Central Registry is
still maintained.

tWaitAfterNCE

Restart scan Note that the
SystemState is not
affected by the NCE.

MSC 18: NM_Sc_Scan_NCE_Interruption

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 40 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.2.3.11 NCE in System State NotOK Resulting in System State OK

Scenario MSC: NM_Sc_NCE_SystemStateNotOK_To_OK

Description: When an NCE occurs, the NetworkMaster has to scan the network (after tWaitAfterNCE has expired). In this
scenario, all nodes respond correctly.

Prior Condition: NetInterface Normal Operation

Initiator: Any node switching its bypass

Events NCE

Timers/Timing

constraints
tWaitAfterNCE

Remarks: 

msc NM_Sc_NCE_SystemStateNotOK_To_OK

When entering this MSC, the SystemState is assumed to be NotOK.

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

B NCE NCE NCE NCE
When an NCE is
detected, the network has
to be s canned.tWaitAfterNCE

[]

tWaitAfterNCE

par This parallel part can also
be done sequentially or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

SystemState_OK

MSC 19: NM_Sc_NCE_SystemStateNotOK_To_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 41 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3.12 NCE in System State OK Resulting in System State OK

Scenario MSC: NM_Sc_NCE_SystemStateOK_To_OK

Description: When an NCE occurs, the NetworkMaster has to scan the network (after tWaitAfterNCE has expired). In this
scenario, all nodes respond correctly.

Prior Condition: NetInterface Normal Operation

Initiator: Any node switching its bypass

Events NCE

Timers/Timing

constraints
tWaitAfterNCE

Remarks: 

msc NM_Sc_NCE_SystemStateOK_To_OK

When entering this MSC, the SystemState is assumed to be OK.

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

B NCE NCE NCE NCE
When an NCE is
detected, the network has
to be scanned.tWaitAfterNCE

[]

tWaitAfterNCE

par T his parallel part can also
be done sequentially or a
mixture of both.FBlockIDs.Get Addressing is done by

using node position
address.FBlockIDs.Status

(FBlockIDList=_)

One or more FBlocks removed

Update the Central Registry

opt

when (FBlocksRemoved = true)

B Configuration.Status
(ConfigurationControl='Invalid', ...)

Configuration.Status
(ConfigurationControl='Invalid', ...)

Configuration.Status
(ConfigurationControl='Invalid', ...)

Configuration.Status
(ConfigurationControl='Invalid', ...)

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

New FBlocks or no FBlocks at all.

Update the Central Registry

opt

when (NewFBlocksRegistered = true
and NWM_supports_immediate_

notification = true)

B Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

alt

when (NewFBlocksRegistered = true and
NWM_supports_immediate_notification =

false)

B Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

when (NoChangesT oCentralRegistry =
true)

T he reason could be, for
example, a new node
registration without
FBlocks.

B Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList='empty')

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList='empty')

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList='empty')

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList='empty')

otherwise Due to immediate
notific ation,
Configuration.
Status(NewExt) was sent
straightaway after the
update to the Central
Registry. Thus, no
Configuration.Status
message is sent after the
System Scan is complete.

MSC 20: NM_Sc_NCE_SystemStateOK_To_OK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 42 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.2.3.13 NCE Resulting in System State NotOK

Scenario: NM_Sc_NCE_SystemState_To_NotOK

Description: When an NCE occurs, the NetworkMaster has to scan the network (after tWaitAfterNCE has expired). In this
scenario, NetworkSlave_2 makes an invalid registration.

Prior Condition: 

Initiator: Any node switching its bypass

Events NCE

Timers/Timing

constraints
tWaitAfterNCE

Remarks:  This scenario is valid for all System States.
 This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover

sequential scanning.

msc NM_Sc_NCE_SystemState_To_NotOK

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

B NCE NCE NCE NCE
When an NCE is
detected, the network has
to be s canned.tWaitAfterNCE

[]

tWaitAfterNCE

FBlockIDs.Get Addressing is done by
using node position
addres s.

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList=_)

NodeAddress=0x0FFD

Invalid regis tration

opt A registration of a
NetworkSlave can be
ignored if it is rec eived
after the detection of an
error.

FBlockIDs.Status
(FBlockIDList=_)

Response ignored

NM_Sc_Set_SystemState_NotOK

SystemState NotOK

MSC 21: NM_Sc_NCE_SystemState_To_NotOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 43 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.2.3.14 Spontaneous Registration of a Node

Scenario MSC: NM_Sc_Spontaneous_Reg_New_And_Invalid

Description: NetworkSlave_1 makes a spontaneous registration. If new FBlocks are added, a
Configuration.Status(NewExt) will be broadcast. If FBlocks are removed, a
Configuration.Status(Invalid) will be broadcast. If the registration is invalid, the system will change state
to NotOK.

Prior Condition: System State OK

Initiator: NetworkSlave_1

Events 

Timers/Timing

constraints


Remarks: 

msc NM_Sc_Spontaneous_Reg_New_And_Invalid

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

when SystemState OK

FBlockIDs.Status
(FBlockIDList='FBlockID=_, InstID=_')

A registration of a node
after the network is in
SystemState OK.

Check registration

alt

when (regis tration OK)

Update Central Registry

opt

when (new FBlocks were added)

B Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

opt

when (FBlocks were removed)

B Configuration.Status
(ConfigurationControl='Invalid', ...)

Configuration.Status
(ConfigurationControl='Invalid', ...)

Configuration.Status
(ConfigurationControl='Invalid', ...)

when (Error in registration) Note that a mismatch in
InstIDs of FBlocks is not
considered an error.

NM_Sc_Set_SystemState_NotOK

SystemState NotOK

MSC 22: NM_Sc_Spontaneous_Reg_New_And_Invalid

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 44 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.3 Variables used in NetworkSlave MSCs

The use of variables aims at simplifying the MSCs. Table 3-2 shows a list of the variables used in the
general Connection Management MSCs.

Variable Range Explanation
nodeState Undefined, SystemCommunicationInit This variable determines which

NetworkInterface state the node is in.
CR_Contains_NWSlave_X True, False This variable determines whether a particular

node is contained in the Central Registry.

