MOST

Media Oriented Systems Transport

Multimedia and Control
Networking Technology

MOST Specification
Rev. 3.0 E2
07/2010

MOST

COOPERATION

© Copyright 1999 - 2010 MOST Cooperation

MOST® MOST

Specification COOPERATION

Legal Notice
COPYRIGHT
© Copyright 1999 - 2010 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:

MOST Cooperation
Administration
Bannwaldallee 48
D-76185 Karlsruhe
Germany

Tel: (+49) (0) 721 966 50 00

Fax: (+49) (0) 721 966 50 01

E-mail: contact@mostcooperation.com
Web: www.mostcooperation.com

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 2

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

© Copyright 1999 - 2010 MOST Cooperation
All rights reserved

MOST is a registered trademark

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 3

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
Contents
(C] O 1S AN = PR 27
i [I (O] B 10O I [\ SRR 29
1.1 PUIPOSE ... 29
L (o] o 1RO SRRSO 29
1.3 MOST DOCUMENE STTUCKUIEoeeiiiiiiiiiieeee e e e e e e e e e e e e e e aaaeeas 30
L By (=Y (=T o= PR 31
AR T O 1V =Y oo ST SR PO 31
2 APPLICATION SECTION ...t e e e e e e e et e e e et e e e e et e e eataeeeetaneaeenaneeernnnn 32
2.1 Application Layer Service SpecifiCation............coouiiiiiiiiiiiie i 32
21.1 Basic PrinCiples Of MOST ...t e e s 32
2111 Overview Of Data TranSPOIt.......ooouuii ittt st e e bn e e e e e eaee 33
b0t e P B @70)3 o | IO 4 =T o o 1= PR UPPRPN 33
2.1.1.1.2 Streaming Data.........oooiiiiiiiiiiii e e e e e e e e a e e e e e e e aaaaaeeaan 33
2.1.1.1.3 Packet Data ChannEl..........ccuuviiiiiiiiiiiieeeee et e e et e e e e e e e eaaaeee e as 33
2.1, DEVICE MOMEL......oeeeiieie ettt e e e e e e e e e e e st eeeaaeeeeseatsraeeeaeeannnnes 34
D22 s R ¥ Vo 1 (o o TN =1 Yo Y 34
2.1.2.1.1 Slave, Controller, HMIottt e e e e et e e e e e e ee e e eaeeees 35
2.1.2.1.2 First Introduction to MOST FUNCHONScooiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt veeeeeaeaesesseesannsenees 35
D B SV o Tox (o) E- SO PRPRPNE 36
2.1.2.3 MEENOAS ...ttt e et e e e e e e e ——— e e e e e e eet————aaeeeattaraaaaeeaaaaaas 36
D o (0T o= T4 ([T S PO PO P POV PPPPTPRN 37
2.1.24.1 SettiNg @ PrOPEITY ...ueeiiii ittt e et e e e e e e e e e e e e e e et e re e e e e e e aaaaaaeeaan 37
2.1.2.4.2 ReAdING @ PrOPEILYoeiiiiiiiiiieie e ettt e e e e e e e e e e e e e et aaeeeaaesesanansaeeeeaeeeannnnneeeann 37
D 2 TR =Y | (= 38
2.1.2.6 Addressing MOST FUNCHONSc.cuuiiiiiiieeiiee et e e e e et e e e st e e e snee e e e snteeeeenneeeeanneeeeaneeeenes 39
2.2 Application Layer Protocol SpecifiCationcoociiiiiiiiiie e 40
2.2.1 Application Messages in a MOST Network (Intfroduction)...........ccccoeiiiiiiiiniiiiiee e 40
222 Controller / Slave ComMmMUNICALION...........eiiiiiiiiiiiiiee e e e e e 43
2.2.21 Communication with Properties Using ShadOwscooiiiiiiiiiiiie e 43
2.2.2.2 Communication With MEthOAS...........oooiiiiiiiiii e e e e e e eaaees 48
22221 Using Methods with SenderHandle..............oooiiiiiiii e 48
2.2.2.2.2 Using Methods without SenderHandle.................oiiiiiii e 49
223 Structure of MOST MESSAGESuuuiiiiiiiiiie ettt 50
D Tt T B 1Y/ To =Y | I PN 50
2.2.3.1.1 Basics for Automatic Adding of Device AdAreSSEScceiiiriiiiiiiiiiii i 50
2.2.3.2 FBIOCKID ...ttt e e e e et — e e e e e e e e ————aaaeeeatraraaeeeeaaanaas 51
2.2.3.2.1 Handling of Supplier SPeCific FBIOCKScoiiiiuiiiiiiei et 53
2.2.3.3 INSHID oo e e — e e e e e e e et ————eaeeesaa—————aaeeesaaaa—aaeeaaaatrarraaeeaaannre 54
2.2.3.3.1 Uniqueness of FUNCtioNal ADAreSSES.........ccoieiuiiiiiiie e 54
2.2.3.3.2 ASSIGNING INSHID ...t e e e e et e e e e e et e e e e e et e e e e 54
2.2.3.3.3 INSHD Of NEBIOCKooieeiiiiiiieieeeeeeeeeeeeeee ettt e e e e e aesesasesesasssssssssssssnsaeeneenes 54
2.2.3.3.4 INStID Of NEIWOIKIMASTETcoeiiiiiiiiiiiiieieiteeeeteeeseeteeaeeeeeaeaeaeseseseaesessasssasssssssssssnsssnsnsnsnsssnsnnnsnnnes 54
2.2.3.3.5 InstID of FBlock EnhancedTestabilitycceeiiiiiiiiiiii e 54
2.2.3.3.6 INSHD WIIACAIAScoeiiiiiieieiieeeeeeeeeeee ettt ae s aaaasaaaasasssasasssssasssssssssnssssbeeneeeees 55
2.2.3.4 FKED oot e e e e e e e e e e e e ————eeaeeesaa—————eaeeeeaaaataaeeaaaatraneaaeeaaannra 55
D S T © = Y/ o 1= TSP OPPPRPRRROOS 57
D2 T+ W0t HE =l o S 58
2.2.3.5.2 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAckccccvvoeeeeiiiieiicineniieennn 63
D T TR T = S =1 ¢ ¢ o RO 65
2.2.3.5.4 StartResult, Result, Processing, ErTOrooo it 65
P T N T € 1=] 7= (U E- T = 1 o R 66
2.2.3.5.6 Set, STatUS, BEITOrot e e e e eas 66
D T T A S Y=Y (C 1=y MY v= L (0 [T =t (o] O 66
2.2.3.5.8 Getlnterface, INtErfaCe, EITONcooo oo et e e e e e e e e eaeeees 66
2.2.3.5.9 Increment and Decrement, Status, EITOTcooouuueii oo 67
D T Tt L T Y o Yo Y AR = o] 67
D72 TR Wt T B AN o Yo o VAN OB = ¢ (0 /Yo PSR 67
2.2.3.6 Function Formats in DOCUMENTALIONuviiiiiiiiiiiiiiiei it aeaeseaeaeaeasaenssenensnenenes 67
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 4

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
2.2.3.7 LeNGEN . et e et e et e e e et eenae 68
2.2.3.8 Data and BasiC Data TYPESccoouuiiiiiiiiiiiiiee ittt e et e et 69

P S TR B = To o1 1= o SRR 70
A B B0 = 11| 1= o SRR 70
A R TR T =1 o ¥ oo S 72
2.2.3.8.4 UNSIGNEA BYLE... ...ttt e e e e e e e e e e eeeaens 72
2.2.3.8.5 SIGNEA BYLE....coo it nneeas 72
2.2.3.8.6 UNSIGNEA WOIoeiiiiiiie ittt e e e st e et e e s e e e et et e e e ne e e e nreeeean 72
2.2.3.8.7 SIGNEA WO ...ttt e bt ettt e s b e e e et e e ene e e e ean 72
2.2.3.8.8 UNSIGNEA LONG... .ottt ettt ettt e et e ean 72
ARG T TR S 1 o g T=To [oo o B O PUPUPPRPN 72
D TR Tt [B {1 oo [P OPPPRPN 73
A TRt I S {4 Y- oo S 74
D T < e e TS (=Y o = T SR 74
2.2.3.8.11.2 SrAM SIGNAIS.....eiiiiiiieiiiiie ettt 75
2.2.3.8.12 ClasSified SIrEaM......coo ittt e e e e e et e e e e e e e e e nane e e e e e e e e e nnaneaeaaann 76
2.2.3.8.13 SO SIrEAM ... et e e e e e e e e ea e e e e e e nnaaaaeeaan 76
224 T o3 1T T O F= TS SRR 77
2241 Properties with @ Single Parameteroocuiiiiiiiii e 79
22411 FUunction Class SWITCN..........eiiiiiiie e e e ee e e e e e e 80
2.24.1.2 Function Class NUMDET ..ottt e e e e e neeean 81
2.24.1.3 FUNCHON ClaSS TEXLeiiiiiiiieiiiiee ettt et e et e e ettt e e e et e e s st e e e e anbaeeesneeeeeseeeean 83
2.24.1.4 Function Class ENUMETAtioNooiiiiiiiiiii et e e e s et e e e nneee e e enneeas 83
22415 Function Class BOOIFIEIAcoiiiiiiiiiiii et e e e e e e e e sneeean 84
22416 FUuNnction Class BitSet.. ...t e e e e e e 85
2.2.4.1.7 FUunction Class CONLAINETcoi ettt e e e e e e e e e e e e e e et e eeaaeeaaannneeeeaeann 85
2242 Properties with Multiple Parametersc.oooiiiiiiiiiii et 86
22421 FUNCtion Class RECOIM........c..uuiiiiiiiiiiie ettt e e e e e e e e e e e e s e et eeeaaeeeasnnnneeeannn 87
2.2.4.2.2 FUNCHON ClasSS ATITAY......cciiiiiitiiie e e e eeete et e e e ettt e e e e e s st e e e e e e e satbaaeeeaeeseeassssaeeaaeeeeannssseeeeenn 89
2.2.4.2.3 FUunction Class DYNAMICAITAYcciiiiuiiiieee e e ittt e e e e e et e e e e e e e st e e e e e s e s sntrereeaeeesennsnnneeeens 92
22424 FUunction Class LONGAITAYcccuieiiiiieeeaaieeeeeeiee e st e e s st e e s seeeeeaseeeesanseeeesnneeeeeanaeeesaneeeeaneeenn 95
2242410 MONEIAITAY ..ottt ettt e e e e ettt e e e e e e aneb e et e e e e e s snnbeeeeeaeeeaannes 95
224242 AITQYWINAOW. ...ttt e ettt e e e e e e st b e et e e e e e e aanaeeeeeeaaeaaannraeeeaaaaaannn 96
2.2.4.2.43 Positioning an ArrayWindow on @ MotherArray..........c..coceeeeiiiiiiiee e 99
2.24.2.44 Re-Synchronization of ArrayWiNdOWS.........ccoiuiiiiiiiiiiiiiee e 102
22425 FUNCON ClIasS MaPuoiiiiiiiiiiiie ettt e et 103
2.2.4.2.6 Function Class SEqUENCE PrOPEITY.........uuiiiiiiiiiiiiiiiiiee ettt e st e e e e e e enaneees 108
2.2.4.3 Function Classes for MEthOOSooiiiiiiiiiiieiie e 109
2.24.3.1 Function Class Trigger Methodcooiiiiiiiiiie e 109
2.2.4.3.2 Function Class Sequence Methodcooooiiiiiiiiiii e 110
225 Handling Message NOtIfiCationc.ooi i 111
3 NETWORK SECTION ... ittt ittt st a e s e et e e e e e e aab e e e e e e eeebaaaeseeeseeseasnnnen 115
3.1 Network Layer Service SpecCifiCationccccviiiiiieiii i 116
3.1.1 MOST Daata.......ceiiiiiiiee et e e e e e e e e e st e e e e e e e e aaaba e e e eaaeeesantnraeeaaaeeean 116
G 200y Ot O 00T 1 o) - - SRR 117
Tty s 1o 1H o = I - | - OSSR 117
3.1.1.3 Distinction between Source Data and Control Data............ccceovviiiiiiiii i 117
3.1.1.4 Differentiating Streaming Data and Packet Datac.occeiiiiiiiiiiii e 117
3.1.1.5 SYNCIONOUS DAtcooiiiiiiiiiiee et 117
3.1.1.6 ISOCHIONOUS Data........ouiiiiiiiiiiieie ettt e e e e e et e e e e e e s e et e e e e e e e e s aneneaeeaans 118
B Tt O A - Tor (=Y B | = PRSP PPRTR 119
3.1.2 Dynamic Behavior of @ DEVICEcccuuiiiiiiiiiie e 120
T 02t B @ V=Y oV 1= OO UOPPPTOTRR 120
B T 2 =Y {1) (=Y =TSP 121
3.1.2.2.1 NetInterface Offo et e et e e et e e s ne e e e e teeeeenee 122
3.1.2.2.2 NetInterface INit..........c.ooooiieeee et e se e e et e e e et e e e s nnne e e e enneeeeenee 122
3.1.2.2.3 Netinterface Normal Operationccuuviiiiiiiiiiiiee e e e 127
3.1.2.2.4 Netinterface Ring Break DiagnOSisccuiiiiiriiiiiiie et 129
3.1.2.2.5 Netinterface DIiagnosisS RESUIL.............oiiiiiiii e 129
3.1.2.3 POWET MANAGEMENT. ... ettt e et sttt e s b e e e a e e e e e nae e 130
3.1.2.3.1 Waking Of the NEtWOTKooiiiiiiie e 130
3.1.2.3.2 NetWork SRHUIAOWNooiiiie et e et e e e e e eneas 131
R T 2 TC T B oY o] 11 o [0 1 o USSR 133
3.1.2.3.3.1 Performing Device ShUtdOWN...........coiiiiiiiiiiii e e 133