Table 3-2: Variables used in the NetworkSlave MSCs

3.4 NetworkSlave General MSCs

The general MSCs in this section describe the complete startup sequence, from initialization to normal
operation, from the perspective of a NetworkSlave. The high-level MSC shows how the general MSCs
are combined to describe the complete flow from startup to normal (running) operation in a
NetworkSlave.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 45 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.4.1 High-level NetworkSlave MSC

General MSC: NS_Gen_Startup

Description: High-level MSC of NetworkSlave startup process. The startup sequence for MOST Nodes is described
in this high-level MSC.

Prior Condition: 

Initiator: 

Events: Init Ready

Timers/Timing

constraints:


Remarks: 

msc NS_Gen_Startup

NS_Gen_Init

NS_Gen_RunningNode

MSC 23: NS_Gen_Startup

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 46 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.4.2 Initializing the NetworkSlave

General MSC: NS_Gen_Init

Description: Describes the initialization and startup sequence of a NetworkSlave after Init Ready.

Prior Condition: NetInterface Init

Initiator: 

Events: Init Ready

Timers/Timing

constraints:
tAnswer

Remarks: 

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 47 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

msc NS_Gen_Init

NetworkMaster NetworkSlave

InitReady_event

Derive NodeAddress

loop <1, inf>

when (Configuration.Status message has
not been received)

alt

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave must reply
within tAnswer after the
reques t has been
received.

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, NewIns tID=_)

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave must reply
within tAnswer after the
reques t has been
received.

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Store NodeAddress of
NetworkMaster

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Perform Network Configuration
Reset

see MOST Specification
for individual actions

B Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Set System State OK

Store NodeAddress of
NetworkMaster

B Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Set System State OK

Store NodeAddress of
NetworkMaster

[0,tAnswer]

[0,tAnswer]

MSC 24: NS_Gen_Init

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 48 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.4.3 Node Running Operation

General MSC: NS_Gen_RunningNode

Description: Describes the running (normal) operation of a NetworkSlave after the startup sequence has been
completed.

Prior Condition: NetInterface Normal Operation

Initiator: NetworkMaster

Events: 

Timers/Timing

constraints:
tAnswer

Remarks: 

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 49 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

msc NS_Gen_RunningNode

NetworkMaster NetworkSlave

alt

when SystemState_OK

alt

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Perform Network Configuration
Reset

See MOST Speci fication
for individual actions

B Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='NewExt',

DeltaFBlockList=_)

Update decentral regis try

B Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Own configuration invalid
handling is not
considered here

Update decentral regis try

when SystemState_NotOK

alt

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

If not already stored the address
of the NetworkMaster should be

stored.

(Re-)initialize applications

Update decentral regis try

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Clear decentral registry

Derive NodeAddress

opt

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

opt

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, NewIns tID=_)

alt

FBlockIDs.Status
(FBlockIDList=_)

FBlockIDs.Error
(...)

[0,tAnswer]

[0,tAnswer]

[0,tAnswer]

MSC 25: NS_Gen_RunningNode

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 50 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.4.4 Communicate

General MSC: NS_Gen_Communicate

Description: Describes how a NetworkSlave uses its Decentral Registry or the Central Registry to find the logical
address of its communication partner.

Prior Condition: System State OK

Initiator: NetworkSlave_2

Events: 

Timers/Timing

constraints:


Remarks: 

msc NS_Gen_Communicate

NetworkMaster NetworkSlave_1 NetworkSlave_2

NetworkSlave_2 wants to query the implemented functions of FBlock 0x42, which resides in NetworkSlave_1

when SystemState_OK

alt

when (RxT xLog of partner is in Decentral
Registry)

FktIDs.Get

otherwise

CentralRegistry.Get
(FBlockID='0x42', InstID='_')

Request T VTuner

exc

when (CR_Contains_NWSlave_1 =
false)

CentralRegistry.Error
(ErrorCode='0x07', ErrorInfo='0x01, _')

Partner not found in Central
Registry. Report error to

application.

CentralRegistry.Status
(FBlockInfoList='RxT xLog=NetworkSlave_1, FBlockID=0x42, Ins tID=0x01')

Found FBlockID 0x42,
InstID 0x01.

FktIDs.Get

MSC 26: NS_Gen_Communicate

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 51 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.5 NetworkSlave Scenario MSCs

3.5.1 Startup scenarios

3.5.1.1 Startup - OK

Scenario MSC NS_Sc_StartupOK

Description: Describes the startup sequence of a NetworkSlave when Configuration.Status(OK) is received during
startup.

Prior Condition: NetInterface Init

Initiator: 

Events: Init Ready

Timers/Timing

constraints:
tAnswer

Remarks: 

msc NS_Sc_StartupOK

NetworkMaster NetworkSlave

InitReady_event

Derive NodeAddress

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave must reply
within tAnswer after the
reques t has been
received.

B Configuration.Status
(ConfigurationControl='OK', ...)

Configuration.Status
(ConfigurationControl='OK', ...)

Store NodeAddress of
NetworkMaster

opt

Build Decentral Registry

[0,tAnswer]

MSC 27: NS_Sc_StartupOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 52 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

3.5.1.2 Startup - NotOK

Scenario MSC NS_Sc_StartupNotOK

Description: Describes the startup sequence of a NetworkSlave when Configuration.Status(NotOK) is received
during startup.

Prior Condition: NetInterface Init

Initiator: 

Events: Init Ready

Timers/Timing

constraints:
tAnswer

Remarks: 

msc NS_Sc_StartupNotOK

NetworkMaster NetworkSlave

InitReady_event

Derive NodeAddress

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

NetworkSlave must reply
within tAnswer after the
reques t has been
received.

B Configuration.Status
(ConfigurationControl='NotOK', ...)

Configuration.Status
(ConfigurationControl='NotOK', ...)

Perform Network Configuration
Reset

See MOST Speci fication
for individual actions

[0,tAnswer]

MSC 28: NS_Sc_StartupNotOK

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 53 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

3.5.2 Communication Scenarios

3.5.2.1 Communicate with partner

Scenario MSC NS_Sc_Communicate

Description: Describes how a NetworkSlave uses its Decentral Registry or the Central Registry to find the logical
address of its communication partner.

Prior Condition: System State OK

Initiator: NetworkSlave_1

Events: 

Timers/Timing

constraints:


Remarks: As an example, HMI and AudioDiskPlayer are used as communication partners.

msc NS_Sc_Communicate

NetworkMaster NetworkSlave_1 Netw orkSlave_2

HMI in NetworkSlave_1 wants to communicate with AudioDiskPlayer in NetworkSlave_2

when SystemState_OK

alt

when (Decentral Regis try is updated)

NetworkSlave_2 is registered in Decentral
Registry with NodeAddress = 0x102

FBlockID=0x31 InstID=0x01.

DeckStatus.Set
(DeckStatus='Stop')

otherwise

NetworkSlave_2 is registered in Central
Registry with NodeAddress = 0x102

FBlockID=0x31 InstID=0x01.

CentralRegistry.Get
(FBlockID='0x31', InstID=_)

CentralRegistry.Status
(FBlockInfoList='RxTxLog=0x102,

FBlockID=0x31,InstID=0x01')

Update Decentral Registry.

DeckStatus.Set
(DeckStatus='Stop')

MSC 29: NS_Sc_Communicate

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 54 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4 Connection Management

4.1 Variables used in Connection Management MSCs

The general MSCs use variables to simplify the MSCs, as well as reducing the total number of MSCs.
Table 4-1 shows a list of the variables used in the general Connection Management MSCs.

Variable Range Explanation
Error True, False Indicates if something fails during connection management.
Progress None, SourceInfo_Received,

Source_Connected,
Sink_Connected,
SourceActivity_On,
Functions_Received

This variable is used to keep track of how far the procedure has
progressed.

DisconnectResult Success, Failure The result of a disconnect operation in a sink.
AllocateResult Success, Failure The result of an allocate operation in a source.
DeallocateResult Success, Failure The result of a de-allocate operation in a source.
BoundaryLimit NotExceeded, Exceeded This variable is set to Exceeded when a controller issues a

MoveBoundary request where the requested boundary is in conflict
with active connections.

AnnounceBC unsupported, supported This variable determines whether the Connection Management
supports a method to announce the start of the boundary shifting
process.

Table 4-1: Variables used in the general Connection Management MSCs

4.2 Normal Behavior

In this section, MSCs are used to describe Connection Management in normal behavior.

When building a connection, it is important whether the Connection Management possesses required
information about the nodes.
When this is the case, the Connection Management does not have to inquire how many channels
different sources need. The Connection Management may have obtained this information either by
previously querying the nodes or by having the information already provided by the system
developers.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 55 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.2.1 Connection Management General MSCs

4.2.1.1 Connecting a Sink

General MSC: CM_Gen_Connect_StartResultAck

Description: The Connection Management commands the sink to connect to the specified channels. The result of
this MSC is saved for the higher level MSC that uses this one.

Prior Condition: The channels that the sink is connecting to are in use by a source.

Initiator: Connection Management

Events 

Timers / Timing

Constraints:


Remarks: 

msc CM_Gen_Connect_StartResultAck

ConnectionManagement GeneralSink

Connect.StartResultAck
(SenderHandle=_, SinkNr='X',

BlockWidth=_, ConnectionLabel=_)

Start Connect Performed regardless of
earlier connect status. If
already connected to
same channels, no action
has to be performed; this
is a Connec t OK.

alt

when (ConnectResult = Success)

Connect.ResultAck
(SenderHandle=_, SinkNr='X')

Progress := Sink_Connected

otherwise For example, erroneous
SinkNr.

Connect.ErrorAck
(SenderHandle=_, ErrorCode=_,

ErrorInfo=_)

Error := true

MSC 30: CM_Gen_Connect_StartResultAck

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 56 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.2.1.2 SourceActivity turned on

General MSC: CM_Gen_SourceActivity_StartResultAck

Description: The Connection Management commands the source to turn the SourceActivity on. The result of this
MSC is saved for the higher level MSC that uses this one.

Prior Condition: A connection to a sink has been established.

Initiator: Connection Management

Events 

Timers / Timing

Constraints:


Remarks: The SourceActivity function is optional.

msc CM_Gen_SourceActivity_StartResultAck

ConnectionManagement GeneralSource

SourceActivity.StartResultAck
(SenderHandle=_, SourceNr=_,

Activity='On')

alt

SourceActivity.ResultAck
(SenderHandle=_, SourceNr=_,

Activity='On')

Progress := SourceActivity_On

SourceActivity.ErrorAck
(SenderHandle=_, ErrorCode=_,

ErrorInfo=_)

Error := true

MSC 31: CM_Gen_SourceActivity_StartResultAck

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 57 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.2.1.3 BuildConnection

General MSC: CM_Gen_BuildConnection

Description: A connection is built between GeneralSource and GeneralSink. The flow is as follows: The source is
connected to the network and the sink is also connected. When the connection is established,
SourceActivity may be turned on. A timer is started when the Connection Manager starts this process.
If it takes more than the tCM_DeadlockPrev to do this, the process is aborted.
The Connection Management will have to tidy up after itself by removing everything that has been
done so far, which is done in the CleanUp MSC.

Prior Condition: 

Initiator: Any Controller

Events 

Timers / Timing

Constraints:
tCM_DeadlockPrev

Remarks:  While running CleanUp, there is no reaction to an incoming AbortAck. The same applies after
SourceActivity has been turned on.

 The SourceActivity function is optional.

msc CM_Gen_BuildConnection

ConnectionManagement GeneralSource GeneralSink Initiator

BuildConnection.StartResultAck
(SenderHandle=_, SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock=_, ..., SinkNr='GeneralSink')tCM_DeadlockPrev

[]

Error := false;
Progress := none;

Error is set if an error
occurs .

par

tCM_DeadlockPrev

Error := true

opt

when (Error = false)

CM_Gen_Allocate_StartResultAck Tell the source to allocate
channels and connect to
the network.

opt

when (Error = false)

CM_Gen_Connect_StartResultAck Connect the sink to the
network.

opt

when (Error = false)

CM_Gen_SourceActivity_StartResultAck Turn source activity on.

alt

when (Error = false)

BuildConnection.ResultAck
(SenderHandle=_, SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

T he procedure was
carried out successfully.

otherwise An error was received
during the procedure.