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 5

MOST Specification

Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
3.1.2.3.3.2 Waking from Device ShULAOWNccoiiiiiiiiiiii e 134
3.1.2.3.3.3 Persistence of Device ShUutdOWNcooiiiiiiiiiii e 134
3.1.2.3.3.4 Response when Device Shutdown is Unsupportedcccccoeeiiiiiiieeieiiiiiecee e 134

3.1.3 Network Managementooo e e 135
3.1.3.1 General Description of Network Managementcoooiiiiiiiiiec e 135
B T R Ty B Y1 (=3 TS = (1o S 135
3.1.3.1.1.1 Initialization of the NEtWOTKcooeiieiiee e e 135
3.1.3.1.1.2 Initialization on Application Leveloooiiiiii e 136
3.1.3.1.2 GeNeral OPErationooiiiiiie ettt 136
3.1.3.1.2.1 Finding Communication Partners.............ccouiuiiiiiiiiiiiiee e 136
3.1.3.1.2.2 NetWOrk MONITOTINGceiiiiiieiiiiii it 136
3.1.3.1.2.3 Dynamic FBIock Registrationscooiiiiiiiiiiiiiie e 136
B Tt I B V) (= 4] €= | (= TS PRSP 137
3.1.3.2.1 System State NOtOK ..ot e e e e e e e e e e e e e e e enanneas 138
3.1.3.2.2 System State OK ...t e et e e e e anaee e e eeeas 138
3.1.3.3 NEIWOIKIMASTEN ...t e ettt e e e e ettt e e e e e e et e e e e e e e e s annneeeeaens 139
3.1.3.3.1 Setting the System Statecccceiiiiiiii s 139
3.1.3.3.1.1 Setting the System State 10 OKcooiiiiii e 139
3.1.3.3.1.2 Setting the System State to NotOK (Network Reset)ccccovviiiiiiiiiiiiiii e 139
3.1.3.3.2 Central REGISINY ... 140
B Tt I T 30 B ¥ 14 oo 1= YU PUPRRTRPOOY 140
B R TG T ©7o 11 (Y o | - TS 140
3.1.3.3.2.3 RESPONSIDIIILY ...t e e e e e 140
3.1.3.3.2.4 Responding to Requests for Information from the Central Registrycccccoeevevernneen. 140
3.1.3.3.3 Specific Behavior during System Startup ..o 141
3.1.3.3.3.1 Valid Logical Node Address Not Available..............cccooiiiiiiiiiiiniic e 141
3.1.3.3.3.2 Valid Logical Node Address Availableccoouieiiiiiiiiiii e 141
3.1.3.3.4 Scanning the System (SySte€m SCan)..........ooiiiiiiiiiiiii e 141
3.1.3.3.4.1 Configuration Request DEeSCHPLIONccoiiiiiiiiiiee e e 141
B Tt G TR 1 B Vo [o | £ Y1 o SO PUPPRP 141
3.1.3.3.4.3 Non Responding NetWOrkSIQVESoiiiiiiiiiiiie et 141
3.1.3.3.4.4 Retries of Non Responding NetworkSIavesccooiuiieiiiiiieiiiee e 142
3.1.3.3.4.5 NetworkSlave Continuous cause for System State NotOKccceiiiiiiiiiiee e, 142
3.1.3.3.4.6 Duration of System SCaNMNING...........cccoiiiiiiiiiii e 143
3.1.3.3.4.7 Reporting the Results of a System Scan without Errors............ccccccceeeiiiiiiiiiie e, 143
3.1.3.3.5 Invalid Registration DeSCHPLIONSoiiiiiiiiiiiiie ettt 143
3.1.3.3.5.1 Un-initialized Logical NOde AdAresscccuiiiiiieiiiiiiieiiee et 143
3.1.3.3.5.2 Invalid Logical NOde AdArESS..........uuiiiiiieeiieiiiiiee ettt e e e e e e e e e 143
3.1.3.3.5.3 Duplicate Logical NOde AAreSSESccceeiiiuuiiiiiieeiiiiiiei e e e 143
3.1.3.3.5.4 Duplicate InstID Registrations..............cooiiiiiiiiiiiia e 143
3.1.3.3.5.5 EFTOr RESPONSE ...ttt e st e et e e e e e es 145
3.1.3.3.6 Updates to the Central REgISIIYoiiiiiiiiiii e 145
3.1.3.3.6.1 Disappearing FBlocks in System State OK............ccccoiiiiiiiiiiiie e 145
3.1.3.3.6.2 Appearing FBlocks in System State OK...........cooviiiiiiiiii e 146
3.1.3.3.6.3 System scan without any change in Central Registryccccccoviiiiiiiiiiiiiiiie e, 146
3.1.3.3.6.4 Non-responding Devices in System State OK............cccviiiiiiiiiiiiii e 146
3.1.3.3.7 Miscellaneous NetworkMaster Requirements...............cooooiiiiiiieiiiiiiiiiiee e 146
3.1.3.3.7.1 Network Change EVENt (NCE)cueiiiiiieieiee e eee et e e 146
3.1.3.3.7.2 Positioning of the FBlock NetworkMaster in the MOST Networkcccccccvviviinenineeen. 146
3.1.3.3.7.3 System Configuration Status Information...............ccccoiiiiiii i 147
3.1.3:4 INEIWOIKSIAVE. ...ttt e e e e e et e e e s et e s nanneeeanneeas 149
3.1.3.4.1 DeCentral REGISIIYveiiiiiiiie i 149
3.1.3.4.1.1 Building a Decentral REGISIIYcuuiiiiiiiiiii e 149
3.1.3.4.1.2 Updating the Decentral REQIStrYcoiiiiiiiiiiiiiiiee e 149
3.1.3.4.1.3 Deleting the Decentral REgiStryooiiiiiiiiiiiiiiie e e 149
3.1.3.4.2 Specific Startup BEhAVIOT............ooiiiiiiiieiiee e e e e 150
3.1.3.4.2.1 Behavior when a Valid Logical Node Address is not Available at System Startup.......... 150
3.1.3.4.2.2 Behavior when a Valid Logical Node Address is Available at System Startup 150
3.1.3.4.2.3 Deriving the Logical Node Address of the NetworkMasterccccoceeviiiiiniecc e 150
3.1.3.4.3 Normal Operation of the NetworkSIave.............ccccooiiiiiiiii e 151
3.1.3.4.3.1 Behavior in System State OK........c.ooiiiiiiiii e 151
3.1.3.4.3.2 Behaviorin System State NOtOKcooeiiiiiiiiiiiie e e 151
3.1.3.4.3.3 Responding to Configuration Requests by the NetworkMaster..............ccccccvveeeieinnnnenn.. 151
3.1.3.4.3.4 Reporting Configuration Changes to the NetworkMaster............cccccoooieeiiiiiiicee e, 151
3.1.3.4.3.5 Failure of an FBlock in @ NetWorkSIavecccceeiiiiieiiiie e 151
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 6
MOST Specification

Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
3.1.3.4.3.6 Failure of a NetworkSIave DEVICEueiiiiiiiiiiiiie e 151
3.1.3.4.3.7 UnKnown System State.........cccueiiiiiiiiiii s 151
3.1.3.4.3.8 Determining the System Stateooiiiiiiiii e 152
3.1.3.4.3.9 Finding Communication Partners.............ccoeciuiiiiiiei it 152
3.1.3.4.3.10 Reaction to Configuration.Status(OK) when in System State NotOK..............ccccooueeee. 152
3.1.3.4.3.11 Reaction to Configuration.Status(OK) when in System State OKcccccecceeerinee. 153
3.1.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK 153
3.1.3.4.3.13 Reaction to Configuration.Status(NotOK) when in System State OK.............cccccconnee. 153
3.1.3.4.3.14 Reaction to Configuration.Status(NEWEXL)...........coeiiiiiiiiiiiiiii e 153
3.1.3.4.3.15 Reaction to Configuration.Status(Invalid)............cccceeiiiiiiiiii e 153