CM_Gen_CleanUp Clean up al l that was
made before.

BuildConnection.ErrorAck
(SenderHandle=_, ErrorCode=_, ErrorInfo=_)

Error message contains
accumulated error
information.

MSC 32: CM_Gen_BuildConnection

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 58 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.2.1.4 Allocate

General MSC: CM_Gen_Allocate_StartResultAck

Description: The Connection Management tells the source to allocate bandwidth and to connect. The result of this
MSC is saved for the higher level MSC that uses this one.

Prior Condition: 

Initiator: Connection Management

Events: 

Timer / Timing

Constraints:


Remarks: If the optional function SourceActivity is used, the source must not start routing data before
SourceActivity.StartResult(On) is called.

msc CM_Gen_Allocate_StartResultAck

ConnectionManagement GeneralSource

Allocate.StartResultAck
(SenderHandle=_, SourceNr='X')

Start Allocate If SourceNr already is
allocated, it is treated as
a successful Allocate.

alt

when (AllocateResult = Success)

Allocate.ResultAck
(SenderHandle=_, SourceNr='X',

BlockWidth=_, ConnectionLabel=_)

Progress := Source_Connected;

otherwise

Allocate.ErrorAck
(SenderHandle=_, ErrorCode=_,

ErrorInfo=_)

Error := true;

MSC 33: CM_Gen_Allocate_StartResultAck

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 59 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.2.1.5 Removing a Synchronous Connection

General MSC: CM_Gen_RemoveConnection

Description: The Connection Management removes a connection. First, the sink is disconnected (and muted). Then
the source is disconnected with DeAllocate. When sending this command, SourceActivity is turned off
(if used).

Prior Condition: A connection between the source and sink exists.

Initiator: Any Controller

Events 

Timer / Timing

Constraints:


Remarks:  There is no way of aborting this procedure.
 The SourceActivity function is optional.

msc CM_Gen_RemoveConnection

ConnectionManagement GeneralSource GeneralSink Initiator

RemoveConnection.StartResultAck
(SenderHandle=_, SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

CM_Gen_DisConnect_StartResultAck

opt

when (SourceActivity is used)

SourceActivity.StartResultAck
(SenderHandle=_, SourceNr=_,

Activity='Off')

SourceActivity.ResultAck
(SenderHandle=_, SourceNr=_,

Activity='Off')

CM_Gen_DeAllocate_StartResultAck

alt

when (No_Error_Information_Exis ts)

RemoveConnection.ResultAck
(SenderHandle=_, SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

The procedure was
carried out successfully.

otherwise

RemoveConnection.ErrorAck
(SenderHandle=_, ErrorCode=_, ErrorInfo=_)

Parameter contains
accumulated error
information.

MSC 34: CM_Gen_RemoveConnection

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 60 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.2.1.5.1 Disconnecting a Sink

General MSC: CM_Gen_DisConnect_StartResultAck

Description: Connection Management tells the sink to disconnect the specified sink. Error information is saved for
the MSC that uses this one.

Prior Condition: The sink is connected to the network.

Initiator: Connection Management

Events 

Timer / Timing

Constraints:


Remarks: 

msc CM_Gen_DisConnect_StartResultAck

ConnectionManagement GeneralSink

DisConnect.StartResultAck
(SenderHandle=_, SinkNr='X')

Mute sink and start disconnect. No action needed if not
connected at all; this is
treated as a successful
disconnect.

alt

when (Disconnec tResult = Success)

DisConnect.ResultAck
(SenderHandle=_, SinkNr='X')

otherwise For example, erroneous
SinkNr.

DisConnect.ErrorAck
(SenderHandle=_, ErrorCode=_,

ErrorInfo=_)

Store error information. Will be reported in
BuildConnection.Error or
RemoveConnection.Error

MSC 35: CM_Gen_DisConnect_StartResultAck

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 61 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.2.1.5.2 Deallocation Procedure

General MSC: CM_Gen_DeAllocate_StartResultAck

Description: Connection Management tells the source to deallocate the specified channels and to disconnect. Error
information is saved for the MSC that uses this one.

Prior Condition: The source is connected to the network and uses the specified channels.

Initiator: Connection Management

Events 

Timer / Timing

Constraints:


Remarks:  The source stops routing and removes its channels.

msc CM_Gen_DeAllocate_StartResultAck

ConnectionManagement GeneralSource

DeAllocate.StartResultAck
(SenderHandle=_, SourceNr='X')

Perform SourceActivity(Off) and
start de-allocation.

No action needed if not
allocated at all; this is
treated as a successful
deallocate.

alt

when (DeallocateResult = Success)

DeAllocate.ResultAck
(SenderHandle=_, SourceNr='X')

otherwise

DeAllocate.ErrorAck
(SenderHandle=_, ErrorCode=_,

ErrorInfo=_)

Store error information. Will be reported in
BuildConnection.Error or
RemoveConnection.Error.

MSC 36: CM_Gen_DeAllocate_StartResultAck

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 62 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.3 DiscreteFrame Isochronous Connection Handling

4.3.1 Data Source and Phase Source in One Device

P
ha

se
S

ou
rc

e

D
at

a
S

ou
rc

e

P
ha

se
S

in
k

D
a

ta
S

in
k

Figure 4-1: DiscreteFrame Isochronous – data source and phase source in one device

General MSC: CM_Gen_Connect_PhaseFromSource

Description: A Controller requests a connection between a source that offers DiscreteFrame Isochronous data and
a sink that can process that kind of data. The source offers both the phase information and the
payload.

Prior Condition: System State OK

Initiator: Controller

Events 

Timer / Timing

Constraints:


Remarks: 

msc CM_Gen_Connect_PhaseFromSource

Controller ConnectionManagement Source

Source for phase
information and data.

Sink

BuildConnection.StartResultAck
(SenderHandle=_, SourceFBlock=_,

SourceInstID=_, SourceNr=_,
SinkFBlock=_, SinkInstID=_, SinkNr=_)

Allocate.StartResultAck
(SenderHandle=_, SourceNr=_)

T he ConnectionMaster
knows that the phase
information and the data
are provided by the same
FBlock. The requested
SourceNr is that of the
phase source.

Allocate.ResultAck
(SenderHandle=_, SourceNr=_,

BlockWidth=_, ConnectionLabel=_)

SourceNr contains the
number of the phase
source and the
ConnectionLabel contains
the label for the phase
information.

AllocateExt.StartResul tAck
(SenderHandle=_, SourceNr=_,

ClkSrcLabel=_)

T he ConnectionLabel
value that was obtained
through Allocate.Result is
now transmitted as
ClkSrcLabel.AllocateExt.ResultAck

(SenderHandle=_, SourceNr=_,
BlockWidth=_, ConnectionLabel=_,

ClkSrcLabel=_)

ConnectExt.StartResul tAck
(SenderHandle=_, SinkNr=_, BlockWidth=_, ConnectionLabel=_, ClkSrcLabel=_)

ConnectExt.ResultAck
(SenderHandle=_, SinkNr=_, ClkSrcLabel=_)BuildConnection.ResultAck

(SenderHandle=_, SourceFBlock=_,
SourceInstID=_, SourceNr=_,

SinkFBlock=_, SinkInstID=_, SinkNr=_)

MSC 37: CM_Gen_Connect_PhaseFromSource

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 63 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.3.2 Phase Information from a Third Device

Figure 4-2: DiscreteFrame Isochronous – phase information form a third device

General MSC: CM_Gen_Connect_PhaseFromThirdDevice

Description: A Controller requests a connection between a source that offers DiscreteFrame Isochronous data and
a sink that can process that kind of data. The phase information and the payload are provided by
different sources. The ConnectionMaster sets up the phase source after system startup, independent
of any requests.

Prior Condition: System State OK

Initiator: Controller

Events 

Timer / Timing

Constraints:


Remarks: 

msc CM_Gen_Connect_PhaseFromThirdDevice

Controller ConnectionManagement SourcePhase SourceData Sink

After system startup:

Allocate.StartResultAck
(SenderHandle=_, SourceNr=_)

Allocate.ResultAck
(SenderHandle=_, SourceNr=_,

BlockWidth=_, ConnectionLabel=_)

T he ConnectionLabel in
this case contains the
label for the phase
information.

For each connection:

BuildConnection.StartResult
(SourceFBlock=_, SourceIns tID=_,

SourceNr=_, SinkFBlock=_, SinkInstID=_,
SinkNr=_)

AllocateExt.StartResul tAck
(SenderHandle=_, SourceNr=_, ClkSrcLabel=_)

AllocateExt.ResultAck
(SenderHandle=_, SourceNr=_, BlockWidth=_, ConnectionLabel=_, ClkSrcLabel=_)

ConnectExt.StartResul tAck
(SenderHandle=_, SinkNr=_, BlockWidth=_, ConnectionLabel=_, ClkSrcLabel=_)

ConnectExt.ResultAck
(SenderHandle=_, SinkNr=_, ClkSrcLabel=_)BuildConnection.ResultAck

(SenderHandle=_, SourceFBlock=_,
SourceInstID=_, SourceNr=_,

SinkFBlock=_, SinkInstID=_, SinkNr=_)

MSC 38: CM_Gen_Connect_PhaseFromThirdDevice

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 64 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.4 Error Handling

This section describes the behavior of the Connection Management when dealing with error cases.

4.4.1 Error Handling General MSCs

4.4.1.1 CleanUp

General MSC: CM_Gen_CleanUp

Description: Connection Management unmakes everything that has been made in the connection procedure.

Prior Condition: An error or abort has interrupted the BuildConnection procedure.

Initiator: This MSC is initiated after an abort or error within BuildConnection.

Events 

Timer / Timing

Constraints:


Remarks: There is no way of aborting the CleanUp process.

msc CM_Gen_CleanUp

ConnectionManagement GeneralSource GeneralSink

alt

when (Progress = Sink_Connected OR
Progress = SourceActivity_On)

Sink has to be
disconnected.

CM_Gen_DeAllocate_StartResultAck

Progress := Source_Connected Continue cleanup.

alt

when (Progress = Source_Connected) Source has to be
disconnected.

CM_Gen_DeAllocate_StartResult

Progress := none CleanUp finished.

MSC 39: CM_Gen_CleanUp

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 65 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.4.2 Error Handling Scenario MSCs

4.4.2.1 Sink drop

General MSC: CM_Sc_SinkDrop

Description: General Sink drops out due to an unlikely internal error.

Prior Condition: 

Initiator: Any failing sink

Events 

Timer / Timing

Constraints:


Remarks: The SourceActivity function is optional.

msc CM_Sc_SinkDrop

ConnectionManagement GeneralSink GeneralSource NetworkMaster

Sink FBlock mal functions.

al t

when (Sink Device can handle
malfunctions)

The sink is disconnected.

FBlockIDs.Status
(FBlockIDList='RemainingFBlockList')

otherwise

The device closes its bypass and
generates an NCE. Missing device detected.

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='GeneralSource')

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='GeneralSource')

B
Configuration.Status

(ConfigurationControl='Invalid',
DeltaFBlockList='GeneralSource')

opt

when (Source is not connected to other
sinks)

opt

when (SourceActivi ty is used)

SourceActivi ty.StartResultAck
(SenderHandle=_, SourceNr=_, Activity='Off')

SourceActivi ty.ResultAck
(SenderHandle=_, SourceNr=_, Activity='Off')

DeAl locate.StartResul tAck
(SenderHandle=_, SourceNr='Source')

DeAl locate.Resul tAck
(SenderHandle=_, SourceNr='Source')

All resources associated with the
source are released.

MSC 40: CM_Sc_SinkDrop

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 66 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

4.4.2.2 Source Malfunction

General MSC: CM_Sc_Source_Malfunction

Description: General Source drops out due to an unlikely internal error.

Prior Condition: 

Initiator: Any failing source

Events 

Timer / Timing

Constraints:


Remarks: 

msc CM_Sc_Source_Malfunction

ConnectionManagement GeneralSink.0x01 GeneralSink.0x0n GeneralSource NetworkMaster

Source FBlock malfunc tions.

alt

when (appl ication fails)

FBlockIDs.Status
(FBlockIDList='RemainingFBlockList')

when (all applications fail)

FBlockIDs.Status
(FBlockIDList=_)

FBlockIDLis t is empty.

otherwise Usually a Network
Interface failure.