3.1.3.4.4 Seeking Communication Partnerc..ueeiiiiiiiiiiiiiie e e 154
3.1.3.4.5 Requesting FBlock Information from @ DeVICecccoeiiiiiiiie i 155
3.1.3.4.6 Requesting Functions from an FBIOCKccueiiiiiiiiiiie e 156
3.1.3.4.7 Extended FBlock Identification.............coooiiiiiiiieiee e 156
3.1.4)1 F=To | o 13 PR PPPR 157
3.1.4.1 RING Break DIAgOSISccceeiiiieiiiiiieee ettt e e e e e e sttt e e e e e e e s e ae e e e e e e e e e anneeeeeeenn 157
3.1.4.1.1 Functional DESCIIPLONc.viiiiiiii e 157
3.1.4.1.1.1 Behavior of a TIMIiNGSIave deVICEc.eiiiiiiiiiiiii e 158
3.1.4.1.1.2 Behavior of TImiNgMaster deVIiCec.ueiiiiiiiiiiii e 160
3.1.4.1.2 Ring Break Diagnosis RESUILcocueiiiiiiiii e 162
3.1.4.2 Detection of Sudden Signal Off and Critical UnIOCK...........cccuviiiiiiiiiiiiiiiee e 162
3.1.4.3 Shutdown ReSUIL ANGIYSISuvriiiieieii e e e e e e e e e e s e e e e e e e e enanraeeeeens 164
L T S 0o To [T To T = o i ©oTU) Y 164
3.1.5 Error ManagemeENtuiiiiiiie et e e e e e e e e e e raaaaaean 165
B T I T O = = = o PR 166
3.1.5.1.1 Handling of Modulated Signal Off ... e e 166
R O Ty I - 1 o o PP OPRUPRTT 166
315,13 OPEIALION ...ttt e 166
I 20 U [oo o1 SRR 167
3.1.5.3 Network Change EVENT..........oo oot 168
3.1.5.4 Failure of @ NetwWorkSIave DEVICEuiiiiiiiiiiiii ettt 168
3.1.5.4.1 Failure of the Network Interface Controller..............cuoeiiiiiiiiiei e 168
3.1.5.4.2 Failure of an APPlICAtIONoooiiiiiiiiieee e e 168
3.1.5.5 Undervoltage Management ...t e e e e e ee e 170
3.1.5.6 Over-Temperature ManagemeENtcc.eeiiiiiieiiiiie et e e 171
3.1.5.6.1 Levels of TEMPErature AlBIt........ ..o 171
3.1.5.6.2 Mandatory Over-temperature Behavior.............cccoiiiiiiiiiiiii e 172
3.1.5.6.2.1 Mandatory Slave BENAVIOr..........coocuiiiiiiiiiiiii s 172
3.1.5.6.2.2 Mandatory PowerMaster BENAVIOrcocciiiiiiiii i 172
3.1.5.6.3 Optional Over-Temperature BEhavior..............cccuviiiiiiiiiiieee e 173
3.1.5.6.3.1 Optional Slave BEAVION............cooiiiiiiiiii e e e 173
3.1.5.6.3.2 Optional PowerMaster BEhAVIOrccoiiiiiiiiiiiiiicciieec e 173
3.2 Network Layer Protocol SpecifiCation............cccuiiiiiiiiiiiiiie e 174
3.21 Support at SYSEM STAMTUDeeeieiee e 174
3.2.2 AQArESSING.. ..t e e e e e e e e e e ————aaa e e e e e ————eaaaeaeaar——araaaaaaan 174
1 202 I LGB = 11 Yo [0 [{13 o o SRR 174
3.2.2.2 A8 Bit AQAIESSING. ... ettt e e e e e e e e e e e e e e e e e e nbere e e e e e e e neneeeeaens 177
3.2.3 LOW-LeVEl RIS ...t e e e e e e e e e e 177
3.24 Handling Overload in @ MeSsage RECEIVETcooviiiiiiiiiiiiiiee et 178
3.2.5 MOST MESSAQE SEIVICES......cciiiiiitiiiiie e e et eecct ettt e e e e e et ree e e e e e e e e st a e e e e aaeeesaansaraeeaaaeesaaan 179
3.2.5.1 CONtrol MESSAGE SEIVICE........ueieeiiiiie et etee e et e e e et e e e st e e e ettt e e saneeeeesnneeeeeanseeeeaseeeeaannneeesneeeenn 179
3.2.5.2 Application Message Service (AMS).......cco oot e e e e e et e e es 180
3.2.5.2.1 AMS ProtoCol DESCIIPHONcciiiiiiiiieee ettt e e e 180
3.2.6 Handling Packet Data...........coooi e 184
3.2.6.1 MOST NEWOIK SEIVICEccoiuiiiiiiiiiie et e et e e et e e e e aneeeas 184
3.2.6.1.1 Use Cases and Data FOrmMats..........ooooiiiiiiiiiiiiie e a e e 184
3.2.8.1.1.1 MOST HiGh .ttt st e st e st e s ate e st e e enneesnbeeennee s 184
3.2.6.1.1.2 Ethernet OVEr MOSTiiiiiiiiii ettt e s 185
3.2.7 Handling Streaming Dataocuiiiiiiiii e 185
3.2.7.1 MOST NetWOrk SErvICE APL......cooiiiiiiiiii ettt e e 185
3.2.7.2 FBIOCK FUNCHONS ...ttt et e ettt e e et e e e sttt e e e st e e s enne e e anneeeean 186
3.2.7.2.1 General Source / Sink INfOrMationccuoiiiiiiiei e 186
B 0 0 W S (=Y o 11 o S o 10 o7 S 187
3.2.7.2.1.2 Streaming SiNK......oioeeieeiiieee et ee et e e et s e e e e e et e e e e e e e ae e e e e neeeeannneeeeaneeeas 189

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 7

MOST Specification

Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION
3.2.7.2.1.3 Handling of Double COMMANGScccoiuiiiiiiiiiiiiee e 190

3.2.7.2.2 Compensating Network Delay.............cooiiiiiiiiiiiiee e 190

3.2.8 @7] o] o= Yo (o] o 1< SRR 191
3.2.8.1 Bandwidth Managementoooiiiiiiiiiiiiiie e e e e e e e e e e e e e aaeaaas 191
3.2.8.2 Streaming CONNECHONSccoiuiiiiiiii et e e e e e e s e e e e e e e s e eantaeeeaaeeeanansaeeeeeaas 192
3.2.8.2.1 CONNECHON MANAGET......cciiiiiieeiiee ettt e e e e et e e et ee e e st e e e anteeeaneeeeeanneeeeaneeeeaneas 192
3.2.8.2.2 Establishing Streaming CONNECLIONSoiiiiiiieiiiie e 194
3.2.8.2.3 Removing Streaming CONNECLIONS.........ccuiiiiiiiieiitiie ettt 195
3.2.8.2.4 Establishing DiscreteFrame Isochronous Streaming Connections.............ccccceevvieeiiiiercnnee, 196
3.2.8.2.5 Removing DiscreteFrame Isochronous Streaming Connections............cccocveeeiiiieeiniien e, 196
3.2.8.2.6 Supervising Streaming CONNECHIONSciiiiiiiiiiiiie e 196

3.2.9 TimING DefiNitiONS ...ccoiiiiiii e 197
3.2.10 MOST Network Interface Controller and its Internal Servicescccooceiiiiiiinine e 203
3.2.10.1 Y o= E1 S PSP PP UPPRTPPROE 203

4 APPENDIX A: OPTIONAL OPTYPES ...ttt eeeeaeteeeeeeeeetebeeebebeeebebebsberersnnrnsnnnnes 204
4.1 Introduction to FUNCHON INtErfacesc..eoiiiiiiii e 204
4.2 Transmitting the Function INterface ... 205
L It B o 1 (o7 o] (= ST TSP VPP PPPPPPPPRN 205
4.2.1.2 Realization of the Ability to Extract the Function Interface............cccooiiiiie 205

5 APPENDIX B: NETWORK INITIALIZATION (INFORMATIVE)coiiiiiiiiiiee e 206
5.1 NetWOrKMaStEr SECHON.......co et e e e e e e e e e e e eee s 206
5.1.1 Flow of System Initialization Process by the NetworkMaster.............cccccoiviiiiiiiin 206
5.2 NetWOrKSIave SECHON.......coiiiieii et e et e e e et e e e s eree e e e esnteeeeennseeeens 209

6 APPENDIX C: TYPICAL DATA RATES OF CURRENT IMPLEMENTATIONS (INFORMATIVE)210

7 APPENDIX D: FRAME STRUCTURE AND BOUNDARY (INFORMATIVE)cccccveveiiiiineenne 211
A% B =101 T SRR 211
7.1.1 PreambIeo oo e e e e e b e e enees 213
71.2 MOST System Control BitSeoiiiiiiii e 213
7.2 Control Data TranSPOMccoiiiiie ettt e et e e e et e e s sbe e e e saneeeeesaneeeeeans 213
AR T = To 10 g T F= T Y 1= Yo o o) (o] PRSP PRRP 214
8 ADDENDUM A — MOSTS50 ADAPTION ...coii ittt ettt s et e e et ee e e e e e e s 216
< Tt B Vo =1 o =1 (o] o - S 216
8.1.1 Application Message Service (AMS) ... e s 216
8.1.1.1 Protocol Field “TeILEN” ...ttt e e e e e e ettt e e e e e e e s e nnne e e e e e e e aannneaeaeeann 216
8.1.1.2 Max. Size of an Application Message Segment..........ccccooiiiiiiiiiii i 216
8.1.1.3 ProtoCol Field “TelIDottt e e e ettt e e e e e s et e e e e e e e e s nnsseeeaaeeeaneeeaaaeeenn 217
8.1.2 (Yoot al o) a o U1 I 7] - TSR 217
8.1.3 Packet Data (16 bit addreSSiNg)ccuueiiiiiiiiiiiiiie e 217
8.1.4 Tunneling Ethernet Packets ... 217
8.1.5 SIaVE WaAKE-UP. ...ttt e e e e e e et e e e e e e e eee s 217
8.1.6 N =14 a1 (=T 7= Vot | o T SRR 218
8.1.7 Y= 1= PRI 218
8.1.8 Netinterface Normal Operationoooiiiiiiiiiiii i 219
8.1.9 RIiNG Break DIiagnOSiSuuiiiiiiiiciieieee ettt e e e e e e e e e e e ae e e e e e an 220
8.1.9.1 NetInterface RiNg Break DiagnOSiS.........cueiiuiiriiiiiie et e e e e e e eneee e eneeens 220
8.1.10 Shutdown and Initialization Timing DefinitioNS............cccoiiiiiiiii e 227
8.1.11 Sudden Signal Off and Critical Unlock Detection.............cccccoeiiiiiiiiiiii e, 228
9 LIST OF FIGURES......coi ittt e ettt e e e e e e s bbb et e e e e e e s abe e e e e e e e e e sannnes 229
10 LIST OF TABLES. ...t e e e e e e e e e e e s 231
LT PSP PP P PP PPPPPPPPPPPPN 232
DOCUMENT HISTORY (PREVIOUS REVISIONS)cuttiiiiiiiieiiiiee ettt 246
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 8

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Document History

Changes MOST Specification Rev. 3.0 E1 to MOST Specification Rev. 3.0 E2

Change Section Changes

Ref.

3VOE2_001 | General Removed red change markers of revision 3.0 E1.
3VOE2_002 | History Removed 3V0_047 because the change had been reverted.

Renumbered duplicate change refs. 3V0_132 and 3V0_133 to 3V0_164 and 3V0_165,

respectively.
3VOE2_003 | Glossary Distinguish between ConnectionMaster FBlock and Connection Manager.

Decentral Registry no longer “implemented in each node” because it does not necessarily

exist in the NetworkMaster node.

Distinguish between System FBlocks and Application FBlocks.
3VOE2_004 | 1.2 Removed distinction between oPhy and ePhy.
3VOE2_005 | 2.1.2.1 Replaced “Function Block” with “FBlock” in Figure 2-1.
3VOE2_006 | 2.1.2.2 Replaced “Function Block” with “FBlock” in Figure 2-2.
3VOE2_007 [2.1.2.6 Added functional address to list of MOST address types.
3VOE2_008 | 2.2.1 Modified description of CD changer example so that “CDC” and “HMI” can no longer be

mistaken as MOST node position addresses.
3VOE2_009 | 2.2.3.2 The ConnectionMaster FBlock (0x03) is no longer mandatory.