NCE NCE NCE B NCE

Missing device detected. NetworkMaster detects
missing device by
network scan.

Bandwidth is de-allocated.
The sourcedrop is detected and

the sink mutes. The sourcedrop is detected and
the sink mutes.

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

B Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

All sinks connected to the missing source are disconnected by the following sequence. As a result all resources associated with the source are freed.

DisConnect.StartResultAck
(SenderHandle=_, SinkNr='SinkNr')

DisConnect.ResultAck
(SenderHandle=_, SinkNr='SinkNr')

DisConnect.StartResultAck
(SenderHandle=_, SinkNr='SinkNr')

DisConnect.ResultAck
(SenderHandle=_, SinkNr='SinkNr')

MSC 41: CM_Sc_Source_Malfunction

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 67 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

4.5 Boundary Change

Use Case: CM_Boundary_Change

Description: The initiator requests a Boundary change from the ConnectionMaster, which forwards the request to
the TimingMaster.

Prior Condition: Configuration Status OK

Initiator:  Initiator

Events: 

Remarks: 

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 68 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

msc CM_Boundary_Change

NetBlock.0x00

NetBlock with Ins tID 0x00
= T imingMaster

ConnectionManagement Initiator

when SystemState OK

MoveBoundary.StartResultAck
(SenderHandle=_,

BoundaryDescriptor='newBoundary')

alt

when (BoundaryLimit = Exceeded) T he CM shall report an
error to a MoveBoundary
reques t if the controller
tries to change the
boundary and the new
boundary indicates that
the streaming bandwidth
does not fit the ac tive
connections.

MoveBoundary.ErrorAck
(SenderHandle=_, ...)

otherwise

Lock ConnectionMaster Reject new Build/Remove
reques ts

opt

when (AnnounceBC = supported)

Announce s tart of boundary
shifting process

By setting the respective
property, all notified
devices informed about
the forthcoming boundary
change before the
boundary is physically
changed. This can be
done by implementing
the optional property
"BoundaryChange" or
any other System
Integrator specific
solution.
The System Integrator
determines if a delay
(tAnnounce) is required
after announcing the
boundary change. The
duration of the delay is in
the discretion of the
System Integrator.

Boundary.SetGet
(BoundaryDescriptor='newBoundary')

Change boundary in
T imingMaster

alt

when (ChangeBoundary = Success)

Boundary.Status
(...) MoveBoundary.ResultAck

(...)

otherwise The allocation table is
empty.

Boundary.Status
(...) MoveBoundary.ErrorAck

(SenderHandle=_, ...)

opt

when (AnnounceBC = supported)

Announce end of boundary
shifting process

Unlock ConnectionMaster

[tAnnounce]

MSC 42: CM_Boundary_Change

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 69 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

5 Power management

5.1 Introduction

Power management means that the administrative function, which is above the Network Service,
wakes and shuts down the MOST network or specific devices. The power management is handled
mainly by the PowerMaster, which uses NetBlock functions for this purpose.

Switching on the network is described in the MOST Specification.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 70 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

5.2 Network shutdown

General MSC: PM_Gen_Network_Shutdown

Description: This process handles a shutdown of the network.

Prior Condition: NetInterface Normal Operation

Initiator:  PowerMaster

Events: 

Timers / Timing

Constraints:

 tWaitSuspend
 tRetryShutDown
 tShutDownWait
 tSlaveShutDown

Remarks: 

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 71 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

msc PM_Gen_Network_Shutdown(inst NetBlock;) page 1 of 2

PowerMaster NetBlock

B ShutDown.Start
(Control='Query')

ShutDown.Start
(Control='Query')tWaitSuspend

[]

tRetryShutdown

[]

alt

when (ForcedShutdownRequired = T rue) A critical condition (e.g.,
low voltage) might require
the PowerMaster to
perform a shutdown
without considering
suspend messages from
its slaves.

WaitForSuspend := False;

otherwise

WaitForSuspend := True;

ExecuteShutdown := T rue; If the shutdown is
canceled during the
shutdown procedure,
ExecuteShutdown will
become False and the
execution will be
prevented.

loop

when (WaitForSuspend = True)

alt

ShutDown.Result
(Control='Suspend')tRetryShutDown

B ShutDown.Start
(Control='Query')

ShutDown.Start
(Control='Query')tWaitSuspend

[]

tRetryShutdown

[]

tWaitSuspend

WaitForSuspend := False;

CriticalCondition
A critical condition could
occur while the
PowerMaster is waiting
for suspend requests. In
this case, the
PowerMaster will not
consider suspend
reques ts anymore.

WaitForSuspend := False;

CancelShutdow n
While the PowerMaster
waits for suspend
reques ts, the shutdown
might no longer be
required, for example, the
driver might accept a
telephone call or start the
car.

WaitForSuspend := False;
ExecuteShutdown := False;

opt

when (ExecuteShutdown = T rue)

B ShutDown.Start
(Control='Execute')

ShutDown.Start
(Control='Execute')

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 72 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

page 2 of 2

PowerMaster NetBlock

SystemState_NotOK

tSlaveShutdown

[]tShutDownWait

[]

tShutDownWait

Switch off modulated signal

opt A slave device stil l
receiving a modulated
signal on its input may
switch off its own
modulated signal after
tSlaveShutdown.

when (modulated signal on input)

tSlaveShutdown

Switch off modulated signal

MSC 43: PM_Gen_Network_Shutdown

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 73 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

5.3 Device shutdown

General MSC: PM_Gen_Device_Shutdown

Description: This process handles a shutdown of a device that is initiated by the PowerMaster.