Added FBlockID 0x09 DebugMessages and FBlockID 0x46 ESDR to Table 2-1.
3VOE2_010 | 2.2.3.4 It can be determined for each function whether it is mandatory, optional, or conditional.
3VOE2_011 | 2.2.3.5.1 Added group headings in Table 2-5 and Table 2-6.
3VOE2_012 | 2.2.3.5.2 Swapped sections that describe methods with and without SenderHandle. Sender Handle

methods are now described first.
3VOE2_013 [2.2.3.54 Consolidated description of terocessingDefauitt @Nd tprocessingdefauttz-

Deviations from the default tprocessing Values do not have to be documented exclusively in

the FBlock Specification anymore.

Limited the statement that the use of Start and StartResult OPTypes is not recommended

to Application FBlocks.
3VOE2_014 (2.2.3.8 Modiefied data types overview to match the order of the corresponding sections.
3VOE2_015 | 2.2.3.8.11 Added distinction between unstructured and structured streams, as well as simple and

complex streams.
3VOE2_016 | 2.2.3.8.11.1 Moved parts of the stream case introduction to the Stream section.

The selector of a complex stream may be embedded in another stream.

A string selector has to be coded with string code 0x01 (ISO8859/15 8bit).
3VOE2_017 [2.2.4 If MOST High Protocol syntax errors and application errors are reported, the Control

Channel must be used.
3VOE2_018 | 2.2.4.2.3 The complete DynamicArray is transferred to the notified Controllers when a Tag value is

changed (one entry replaced by another).
3VOE2_019 [2.2.5 Notification for group addresses is explicitly limited to those that do not depend on dynamic

address calculation.

It is no longer required that Notification.Set messages are limited to one telegram.
3VOE2_020 | 3.1.1.6 The isochronous transmission class does not provide error detection (e.g., CRC).

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 9

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
3VOE2_021 | 3.1.1.7 The maximum packet length for 16 bit addressing mode is now 1532 bytes.
Specifically described the extent of CRC protection on the Packet Data Channel.
3VOE2_022 | 3.1.2.1 Added description of “listen only” nodes.
Removed superfluous sentences explaining “MOST nodes” and the nature of the following
diagram.
3VOE2_023 |3.1.2.2 Added “OK” and “NotOK” substates in Figure 3-3 to link the System State to the
Netinterface state.
3VOE2_024 | 3.1.2.2.2 Corrected Init Error Shutdown condition for waking TimingSlaves.
Modified Figure 3-4 so that StableLockOccurrence and “closed ring” are included.
Modified Figure 3-6 so that StableLockOccurrence is included.
3VOE2_025 |3.1.2.2.3 Modified Figure 3-7 so that initially the node address is recalculated and ShutDown is used
without SenderHandle.
3VOE2_026 | 3.1.2.2.5 Clarified that “Diagnosis Result Ready” is caused by the completion of RBD Phase 3.
3VOE2_027 |3.1.2.3.1 Removed PermissionToWake property.
Removed CapabilityToWake.
3VOE2_028 | 3.1.2.3.2 The ShutDown method does not use OPTypes with SenderHandle anymore.
The PowerMaster may override suspend requests from its Slaves.
If the shutdown reason ceases to exist, the PowerMaster cancels the shutdown.
Removed statement about “parked vehicles” preventing shutdown.
Figure 3-10 and Figure 3-11 modified: “Off Request” and “Net Off” were substituted with
more descriptive terms.
3VOE2_029 |3.1.2.3.3 In Device Shutdown, the NetBlock is only active with limited functionality.
The ShutDown method does not use OPTypes with SenderHandle anymore.
Added note that in Device Shutdown the shutdown reason cannot be stored.
3VOE2_030 | 3.1.2.3.3.1 The ShutDown method does not use OPTypes with SenderHandle anymore.
PowerMaster waits for twaisuspena rather than tsuspend-
Improved description of potential repetitions before twaisuspena €XPpires.
Devices with system functions shall reject requests to perform a Device Shutdown.
Made statement regarding streaming outputs more specific.
3VOE2_031 | 3.1.2.3.3.2 The ShutDown method does not use OPTypes with SenderHandle anymore.
A device that is woken from Device Shutdown must perform the complete
SystemCommunicationlnit procedure.
3VOE2_032 {3.1.2.3.3.3 If the PowerMaster application is reset, it wakes all devices that are in Device Shutdown.
3VOE2_033 | 3.1.3.1.1 Removed differentiation between the NetworkMaster having and not having a valid
address at system startup because the node address is not stored persistently anymore.
3VOE2_034 |3.1.3.2 The ShutDown method does not use OPTypes with SenderHandle anymore.
Default transition made more generic by removing “Init Ready” label in Figure 3-12
Caption for Figure 3-12 changed to refer to the Netinterface Normal Operation state.
3VOE2_035 | 3.1.3.2.1 The ShutDown method does not use OPTypes with SenderHandle anymore.
3VOE2_036 | 3.1.3.2.2 Consolidated description of actions that are taken as a result of
Configuration.Status(NotOK).
3VOE2_037 | 3.1.3.3.1.2 Consolidated description of actions that are taken as a result of
Configuration.Status(NotOK).
3VOE2_038 | 3.1.3.3.2.4 If the NetworkMaster receives CentralRegistry.Get in System State NotOK, it broadcasts

Configuration.Status(NotOK).

Specification Document

Page 10

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

3VOE2_039 | 3.1.3.3.5.4 In the case of duplicate InstIDs, the FBlock that is already registered remains unchanged.
If the request to change the InstID is not successful, either the FBlock or the device is
excluded from the Central Registry.
Added Figure 3-14 that specifies how the NetworkMaster resolves InstID conflicts.

3VOE2_040 | 3.1.3.3.6.1 Added optional “own configuration invalid” handling.

3VOE2_041 | 3.1.3.3.6.2 Removed redundant requirement that Configuration.Status with an empty list must be sent
when the registry is full. This is already covered by section 3.1.3.3.6.3.

3VOE2_042 | 3.1.3.3.7.2 The NetworkMaster has to reside in the same device as the TimingMaster.
Removed redundant requirement referencing tuproelay-

3VOE2_043 | 3.1.3.3.7.3 The NetworkMaster shall request ImplFBlockIDs exactly once from every device after
System State OK was entered.

3VOE2_044 | 3.1.3.4.1 The NetworkMaster device is not required to build a Decentral Registry.

3VOE2_045 (3.1.3.4.2.3 Completely revised how NetworkSlaves derive the NetworkMaster address.

3VOE2_046 | 3.1.3.4.3.8 Added new figure “NetworkSlave determines the System State in Netinterface Normal
Operation”.

3VOE2_047 | 3.1.3.4.3.13 Consolidated description of actions that are taken as a result of
Configuration.Status(NotOK).

3VOE2_048 | 3.1.3.4.3.15 Removed remark regarding routing table and allocation table.
If a device receives a Configuration.Status(Invalid) with (part of) its own FBlockID(s) and
InstID, it has to reinitialize all applications of the device.
Added optional “own configuration invalid” handling.
Stated more precisely what actions are required when reinitializing.

3VOE2_049 | 3.1.3.4.5 Distinguished the roles of “NetworkMaster” and “Controller” when requesting FBlockIDs.

3VOE2_050 | 3.1.4.1.1.1 Moved RBD diagram and table for TimingSlave here from “All devices” section.
Modified RBD diagram: modified transition from RBD_S_Slave to Diagnosis Ready so that
it also checks StableLockOccurrence.

3VOE2_051 [3.1.4.1.1.2 Moved RBD diagram and table for TimingMaster here from “All devices” section.
Modified RBD diagram: added RBD_M_Start self transition and modified transition to
Diagnosis Ready.

3VOE2_052 | — Deleted “All devices” section.

3VOE2_053 (3.1.4.1.2 Moved introduction from “All devices” section.
Modified RBD results table.

3VOE2 054 | 3.14.2 Figure 3-21 modified so that the ShutDown method does not use OPTypes with
SenderHandle anymore; added extra check “Cause was Signal Off?”

3VOE2_055 | 3.1.4.4 The ShutDown method does not use OPTypes with SenderHandle anymore.
Introduced “Retimed Bypass Mode” and modified description accordingly.

3VOE2_056 | 3.1.5.1.1 The ShutDown method does not use OPTypes with SenderHandle anymore.

3VOE2_057 [3.1.5.1.2 Rephrased description of waking the network.

3VOE2_058 | 3.1.5.2 Reaction on unlock for sinks is now described more specifically.

3VOE2_059 | 3.1.5.3 Reaction on NCE for sinks is now described more specifically.

3VOE2_060 | 3.1.5.5 Reaction on undervoltage for sources and sinks is now described more specifically.
Redundancies removed.

3VOE2_061 | 3.1.5.6.2.1 The ShutDown method does not use OPTypes with SenderHandle anymore.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 11

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION
Change Section Changes

Ref.

3VOE2_062 | 3.1.5.6.2.2 — The ShutDown method does not use OPTypes with SenderHandle anymore.

3VOE2_063 | 3.1.5.6.3.2 — The ShutDown method does not use OPTypes with SenderHandle anymore.

— Removed use of PermissionToWake.

3VOE2_064 | 3.2.2 — Table 3-16 expanded and moved here from 3.2.2.1 because it is not limited to 16 bit
addressing anymore.

3VOE2_065 | 3.2.2.1 — The logical node address is initialized to the default value on each transition to
NetInterfaceNormal Operation.

— Removed statements about storing the group address between power cycles.

— Blocking and unblocking broadcast messages can either be single transfer or segmented
messages.

— Added description of free-up message.

3VOE2_066 | — — Removed “Asigning Priority Levels” section.
3VOE2_067 |3.2.3 — Added paragraph explaining the potential consequences of retransmissions.
3VOE2_068 | 3.2.5.2.1 — Modified Figure 3-27 and Figure 3-28 so that it is indicated that the max. size of the

payload is Lamsmax-
— For segments with TellD 3, the available payload must not be entirely unused.
— Added examples of segmented transfer with available payload partially and entirely used.

— Added recommendation to use entire available payload for TellD 1 and 2 in Size-Prefixed
Segmented Messages.

— Added caption to Table 3-18.

3VOE2_069 | 3.2.6.1.1.1 — The maximum MOST High Data Area size for 16 bit addressing is now 1524.

3VOE2_070 | 3.2.5.21 — Added recommendation to use the entire available payload within Size-Prefixed
Segmented Messages.

— Added caption for Table 3-18: Use of the TellD field.

3VOE2_071 [3.2.7.2.11 — Removed superfluous remark from the introduction.

3VOE2_072 | 3.2.8.2.1 — Renamed section to “Connection Manager”.

— Distinguished between the Connection Manager, which is mandatory, and the
ConnectionMaster FBlock.

— If the Connection Manager implements the ConnectionMaster, that FBlock has to be
included in the Central Registry.

3VOE2_073 | 3.2.8.2.2 — Distinguished between Connection Manager and ConnectionMaster.

3VOE2_074 | 3.2.8.2.4 — Added section “Establishing DiscreteFrame Isochronous Streaming Connections”
3VOE2_075 | 3.2.8.2.5 — Added section “Removing DiscreteFrame Isochronous Streaming Connections”
3VOE2_076 | 3.2.8.2.6 — Completely revised.

3VOE2_077 | 3.2.10 — Added captions for tables.

— The ShutDown method does not use OPTypes with SenderHandle anymore.

— Removed minimum and typical value for twaigeforescan; Mmade it a constraint and changed
meaning to distinguish between first scan and subsequent scans.