Prior Condition: NetInterface Normal Operation

Initiator: PowerMaster

Events: 

Timers / Timing

Constraints:

 tWaitSuspend
 tRetryShutDown

Remarks: 

msc PM_Gen_Device_Shutdown

PowerMaster NetworkSlave NetworkMaster

ShutDown.Start
(Control='Query')tWaitSuspend

[]

tRetryShutDown

[]

loop

when (T imer tSuspend hasn't as expired)

alt

ShutDown.Result
(Control='Suspend')tRetryShutDown

ShutDown.Start
(Control='Query')tWaitSuspend

[]

tRetryShutDown

[]

tWaitSuspend

ShutDown.Start
(Control='Device Shutdown')

alt

when (DeviceShutdown is supported)

Mute streaming outputs .

opt

when (NetworkSlave is a source)

CM_Gen_
RemoveConnection

This MSC describes how
a connection is removed.

FBlockIDs.Status
(FBlockIDList=_)

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

B Configuration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Shutdown application

otherwise For example, if the device
implements system
functions.

ShutDown.Error
(ErrorCode='0x07', ...)

MSC 44: PM_Gen_Device_Shutdown

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 74 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

5.4 Device wake up

General MSC: PM_Gen_Device_WakeUp

Description: This process handles a wake up of a device that is initiated by the PowerMaster.

Prior Condition: NetInterface Normal Operation

Initiator: PowerMaster

Events: 

Timers / Timing

Constraints:


Remarks: 

msc PM_Gen_Device_WakeUp

PowerMaster NetBlock NetworkMaster

when (PowerMaster has performed a device
shutdown on the NetBlock)

ShutDown.Start
(Control='Wake from Device Shutdown')

Perform
SystemCommunicationInit;

Start application

FBlockIDs.Status
(FBlockIDList=_)

Configuration.Status
(ConfigurationControl='NewExt', ...)

Configuration.Status
(ConfigurationControl='NewExt', ...)

B Configuration.Status
(ConfigurationControl='NewExt', ...)

MSC 45: PM_Gen_Device_WakeUp

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 75 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

5.5 Network shutdown due to over-temperature

General MSC: PM_Gen_Overtemp_Shutdown

Description: This process handles a shutdown of the network due to over temperature. This scenario applies if the
PowerMaster implements the optional feature to perform a normal shutdown after receiving
ShutDown.Result(0x03).

Prior Condition: NetInterface Normal Operation

Initiator: NetBlock in device that is overheated.

Events: 

Timers / Timing

Constraints:


Remarks: 

msc PM_Gen_Overtemp_Shutdown

PowerMaster NetBlock.0x01 NetBlock.0x03

par

exc

when (theta > theta_Critical) Critical temperature
reached.

Switch the modulated signal off

when (theta > theta_Shutdown) Temperature near
device-spec ific critical

limit.

ShutDown.Result
(Control='Temperature Shutdown')

B ShutDown.Result
(Control='Temperature Shutdown')

ShutDown.Result
(Control='Temperature Shutdown')

PM_Gen_Network_Shutdown
(inst NetBlock = NetBlock.0x03)

MSC 46: PM_Gen_Overtemp_Shutdown

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 76 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

5.6 Network restart after over-temperature shutdown

General MSC: PM_Gen_Restart_After_Overtemp_Shutdown

Description: This process handles a network restart after a shutdown of the network due to over-temperature.

Prior Condition: 

Initiator: PowerMaster

Events: 

Timers / Timing

Constraints:
tWaitAfterOvertempShutdown

Remarks: 

msc PM_Gen_Restart_After_Overtemp_Shutdown

PowerMaster NetBlock.0x01 NetBlock NetBlock.0x03

PowerMaster shuts down system
due to high temperature in device

with NetBlock 0x01.

tWaitAfter
Overtemp
Shutdown

[]

par

exc

when (theta > theta_Critical) Critical temperature
reached.

Switch modulated signal off Also prevent the
modulated signal from
being switched on.

loop

when (Overtemperature_Condition =
true)

Wait for network restart
attempts until Sys tem
State OK is reached and
therefore the
overtemperature condition
is over.

alt

when (theta < theta_Restart) The device may wake up
the network after cooling
down.

Switch modulated signal on.

otherwise
tWaitAfter
Overtemp
Shutdown

opt

when (AutomaticStartup =
false)

After tWaitAfterOvertemp
Shutdown, the
PowerMaster may restart
the network but is not
required to do so. This
depends on applicative
reques ts or states .
If the PowerMaster does
not res tart the system
automatically, a user
reques t may trigger the
restart.

User_Restart_Request

Restart Network T his action triggers the
NetworkMaster to scan
the system.

opt

when (theta >
theta_Shutdown)

ShutDown.Result
(Control='Temperature Shutdown')

B ShutDown.Result
(Control='Temperature Shutdown')

Shutdown Network

tWaitAfter
Overtemp
Shutdown

[]

MSC 47: PM_Gen_Restart_After_Overtemp_Shutdown

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 77 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

6 Timers

The definition of timers can be found in the corresponding MOST Specification.

7 Naming Conventions

The names of the MSCs categorize them into different sections. Every name has a prefix that
differentiates it from MSCs dealing with other topics. Two parts make up the prefix. The first part
consists of an abbreviation or a characteristic name of the topic that the MSC focuses on. The
following names exist:

Topic Prefix Contents of the MSC
CM Connection Management MSC
NM NetworkMaster MSC
NS NetworkSlave MSC
PM Power Management MSC

Table 7-1: Topic Prefixes for MSCs

The second part of the prefix is used to differentiate between General MSCs and Scenario MSCs.
Gen stands for general and _Sc_ for Scenario.

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 78 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

8 Appendix A: Index of Figures

Figure 3-1: An example of what a Central Registry may look like... 19
Figure 4-1: DiscreteFrame Isochronous – data source and phase source in one device..................... 63
Figure 4-2: DiscreteFrame Isochronous – phase information form a third device 64

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 79 MOST Dynamic Specification Rev 3.0.2

10/2012

MOST®
DynamicSpecification

9 Appendix B: Index of Tables

Table 3-1: Variables used in the general Network Management MSCs ... 19
Table 3-2: Variables used in the NetworkSlave MSCs ... 45
Table 4-1: Variables used in the general Connection Management MSCs .. 55
Table 7-1: Topic Prefixes for MSCs .. 78

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 80 MOST Dynamic Specification Rev 3.0.2