— Added constraint twaitgeforerescan-

— Removed tsyspend-

— Removed twainternce inequation because typraelay Was removed.

— Added footnote for terocessingbefauitt @NA terocessingbetauttz Fegarding changing the timeout value.
— Modified description of tWaitForProcessing1 and tWaitForProcessingZ-

— Modified values for tWaitAfterOvertempShutDown-

— Removed typraeiay timer.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 12

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
3VOE2_078 Removed distinction between oPhy and ePhy.

3VOE2_079 | 5.1.1

Modified Figure A-5-1 and Figure A-5-3 to always derive the logical node address and not
use a stored address.

Modified Figure A-5-2 so that NewEXxt is used instead of New.

Removed figure “Address Conflict Resolution” because it already exists in the main body of
the specification.

3VOE2_080 (7.2

Changed maximum size of a control data message from 65 to 69.

The Data Link Layer overhead size is now 12.

3VOE2_081|7.3

Modified bandwidth calculations to cover MOST50 and MOST150.
Added Table A-7-4: NetBlock.Boundary influence in a MOST50 system.

3VOE2 082 |8

New chapter “Addendum A — MOST50 Adaptation”.

To facilitate the identification of changes and corrections in this errata version, the paragraphs that
were changed substantially are marked with red vertical lines on both sides.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 13

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification Rev. 3.0 to MOST Specification Rev. 3.0 E1

Change
Ref.

Section

Changes

3VOE1_001

General

After introduction, now using term “FBlocks” instead of “function blocks”.
Unified spelling of MOST terms and system states.
Explictly named CRCs, based on the context (e.g., Control Channel CRC).

Spelled out MSB as “most significant bit” or “most significant byte”, depending on the
context; the same for LSB.

Correction of clerical errors in spelling, grammar, and word use.
Changed erroneous uses of “groupcast address” to “group address”.
Changed occurrences of “single telegram” to “single transfer”.
NetinterfacePowerOff state is now called NetInterface Off.

The blocking broadcast address is used for NetworkMaster.Configuration.Status and
NetBlock.Shutdown.StartAck messages.

3VOE1_002

History

Modified two entries: 3V0_105 (“unchanged” replaced “empty”) and 3V0_154 (removal of
timer tyisgresponse Missing).

3VOE1_003

2232

Added FBlockID 0x45 (TPEG Tuner) to list of FBlockIDs.

3VOE1_004

2235

Added footnote, stating that OPType Error may be used in cases where the SenderHandle
is not known or not applicable.

3VOE1_005

2.2.3.5.1

Made description of ErrorCodes 0x06 and 0x07 more precise.

Modified Figure 2-16 so that the ErrorAck OPType may be used, as well.

3VOE1_006

2238

Only “any allowed combination” of data types can be transported.

3VOE1_007

2.23.8.11.2

Modified description of stream signal construct.

3VOE1_008

2.2.3.8.13

“Length of the Short Stream” becomes “Length of the Content”.

3VOE1_009

224

In Table 2-7, Modes 1 and 2 were revised.

MOST High Protocol connections must not be created for the OPTypes Error and
ErrorAck, among others.

MOST High Protocol connection errors may optionally be reported on the Control Channel.

3VOE1_010

22415

Corrected description—BoolField is a function class, not a variable.

3VOE1_011

224242

Corrected spelling of “MoveArrayWindwow” to “MoveArrayWindow”.

Corrected MoveArrayWindow function use: StartResultAck OPType is not defined, using
StartAck instead.

Corrected SearchArrayWindow function use: StartAck OPType is not defined, using
StartResultAck instead.

3VOE1_012

3.1.1

Modified Figure 3-2 so that the isochronous data transport mechanisms are now called
“DiscreteFrame Isochronous”, “A/V Packetized Isochronous”, and “QoS IP”.

3VOE1_013

3.1.1.6

The isochronous data use cases are now called “DiscreteFrame Isochronous (Streaming)”,
“A/V Packetized Isochronous (Streaming)”, and “QoS IP (Streaming)”.

3VOE1_014

3.1.2.2

Modified Figure 3-3: NetInterfacePowerOff state is now called NetInterface Off. Added new
transitions and unified spelling.

3VOE1_015

3.1.2.2.1

Added event “Diagnosis Result Start”

Specification Document

Page 14

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

3VOE1_016 | 3.1.2.2.2 Modified description of cause for Init Ready in TimingSlave device: Stable Lock was
recognized and the System Lock Flag is set.
Added footnote, stating that the “Shutdown” transition is not contained in Figure 3-3.
Modified Figure 3-6 so that the “no” transition from “Lock stable and ring closed?” now
ends in front of “Deactivate bypass at recognized Lock”.
Added event “Init Diagnosis Start”.
Added remark that Init Error Shutdown Ready does not use the Shutdown Flag and
tsso_shutdown dOES NOt @pply.

3VOE1_017 | 3.1.2.2.3 Modified Figure 3-7 so that an unexpected “Net Off’ event also ends in Error Shutdown.
An “Off Request” includes the reception of ShutDown.StartAck(..., Execute).

3VOE1_018 | 3.1.2.2.4 Added remark that Diagnosis Error Shutdown does not use the Shutdown Flag and
tsso_shutdown dOES NOt @pply.

3VOE1_019 | 3.1.2.2.5 Added remark that Diagnosis Result Ready does not use the Shutdown Flag and
tsso_shudown dOES NOt apply.
Added caption for Table 3-7.

3VOE1_020 | 3.1.2.3.2 Added footnote “The parameter SenderHandle of NetBlock.ShutDown.ResultAck is
ignored by the NetworkMaster.”
Corrected timer name: twaitsuspend iS Used, Not tsuspend-
Clarified that the PowerMaster sends ShutDown.StartAck(..., Execute) after twaisuspena-
In Normal Shutdown, before the PowerMaster switches the modulated signal off, tshuownwait
and tsso_shutdown have to expire.

3VOE1_021 | 3.1.3.3.5.4 Clarified that the InstID is selected for the last FBlock that was “to be registered”.
If the InstID cannot be changed, the NetworkMaster may repeat the attempt with the same
InstID.

3VOE1_022 {3.1.3.3.7.3 Corrected FktID of function ImplFBlockIDs from 0x011 to 0x012.
Modified note regarding the reporting of an empty FBIlock list.
Requesting ImplFBlockIDs is only required for devices that reported a non empty list.
Extended definition of DeviceAvail “Incomplete”.

3VOE1_023 | 3.1.3.4.1.1 Made “Building a Decentral Registry” a heading again; was formatted as body text by
mistake.

3VOE1_024 [3.1.4.3 Renamed “unique controller” to “central component” to match the corresponding
specification.

3VOE1_025 | 3.1.3.4.4 In Table 3-12, added line with FBlockID 0x00, which will prompt the NetworkMaster to send
ErrorCode 0x06. Made description of FBlockID 0x01...0xFE in combination with InstID
0x00 more precise.
The NetworkMaster responds with an error for FBlockID/InstID combinations that do not
exist.
It is now explicitly stated that the NetworkMaster responds with ErrorCode 0x06 for
FBlockID=0xFF and InstID < OxFF in Table 3-12.

3VOE1_026 | 3.1.3.4.6 Only FBlocks that are listed in the Central Registry have to support function FktIDs
(0x000).

3VOE1_027 | 3.1.4.1.1.3 New states: RBD_S_NetOff3 in Table 3-13 and RBD_M_NetOff3 in Table 3-14.
Modified Figure 3-19 and Figure 3-20 so that they contain the new states.

3VOE1_028 | 3.1.5.1.1 Modified description and added reference to SSO and CU section.

3VOE1_029 | 3.1.4.2 Shutdown Flag is set within tShutDown after an SSO or CU.
Improved and corrected Figure 3-21.

3VOE1_030 | 3.1.5.1.1 Modified description to include Shutdown Flag.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 15

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Change Section Changes

Ref.

3VOE1_031 | 3.1.5.5 — Modified Figure 3-23 so that muting and demuting does not exclusively refer to
synchronous signals and changed the name of state NetInterface PowerOff to NetInterface
Off.

3VOE1_032 | 3.1.5.6.2.1 — Correction: NetBlock.ShutDown.ResultAck, not Result, is used to request the temperature
shutdown.

3VOE1_033 | 3.1.5.6.2.2 — Added footnote “The parameter SenderHandle of NetBlock.ShutDown.ResultAck is
ignored by the NetworkMaster.”

3VOE1_034 | 3.1.5.6.3 — Corrected formatting error where body text had become part of the heading.

3VOE1_035 | 3.2.2.1 — Added line for address 0x0000 in Table 3-17.

3VOE1_036 | 3.2.5.2.1 — Removed superfluous remark regarding the obligation to implement AMS.

— Removed “Length” after “OPType” of “DevicelD.FBlockID.InstID.FktID.OPType
(Parameter)” because the length is calculated and not explicitly transmitted.

— Added restrictions regarding the use of TellD 4.
— Added unnumbered heading “TellD, TelLen, and Data”.

— TellDs greater than 4 have to be ignored.

3VOE1_037 [3.2.6.1 — Modified Figure 3-32 so that the isochronous data transport mechanisms are now called
“DiscreteFrame Isochronous”, “A/V Packetized Isochronous”, and “QoS IP”.

3VOE1_038 | 3.2.7.1 — Modified Figure 3-33 so that the isochronous data transport mechanisms are now called
“DiscreteFrame Isochronous”, “A/V Packetized Isochronous”, and “QoS IP”.

3VOE1_039 | 3.2.7.21 - Removed requirement that sources and sinks are numbered in ascending order without
gaps.

3VOE1_040 | 3.2.9 — For timing constraints, the character “-” means “not defined”.

— Modified description of tshupewn; the constraint also applies when setting the Shutdown
Flag.

— Made “Typ Value” of tWaitSuspend “System Integrator specific”.

— Modified description of tshupownwait SO that it refers to the Shutdown Flag.

— Made “Typ Value” and “Max Value” of tSlaveShutdown “System Integrator specific”.

— Removed inequation for typraelay-

— Changed “Max Value” of twairorproperty to 400.

— Made “Min Value” of tProcessingDefault1 “System Integrator specific”.

— Made “Min Value” and “Typ Value” of tCM_DeadlockPrev “System Integrator specific”.
— Modified most values for Ring Break Diagnosis.

— Corrected description of tpiag siave T1-

To facilitate the identification of changes and corrections in this errata version, the paragraphs that
were changed substantially are marked with red vertical lines on both sides.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 16

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification 2V5-00 to MOST Specification 3V0-00

Change Section
Ref.

Changes

3Vv0_001 General

Specification structure modified to better distinguish between application layer and protocol
layer.

Improved and unified the use of commonly used terms.

Enforced clear distinction between the terms “protocol”, “message”, and “function”.
Replaced occurrences of “physical address” with “node position address”.

Corrected clerical errors.

3V0_002 Glossary

Removed references to specific speed grades.

Added entries for Notification, Notification Matrix, and OPType.

3V0_003 1.2

Removed “MOST Hardware” from scope of the specification.

Added remark that the specification is speed grade independent and not fully backward
compatible to existing speed grades MOST25/50 described in MOST Spec. Rev. 2.5.

Moved distinction between ePhy and oPhy here.

3V0_004 1.3

Updated MOST Framework diagram.

3V0_005 1.4

Added Unicode, IEEE 802.3, ISO 8859, IEC 62106, ETSI EN 300401 and Shift JIS to list of
references.

3V0_006 1.5

Removed distinction between MOST25 and MOST50. The specification is speed grade
independent.

Removed note that the MOST Specification does not depend on any other MOST
Cooperation documents.

3Vv0_007 211

New section outlining a few basic principles of MOST.

3Vv0_008 2.1.1.1

Renamed to “Overview of Data Transport”

3V0_009 21111

Removed note on recommended data rate limit for the Control Channel.

Removed partial description of Packet Data Channel because of redundancy.

3V0_010 21.1.1.2

Made application scenario for streaming data more specific by mentioning time-
synchronized transmission.

3v0_011 21113

Added remark that the Packet Data Channel is secured by CRC and has ACK/NAK with
automatic retry.

3V0_012 212

Stated more clearly that the section describes the logical model of a MOST device.

3v0 013 | 2.1.21

Moved function interface description to appendix because function interfaces are now
optional.

3v0 014 |-

Merged section “Managing Streaming/Packet Bandwidth” with “Bandwidth Management”
section.

3V0_015 21211

Added remark that a Controller can be associated with more than one Slave and vice
versa.

3V0_016 21.21.2

Removed remark on using FBlock Shadows on the Controller side—implementation detail.

Removed distinction between properties and methods because these are introduced later.

3V0_017 2122

For clearer distinction, methods and properties are called “categories”, not “classes”.

3V0_018 2123

Removed overly extensive description of RDS example scenario.

Changed non-Ack OPTypes to OPTypes using Ack.

3V0 019 |2.1.24

Rephrased slightly misleading statement that properties represent limits.

3Vv0_020 2125

Added recommendation to change properties with Set instead of SetGet when using
notification to avoid two identical status messages.

Removed definition example.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 17

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
3Vv0_021 - Moved “Function Interfaces” section to appendix because function interfaces are now
optional.
3V0_022 2.1.2.6 Inserted consolidated list of address types, which includes Ethernet MAC address.
3Vv0_023 22 Section renamed from “Protocol” to “Application Layer Protocol Specification”.
3V0_024 2.21 Changed heading to “Application Messages in a MOST Network”
Added Packet Data Channel as potential channel for transport of application messages.
Previously, only the Control Channel was mentioned.
3V0_025 222 Added brief introductory description of properties and methods.
3V0_026 2221 Now using actual device names in the example instead of the generic terms Controller and
Slave.
Added brief description of FBlock Shadow concept.
Consolidated description to reduce emphasis on implementation details.
Added note that a Status reply has the same functional address as the command, but a
different DevicelD.
Removed overly implementation centric example.
In addition to FBlockID and InstID, the FktID is required to make an address unique.
3Vv0_027 2222 Added introduction to the use of methods.
3V0_028 22221 Renamed from “Special Case Using Routing” to “Using Methods with SenderHandle”.
Methods with SenderHandle are now the standard case.
SenderHandle concept is now described before being used in the example.
Added restriction that SenderHandle must not contain application relevant information.
Replaced “Controller” and “Slave” with actual devices names used in the example.
3Vv0_029 22222 Renamed from “Standard Case” to “Using Methods Without SenderHandle”.
Completely revised.
Added note that methods without SenderHandle are deprecated.
3Vv0_030 - Removed redundant section “Application Protocol Basics”.
3Vv0_031 223 Renamed to “Structure of MOST Messages”
Removed “Length” from the structure because it is not transmitted as part of the message.
3V0_032 2231 Stated that the use of device address OxFFFF is not available for communication directed
from Slave to Controller.
3V0_033 22311 Moved section here. Previously under the “DevicelD” section.
3v0_034 2232 “Errors ... for FBlockID OxFF should not be returned” becomes “must not be returned”.
Removed name for FBlocklD 0x00. Extended explanation.
FBlockID 0xC8 becomes “Reserved for Compliance Testing”.
Removed Secondary Node (FBlockID OxFC), which is no longer covered by the
specification.
Modified ranges from FBlockID OxFO to OxFE.
Added Tool FBlock (0xOE), AuxiliaryOutput FBlock (0x25), and AuxiliarylnputOutput FBlock
(0x29).
3V0_035 22321 Added section “Handling of Supplier Specific FBlocks” to improve document structure.
3V0_036 2.2.3.3.1 Changed heading from “Responsibility” to “Uniqueness of Functional Addresses”

Specification Document

Page 18

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change
Ref.

Section

Changes

3V0_037

2234

Merged “Mandatory” and “Extensions” ranges into the “Application” range.
Added FBlockIDs and FunctionIDs ranges to table.

The requirement “a controller must verify the identity of a device before using any
proprietary function of FBlock” is now a recommendation.

Added FBlockiInfo as example for obtaining the identity of a device.

3V0_038

2235

Reintroduced ErrorAck OPType for properties (in conjunction with ErrorCode 0x01...0x04).
Added footnote that non-Ack OPTypes are deprecated.
Added footnote that Getinterface and Interface are optional OPTypes.

Added footnote that ErrorAck is required for properties to report syntax errors in conjuction
with illegal OPTypes.

3V0_039

2.2.3.5.1

Added reference to AMS section for details on Data[0]...Data[n].

More precise specification of ErrorCode 0x0C, Errorinfo 0x01 and 0x07.

Modified table entry for ErrorCode 0x20.

Rephrased note so that it cannot be misread as entirely dismissing error handling.

Slaves shall rely on ErrorCodes defined in MOST Specification. Added footnote that error
messages are not limited to single telegrams (except segmentation errors).

No error reply for multicast messages (broadcast, groupcast, “all FBlocks”, “all instances”).
Removed overly detailed description of the segmented message concept.

Segmentation errors are no longer only directed from Slave to Controller

Removed MOST25 specific Secondary Node error. ErrorCode 0x0A is now reserved.
Removed Secondary Node branch from Figure 2-16.

Removed “Start Execution” action from Figure 2-16 because of potential conflicts in some
scenarios.

Removed redundant example for ErrorCode 0x07.

3V0_040

22352

Added note stating that non-Ack OPTypes are no longer recommended.
Corrected description that correlated StartAck with ResultAck.

3V0_041

22354

Added remark that usage of Start and StartResult is no longer recommended.

Changed diagrams to use Ack OPTypes instead of non-Ack OPTypes and moved them to
the corresponding section.

3V0_042

22356

Changed reference to Start OPType to StartAck because non-Ack OPTypes are no longer
recommended.

3V0_043

22357

Removed ambiguous remark on independence from Notification Matrix.

3V0_044

22358

OPTypes Getlnterface and Interface are now optional. Added corresponding note.

3V0_045

22359

Added note that usage of Increment and Decrement is not recommended for multicast
messages.

3V0_046

2.2.3.5.10

Added remark that usage of Abort is no longer recommended.

3V0_048

2236

Completely revised.

3V0_049

2237

Added remark that the system-specific maximum length is defined by the System
Integrator.

Replaced remark about length not being transmitted directly with reference to AMS section.

3V0_050

2238

Removed limitation that messages are sent on the Control Channel only.
Removed data field length description. Already contained in previous section.
Removed recommendation to limit messages to single telegrams.

Added note, stating that the exponent of a value is not transmitted over MOST with the
value.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 19

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

Change Section Changes

Ref.

3V0_051 2.2.3.8.2 — Inserted BitField/Array example that was previously contained in the BitSet function class
description.

— Corrected minor error in example (wrong bit value).

3V0_052 2.2.3.8.10 — “Unicode, UTF8” was labeled as not being ASCII compatible; corrected.
3V0_053 2.2.3.8.11 — Added list of restrictions for the use of data type Stream.

3V0_054 2.2.3.8.11.1 — New section: Stream Cases.

3V0_055 2238.11.2 — New section: Stream Signals.

3V0_056 2.2.3.8.12 — Added statement that the Length field includes the MediaType.

— Included examples.

3V0_057 2.2.3.8.13 — Added statement that short streams can be structured like streams.

3Vv0_058 224 — Emphasized that OPTypes GetInterface and Interface are optional.
— Removed note that Unicode is not ASCII compatible.
— Changed Channel Type table entries for ProcessingAck and ResultAck.

— Removed reference to MOST High over Control Channel, which is no longer supported.

3V0_059 2241 — Updated overview: Container function class now supports Stream, Classified Stream and
Short Stream.
3V0_060 22411 — Parameter “Boolean” becomes “Content”; the parameter name is no longer a type name.

— Corrected parameter type for function class Switch to be Boolean.

— Added footnote that Interface and GetInterface are optional OPTypes.

3V0_061 22412 — Parameter “Number” becomes “Content”; the parameter name is no longer a type name.
— Added list of allowed data types and description.
— Added GByte, TByte, bit, bps, kbps, Mbps, Bps, kBps, and MBps to table of units.

— Added remark that units are based on the International System of Units (SI).

3Vv0_062 22413 — Parameter “String” becomes “Content”; the parameter name is no longer a type name.

— Added allowed data type and description.

3V0_063 22414 — Parameter “Pos” becomes “Content” to avoid confusion with Arrays.
— Corrected parameter type to be Enum.

— Removed Increment and Decrement OPTypes.

3V0_064 22416 — Parameter “SetOfBits” becomes “Content” for reasons of consistency.

— Removed example of BitSet with Array, which is not supported by this function class.

3V0_065 22417 — Parameter “Classified Stream” becomes “Content” for reasons of consistency.
— Container function class now supports Stream, Classified Stream and Short Stream.

— Added DataType parameter to Interface OPType.

3V0_066 2242 — Changed description of Sequence Property to indicate that it contains single value which
can be treated as one property.

— Added function class Map to function class table.
— Added Unclassified Property to function class table.

— Added remark that all types except “Stream” can be used as parameters in Arrays,
Records and Sequences. Stream may be used as last element in Records or Sequences.

— Added remark that OPTypes are omitted in the interface description of function classes
with multiple parameters.

3V0_067 22421 — Removed note about omission of OPTypes in function interfaces.
— Added statement that an Array must be the last parameter if used within a Record.

— Modified Figure 2-20 so that the Array is the last element.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 20

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change
Ref.

Section

Changes

3V0_068

22422

Removed references to Function Interfaces, which have become optional.
Specified that only Array elements that were changed are transmitted.

Changed InstID in examples from 0 to 0x01.

3V0_069

22424

Removed references to Function Interfaces, which have become optional.

Specified that the entire DynamicArray is transmitted when the size changes.

3V0_070

224243

Replaced wrong parameter FktIDMotherArray with the correct FktIDArrayWindow in
function MoveArrayWindow.

3V0_071

224244

Added remark that resynchronization for multiple LongArray Controllers in one device is
coordinated within the device.

3V0_072

22425

Changed non-Ack OPTypes to Ack OPTypes in the description of “Editing in Function
Class Map” because the use of non-Ack OPTypes is no longer recommended.

3V0_073

22426

Added list of characteristcs, which distinguish Sequence Properties from Unclassified
Properties.

Added remark that the parameters of the sequence do not have to be of the same type.
Added list of allowed data types and description.

Added footnote that a Stream parameter—if it exists—must be the last parameter.

3V0_074

2243

Modified description of Unclassified Method.

Changed non-Ack OPTypes to Ack OPTypes in the introduction because the use of non-
Ack OPTypes is no longer recommended.

3V0_075

22431

Added description of SenderHandle parameter.
Added StartAck OPType.

3V0_076

22432

Added note that identical parameter lists for Set, SetGet and Status are not required for
Sequence Methods.

Added remark that the parameters of the sequence do not have to be of the same type.
Added requirement that at least one parameter besides SenderHandle has to be present.
Added StartAck OPType

Added list of allowed data types and description of Parameter and SenderHandle.