10/2012

 
MOST®
DynamicSpecification

10 Appendix C: Index of MSCs

NM_Gen_Startup... 20
NM_Gen_Init ... 21
NM_Gen_RequestConfiguration ... 22
NM_Gen_ReceiveConfiguration.. 25
NM_Gen_SystemConfigurationUpdate ... 26
NM_Gen_ProcessNCE.. 27
NM_Sc_Set_SystemState_NotOK.. 28
NM_Sc_Initial_Scan_SystemState_NotOK... 29
NM_Sc_Scan_SystemState_To_OK... 30
NM_Sc_Scan_InstID_Mismatch_SystemState_OK.. 31
NM_Sc_Scan_InstID_Collision_SystemState_To_OK ... 32
NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress ... 33
NM_Sc_Scan_Node_Not_Responding_In_NotOK ... 35
NM_Sc_Scan_Node_Not_Responding_In_OK... 36
NM_Sc_Scan_Node_Reporting_Error_In_NotOK .. 37
NM_Sc_Scan_Node_Reporting_Error_In_OK.. 38
NM_Sc_Scan_Node_Causes_NotOK_Too_Many_Times.. 39
NM_Sc_Scan_NCE_Interruption... 40
NM_Sc_NCE_SystemStateNotOK_To_OK .. 41
NM_Sc_NCE_SystemStateOK_To_OK.. 42
NM_Sc_NCE_SystemState_To_NotOK.. 43
NM_Sc_Spontaneous_Reg_New_And_Invalid... 44
NS_Gen_Startup ... 46
NS_Gen_Init .. 48
NS_Gen_RunningNode... 50
NS_Gen_Communicate... 51
NS_Sc_StartupOK... 52
NS_Sc_StartupNotOK... 53
NS_Sc_Communicate ... 54
CM_Gen_Connect_StartResultAck... 56
CM_Gen_SourceActivity_StartResultAck ... 57
CM_Gen_BuildConnection.. 58
CM_Gen_Allocate_StartResultAck ... 59
CM_Gen_RemoveConnection .. 60
CM_Gen_DisConnect_StartResultAck.. 61
CM_Gen_DeAllocate_StartResultAck... 62
CM_Gen_Connect_PhaseFromSource... 63
CM_Gen_Connect_PhaseFromThirdDevice... 64
CM_Gen_CleanUp .. 65
CM_Sc_SinkDrop .. 66
CM_Sc_Source_Malfunction... 67
CM_Boundary_Change... 69
PM_Gen_Network_Shutdown ... 73
PM_Gen_Device_Shutdown ... 74
PM_Gen_Device_WakeUp.. 75
PM_Gen_Overtemp_Shutdown .. 76
PM_Gen_Restart_After_Overtemp_Shutdown ... 77

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
 Page 81 MOST Dynamic Specification Rev 3.0.2

10/2012

Specification Document  Copyright 1999 - 2012 MOST Cooperation.
Page 82

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 3.0.2
10/2012

Notes:

	Document History
	Bibliography
	1 Introduction
	1.1 Purpose
	1.2 Scope

	2 MSC Structuring
	2.1 General MSCs vs. Scenario MSCs

	3 Network Management
	3.1 NetworkMaster General MSCs
	3.1.1 Variables used in general NetworkMaster MSCs
	3.1.2 High-level NetworkMaster MSC
	3.1.3 Initializing the NetworkMaster
	3.1.4 Requesting Configuration
	3.1.5 Receiving Registrations
	3.1.6 Updating System State
	3.1.7 Processing NCEs

	3.2 NetworkMaster Scenario MSCs
	3.2.1 Setting the System State to NotOK
	3.2.2 Initial Scan
	3.2.2.1 Initial Scan

	3.2.3 Regular Scan
	3.2.3.1 Normal Scan
	3.2.3.2 Mismatch in InstID in System State OK
	3.2.3.3 Collision between InstIDs
	3.2.3.4 Error when Node Registers an Invalid Node Address
	3.2.3.5 Node Not Responding in System State NotOK
	3.2.3.6 Node Not Responding in System State OK
	3.2.3.7 Node Reporting Error in System State NotOK
	3.2.3.8 Node Reporting Error in System State OK
	3.2.3.9 Node causing NotOK too many times
	3.2.3.10 Scan Interrupted by NCE
	3.2.3.11 NCE in System State NotOK Resulting in System State OK
	3.2.3.12 NCE in System State OK Resulting in System State OK
	3.2.3.13 NCE Resulting in System State NotOK
	3.2.3.14 Spontaneous Registration of a Node

	3.3 Variables used in NetworkSlave MSCs
	3.4 NetworkSlave General MSCs
	3.4.1 High-level NetworkSlave MSC
	3.4.2 Initializing the NetworkSlave
	3.4.3 Node Running Operation
	3.4.4 Communicate

	3.5 NetworkSlave Scenario MSCs
	3.5.1 Startup scenarios
	3.5.1.1 Startup - OK
	3.5.1.2 Startup - NotOK

	3.5.2 Communication Scenarios
	3.5.2.1 Communicate with partner

	4 Connection Management
	4.1 Variables used in Connection Management MSCs
	4.2 Normal Behavior
	4.2.1 Connection Management General MSCs
	4.2.1.1 Connecting a Sink
	4.2.1.2 SourceActivity turned on
	4.2.1.3 BuildConnection
	4.2.1.4 Allocate
	4.2.1.5 Removing a Synchronous Connection
	4.2.1.5.1 Disconnecting a Sink
	4.2.1.5.2 Deallocation Procedure

	4.3 DiscreteFrame Isochronous Connection Handling
	4.3.1 Data Source and Phase Source in One Device
	4.3.2 Phase Information from a Third Device

	4.4 Error Handling
	4.4.1 Error Handling General MSCs
	4.4.1.1 CleanUp

	4.4.2 Error Handling Scenario MSCs
	4.4.2.1 Sink drop
	4.4.2.2 Source Malfunction

	4.5 Boundary Change

	5 Power management
	5.1 Introduction
	5.2 Network shutdown
	5.3 Device shutdown
	5.4 Device wake up
	5.5 Network shutdown due to over-temperature
	5.6 Network restart after over-temperature shutdown

	6 Timers
	7 Naming Conventions
	8 Appendix A: Index of Figures
	9 Appendix B: Index of Tables
	10 Appendix C: Index of MSCs