3V0_077

225

Configuration.Status(NewExt) replaces Configuration.Status(New).
Added description of the “implicit notification” concept.

Added statement indicating that Notification Matrix entries for invalid target addresses are
removed in any case. This includes those that were set by the Notification function as well
as those set through implicit notification.

Made restriction on maximum number of FktIDs per message more generic; the list has to
fit into a single telegram.

More precise description of notification timings.

Removed note on notification of Arrays, DynamicArrays, and ArrayWindows. The slightly
modified mechanism is now described in the respective sections.

3V0_078

Removed Secondary Node and changed description accordingly.

3V0_079

New introduction to Network Section.

Modified Figure 3-1: Application and Network Service of a MOST device.

3V0_080

3.1.1

New section “MOST Data”.

3V0_081

3.1.1.1

Compacted description of control data.

3V0_082

3.1.1.2

Added explanation of the term “source data”.

3V0_083

3.1.1.5

Renamed “Streaming Data” to “Synchronous Data” to emphasize contrast to isochronous
data in this context.

Removed misleading remark about routing engine.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 21

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

3Vv0_084 3.1.1.6 New section “Isochronous Data”

3V0_085 3.1.1.7 Completely reworked Packet Data section.

MAMAC is no longer included.

Low-level retries are supported for 16 and 48 bit addressing. The System Integrator

determines the number of retries and the time between retries.
3V0_086 - Removed “Source Data Interface” section.
3Vv0_087 - Removed “Transparent Channels” section.
3Vv0_088 3.1.21 Fixed clerical error in device states list: DeviceStandBy was missing.

Renamed Primary Node to MOST Node because the concept of Secondary Nodes has

been abandoned.

Removed layer model diagram.
3Vv0_089 3.1.2.2 Removed NetOn event and Application Init state from diagram.

Added optional state NetInterface Diagnosis Result in diagram.
3V0_090 3.1.2.2.2 Removed MOST25 specific description of stable lock handling.
3V0_091 3.1.223 Renamed “Net On” event to “Init Ready”.

Added remark that NetInterfaceNormalOperation is referred to as NetOn state.

Clarification: unlocks that are not critical unlocks do not result in an Error Shutdown.
3V0_092 31224 Added transition to state NetInterface Diagnosis Result.

Removed detailed description of Ring break diagnosis which is contained in a later section.
3V0_093 3.1.2.2.5 Added section “Netinterface Diagnosis Result” to describe the corresponding state.
3v0_094 3.1.2.3.1 Renamed “NetOn” event to “InitReady” in diagram.
3V0_095 3.1.2.3.2 Replaced “electrical wak-up” with “any other wake-up trigger”.

Added distinction between Error Shutdown and Normal Shutdown to match use in other

parts of the specification.

PowerMaster is now included: all devices switch the modulated signal off on certain errors.

Clarification: Error Shutdown is the result of a critical unlock, not a “normal” unlock.

Improved and more precise description.

ShutDown is now using Ack OPTypes because non-Ack OPTypes are no longer

recommended
3V0_096 3.1.2.3.3 NetBlock.Shutdown.Start becomes NetBlock.ShutDown.StartAck because non-Ack

OPTypes are no longer recommended.
3Vv0_097 3.1.2.3.31 ShutDown is now using Ack OPTypes because non-Ack OPTypes are no longer

3.1.2.3.3.2 recommended.
3Vv0_098 3.1.3.1.1 Removed statement that collisions will not occur more than once after change to NotOK.

Rephrased bulleted list so it becomes clear that the relevant address is that of the

NetworkMaster.
3V0_099 3.1.3.2 Removed transition Configuration.Status(OK) within System State OK.

Renamed NetOn event to Init Ready.

Figure 3-12—Shutdown.Start(Execute) becomes ShutDown.StartAck(..., Execute)

because non-Ack OPTypes are no longer recommended.
3Vv0_100 3.1.3.2.1 NetBlock.Shutdown.Start(Execute) becomes NetBlock.ShutDown.StartAck(..., Execute)

because non-Ack OPTypes are no longer recommended.
3Vv0_101 3.1.3.2.2 Removed OK transition from Table 3-9.

Removed requirement to route zeros. The sink does this now.

Specification Document

Page 22

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

3Vv0_102 3.1.3.3.1 Added recommendation to perform additional retries after failed Configuration.Status
broadcast.

3V0_103 3.1.3.31.2 Removed remark that Configuration.Status(NotOK) does not necessarily imply a state
change.
Added remark that Configuration.Status(NotOK) has to be sent if the Central Registry
becomes unavailable due to an internal NetworkMaster failure.

3V0_104 3.1.3.3.4.5 Completely reworked.

3V0_105 3.1.3.3.54 The NetworkSlave now responds with an unchanged list if the InstID cannot be changed.
The maximum number of NetworkMaster retries is defined by the System Integrator.

3V0_106 3.1.3.3.5.5 Removed reference to Secondary Node.

3Vv0_107 3.1.3.3.6.1 Modified description of DeltaFBlockIDList length requirement (must fit into a single
telegram).

3Vv0_108 3.1.3.3.6.2 Added description of NetworkMaster reaction when Central Registry is “full”.
Configuration.Status(NewExt) replaces Configuration.Status(New).
Modified description to also include DevicelD in FBlock list.

3Vv0_109 3.1.3.3.6.3 Configuration.Status(NewExt) replaces Configuration.Status(New).

3Vv0_110 3.1.3.3.7.3 New section “System Configuration Status Information”.

3v0_111 - Removed Secondary Node section.

3v0_112 - Removed Large Updates to the Central Registry section.

3V0_113 0 Added remark that a NetworkSlave is responsible for successful transmission of messages
that change the Central Registry.

3v0_114 3.1.3.44 Removed potentially misleading introduction.
When an FBlock does not exist, the NetworkMaster now sends an empty Status message
instead of an error.
Added description of NetworkMaster reaction to FBlockID/InstID combinations.

3v0_115 3.1.3.4.3.11 Large Updates to the Central Registry no longer apply. Configuration.Status(OK) in System
State OK is now ignored.

3V0_116 3.1.3.4.3.13 Removed requirement to route zeros. The sink does this now.

3V0_117 3.1.3.4.3.14 Heading changed to “Reaction to Configuration.Status(NewExt)”

3Vv0_118 3.1.34.7 New section “Extended FBlock Identification”.

3Vv0_119 3.1.34.4 Added footnote on NetworkMaster answer behavior if the NetworkSlave is not contained in
the Central Registry.
Added remark on NetworkMaster behavior in case of omitted parameters.
New table “FBlockID, InstID combinations for querying the Central Registry”.

3Vv0_120 3.1.4.1 New section “Ring Break Diagnosis”.

3Vv0_121 3.1.4.2 New section “Detection of Sudden Signal Off and Critical Unlock”.

3v0_122 3.1.4.3 New section “Shutdown Result Analysis”.

3v0_123 3.1.4.4 New section “Coding Error Counter”.

3V0_124 3.1.5 Consolidated description of error handling.

3V0_125 3.1.5.1 Removed misleading examples of devices (transceiver...); those were only parts of

devices.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 23

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

3V0_126 3.1.5.1.1 — Consolidated description of modulated signal off handling.

— Shutdown.Start (Execute) becomes Shutdown.StartAck(..., Execute) because non-Ack

OPTypes are no longer recommended.

3v0_127 3.1.5.4.1 — Added note that the device must not communicate until it receives Configuration.Status
after an internal failure.

3v0_128 3.1.54.2 — Added remark that a device must not attempt to re-register before deregistration was
successfully transmitted.

— Added remark that the NetworkMaster has to process FBlocklDs.Status messages in the

order they are received.

— Replaced redundant description of DeltaFBlockList length limitations with references.

— Control Enum modified: Value 0x03 (New) becomes “Reserved”; 0x04 (NewExt) added.
3V0_129 3155 — Renamed “Supply Voltage” section to “Undervoltage Management”

— Changed transition from DevicePowerOff to DeviceStandBy (U > U*) in Figure 3-21.

— Added footnote, explaining U*.
3V0_130 3.1.5.6 — Over-Temperature management section completely restructured. It now clearly

distinguishes between mandatory and option behavior, as well as Slave and PowerMaster
behavior.

— Itis now explicitly stated that the use of the PermissionToWake property is optional.
3V0_131 3.1.5.6.21 — NetBlock.ShutDown is now using Ack OPTypes because non-Ack OPTypes are no longer

315632 recommended.
3v0_132 3.2 — New section “Network Layer Protocol Specification”.
3V0_133 3.2.2 — Combined addressing topics in this section and added Ethernet addressing as well as
unblocking broadcast address.
3V0_164 3.2.3 — Section on priority levels completely reworked.
3V0_165 3.24 — Removed reference to storing Error_NAK.

— Heading changed to “Handling Overload in a Message Receiver”

— “Sinks” become “message receivers” to prevent confusion with streaming data.
3V0_134 3.2.5.1 - Updated diagram and description. Maximimum number of data bytes for CMS now given

as Lowsmax- the maximum length of 51 bytes for MOST150 was moved to a footnote to
provide an example.
3V0_135 3252 — Completely reworked and added Size-Prefixed Segmented Transfer for TellD 4.

— Removed TellDs 8 and 9; MOST High over Control Channel is no longer supported.
3V0_136 3.2.6 — Removed remark that ACK/NAK mechanisms are not required for packet data.

— Added remark that the Packet Data Channel can also be used for control data.
3V0_137 3.2.6.1 — Figure 1-1: Removed MOST High over Control Channel and added isochronous data.
3V0_138 3.2.6.1.1 — Renamed section from “Securing Data” to “Use Cases and Data Formats”.

— Removed diagram for “data link layer 48 bytes mode”.

— Removed MAMAC parts.

— Added Ethernet over MOST.
3V0_139 3.2.6.1.11 — Added MOST High description that was previously in the AMS section.

— Added missing Source Address to MOST High diagram.
3V0_140 3.2.71 — Removed reference to speed grade MOST25.

— Figure 3-33: Removed MOST High over Control Channel and added isochronous data.

— Removed notion of streaming channels building a connection.

Specification Document

Page 24

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
Change Section Changes
Ref.
3V0_141 3.27.21 — Renamed SyncDatalnfo to StreamDatalnfo.
— SourceCount, SinkCount substituted with SourceNrList, SinkNrList.
3V0_142 - — Deleted section describing the SourceHandles function; SourceHandles is no longer
supported.
3V0_142 3.27.211 — Removed SourceConnect/SourceDisconnect approach, which is specific to MOST25.

— SourceActivity, Allocate, and DeAllocate are now using Ack-OPTypes.

— Changed parameter list for Sourcelnfo: BlockWidth and ConnectionLabel are now
parameters.

— Changed parameter list for Allocate: BlockWidth and ConnectionLabel replace
ChannelList. Parameter SrcDelay was removed.

3V0_143 3.2.7.21.2 — Connect and Disconnect are now using Ack-OPTypes.

— Changed parameter list for SinkInfo: BlockWidth and ConnectionLabel are now
parameters.

— Changed parameter list for Connect: BlockWidth and ConnectionLabel replace Channels.
Parameter SrcDelay was removed.

3V0_144 3.2.7.21.3 — Removed SourceConnect/SourceDisconnect approach, which is specific to MOST25.
— Removed reference to SrcDelay.

— Rephrased so that connections and connection labels are used instead of channels.

3V0_145 - — Section “Order of Streaming Channel Lists” was removed because channel lists are no
longer relevant.

3V0_146 3.2.7.2.2 — Removed MOST25 specific passage on delay compensation.
3V0_147 3.2.8.1 — Merged bandwidth management description from other parts of the document into this
section.

— MoveBoundary is now using StartResultAck instead of StartResult.

— Connections are not removed anymore when changing the Boundary.

3V0_148 3.2.8.2.1 — Renamed BuildSyncConnection to BuildConnection.

— Renamed SyncConnectionTable to ConnectionTable. Replaced ChannelList parameter
with BlockWidth and ConnectionLabel. Removed NoChannels parameter.

— Renamed RemoveSyncConnection to RemoveConnection.

3V0_149 3.2.8.2.2 — Removed SourceConnect/SourceDisconnect approach, which is specific to MOST25.
— Renamed BuildSyncConnection to BuildConnection.

— Removed SrcDelay parameter.

— Replaced ChannelList with BlockWidth and ConnectionLabel.

— All methods are now using Ack OPTypes because non-Ack OPTypes are no longer
recommended.

3V0_150 3.2.8.23 — Removed SourceConnect/SourceDisconnect approach, which is specific to MOST25.
— Renamed RemoveSyncConnection to RemoveConnection.

— All methods are now using Ack OPTypes because non-Ack OPTypes are no longer
recommended.

3V0_151 3.2.8.2.6 — Added remark that the validity of a connection is verified by the data link layer. A source
malfunction leads to automatic de-allocation. At the same time, affected applications detect
the disappearance of the streaming signal and secure their output.

3V0_152 - — Removed section “Enabling Streaming Output”; it is no longer relevant.
3V0_153 - — Removed section “Source Drops”; it is no longer relevant.
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 25

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION
Change Section Changes

Ref.

3V0_154 3.29 — Removed timer tusgresponse-

— Removed MOST25 specific timer tgoundary-

— Modified tconsig values.

— Corrected description of twakeup, Which was using tsoundary-
— Removed twaigeforescan Maximum value.

— Raised maximum value of tpejaycigrequestt from 550 to 700.
— Modified tshutpown Values.

— Modified tsuspena Values and description.

— Added twaitsuspend-

— Modified tretryshuown Values.

— Modified trestart Values, changed description.

— Modified t o values, changed description.

— Removed timer tresourceRretry-

— Maximum value and description of twaitaternce Changed.

— Improved description of tanswer-

— Added footnote for twaitrorproperty (Max. value depends on retry settings).
— Removed timer tcieanchanneis

— Added timer tsso_shutdown

— Modified all ring break diagnosis timers.

— ShutDown is now using Ack OPTypes because non-Ack OPTypes are no longer

recommended.
3V0_155 - — Merged section “Master/Slave” into introduction.
3V0_156 - — Removed “Automatic Allocation Mechanism” section.
3V0_157 - — Removed entire hardware chapter.
3V0_158 4 — New appendix “Optional OPTypes”.
3V0_159 5 — Network Initialization chapter is now tagged “informative”.
3V0_160 5.1.1 — Changed all occurrences of “NetOn” to “Init Ready”.

— Figure A-5-1 now using Configuration.Status(NewExt).

3V0_161 6 — Removed MOST25 specific parts.

— Changed data rate example to contain MOST150 values.

3Vv0_162 7 — Sample frequency no longer in a range between 30 kHz and 50 kHz but either 44.1 kHz or
48 kHz. 48kHz is recommended.

— Removed redundant remarks.

3v0_163 71-73 — Modified to represent speed grade MOST150.
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 26

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Glossary

Term Definition
Boundary The Boundary Descriptor determines the amount of bandwidth allocated for streaming data and packet
Descriptor data.

Central Registry

Contains a lookup table for cross-referencing logical and functional addresses. Implemented in the
NetworkMaster.

ConnectionMaster

Streaming connections are managed by a Connection Manager; the ConnectionMaster FBlock is an
interface to that Connection Manager.

Connection Label

Connection Labels are used to identify streaming connections.

Control data

Data packets containing control information.

Decentral Registry

Contains a lookup table for determining available function blocks and cross -referencing logical and
functional addresses.

Device A MOST device is a physical unit, which can be connected to a MOST network via a MOST Network
Interface Controller.

DevicelD The DevicelD stands for a physical device or a group of devices in the network. The DevicelD
(RxTxAdr) can represent a node position address (RxTxPos), a logical address (RxTxLog), or a group
address.

FBlock A function block. Application FBlocks group functions that are particular to a specific application, for
example, radio or telephone. System FBlocks group functions that have an administrative purpose, for
example, NetworkMaster or NetBlock.

FBlock Shadow The FBlock Shadow is an implementation concept where an FBlock is controlled through a proxy for
that particular FBlock.

Frame Data transfer is organized in frames. Frames consist of administrative data and payload.

Function A function is a part of an FBlock through which it communicates with the external world.

Init Ready event

When the system is in a Stable Lock state (i.e., operational), the Init Ready event is fired.

Method

Function that can be started and which leads to a result after a certain period of time.

Netlnterface

The expression Netlnterface stands for the entire communication section of a node: the physical
interface, the MOST Network Interface Controller, and the Network Service.

NetOn State

The NetOn state corresponds to the “Netinterface Normal Operation” state.

NetworkMaster The NetworkMaster controls the System State and administrates the Central Registry.
Node A node is characterized by the existence of one Netinterface.
Notification Notification is used to inform devices about changes in a property. All devices that are registered for that

particular property in the Notification Matrix will receive a Status message with the updated value.

Notification Matrix

Devices that require status updates when a property changes can register for that particular property in
the Notification Matrix.

OPType When accessing functions, certain operations can be applied. The type of operation is specified by the
OPType (e.g., Set or Get).

Packet data Asynchronous data packets, such as IP packets.

PowerMaster The PowerMaster is responsible for power management throughout the MOST system.

Property Function for determining or changing the status of a device.

RxTxAdr Either a logical node address (RxTxLog), a node position address (RxTxPos), or a group address. For
receiving nodes, it is called RxAdr, for sending nodes, TxAdr.

RxTxLog A logical node address. It must be unique in the system and is called RxLog for receiving nodes and
TxLog for transmitting nodes.

RxTxPos A node position address. The node position address is called RxPos for a receiving node and TxPos for

a transmitting node. The node position address depends on the physical position of the MOST Network
Interface Controller.

Source data

The term source data combines streaming data and packet data.

Streaming data

Content, such as audio or video data, which has to be transmitted synchronously or isochronously, is
referred to as streaming data.

System Lock Flag

This flag indicates that the TimingMaster has detected a Stable Lock of the system.

System Scan

The process of collecting information from the NetworkSlaves, performed by the NetworkMaster.

System State

There are two System States: OK and NotOK. In OK, the system is in normal operation mode, in
NotOK, it is being initialized or updated.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 27

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Term

Definition

TimingMaster

The TimingMaster provides generation and transport of the system clock.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 28

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

1 Introduction

1.1 Purpose

This document, which all other MOST Specifications relate to, is the main specification of MOST
(Media Oriented System Transport).

1.2 Scope

This document contains the specification of the MOST Application Layer and the MOST Network
Layer.

This specification is speed grade independent. However, it is not fully backward compatible to the
existing speed grades MOST25 and MOST50 as described in the MOST Specification Rev. 2.5.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 29

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

1.3 MOST Document Structure

This document structure reflects the documents published by the MOST Cooperation and their internal
dependencies. This structure is subject to change as new documents are published.

MOST Framework

MOST Specification

A

MOST Dynamic Specification

MOST Electrical Physical ‘
Layel MoST Optical Physical |

I_ | Layer MOST AOPhysical
Layer Specification

MOST Content Protection

r———u————l A A A
| MOST FBLOCK APls ‘ | MOST Physical Layer MOST Stream MOST High
| i MOST FBLOCK APls | Specification Transmission Specification Specification
: | A A

MOST Guidelines:
MOST MSC Cookbook 4 MOST Compliance Test Specifications

MOST FBlock Cookbook

MOST Guidelines:
MOST DTCP Test Recommendations

Other documents

Figure 1-1: MOST document structure

The MOST Specification is a main specification within the MOST Framework. The arrows show the
direction of references.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 30

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

1.4 References

All documents, which are referenced by this MOST document, are listed here along with their versions.

Document Revision

RFC 2616 June 1999
Hypertext Transfer Protocol — HTTP/1.1

The Unicode Standard
IEEE 802.3 2005
Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications.
ISO 8859

Information technology — 8-bit single-byte coded graphic
character sets

IEC 62106:1999 1999
Specification of the Radio Data System (RDS).

ETSI EN 300401

Radio Broadcasting Systems; Digital Audio Broadcasting
(DAB) to mobile, portable and fixed receivers

Shift JIS 1997
JIS X0201:1997 and JIS X0208:1997

1.5 Overview

This specification consists of two sections, namely the application section and the network section.
The specification supports different physical layers, which are described in the respective
documentations. In those cases when optical physical layer is mentioned in this specification, it has to
be seen as an example.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 31

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2 Application Section

The Application Section comprises of Application Layer Service Specification and the Application
Layer Protocol Specification. This includes access to the different data transport mechanisms, the
logical device model, the functional addressing as well as the introduction of the function block
(FBlock) concept.

2.1 Application Layer Service Specification

The Application Layer Service Specification defines the abstract interface between the Application and
the Application Layer. To this purpose, the basic principles of MOST and its FBlock concept are
introduced.

2.1.1 Basic Principles of MOST

MOST is a function oriented high-speed multimedia technology to network a variety of devices
(respectively MOST nodes). MOST defines mechanisms for sending streaming data and packet-based
data, and provides a complete application framework to control interaction between devices in a
clearly structured way. MOST supports different speed grades and physical layers.

A MOST system consists of up to 64 nodes. MOST is a synchronous network: The TimingMaster
provides the system clock with a continuous data signal. All other devices—the TimingSlaves—
synchronize their operation to this base signal.

Within the synchronous base data signal, the content of multiple streaming connections and control
data are transported. The Control Channel is used to initiate the streaming data connection between
sender and receiver.

The bandwidth allocated for the streaming data connections is always available and reserved for the
dedicated stream so there are no interruptions, collisions, or delays in the transport of the data stream.
MOST is designed for high quality of service and efficient transport of audio and video.

Internet traffic or information from a navigation system is typically sent in short (asynchronous) bursts
as packets and is often transported to many different places. To accommodate such signals, MOST
has defined efficient mechanisms for sending asynchronous, packet based data in addition to the
control data and the streaming data. These mechanisms run on top of the permanent synchronous
data signal. However, the transmission of packet based data is completely separate from the Control
Channel and the streaming data so that none of them interfere with each other.

In summary, MOST is a network that has mechanisms to transport all the various signals and data
streams that occur in multimedia and infotainment systems.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 32

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.1.1.1 Overview of Data Transport

For transmitting data, a MOST network provides the following types of data transport mechanisms with
different characteristic properties.

2.1.1.1.1 Control Channel

On the Control Channel, data packets (for control messages) are transported to specific addresses.
The Control Channel is secured by the Control Channel CRC and has an ACK/NAK mechanism with
automatic retry. It is generally specified for event-oriented transmissions at low bandwidth and short
packet length.

2.1.1.1.2 Streaming Data

Continuous data streams that demand high bandwidth and require time-synchronized transmission
(typically multimedia data, such as audio or video) are transported using streaming data connections.
The connections are administered dynamically through appropriate control messages.

Although streaming connections can be built directly between nodes that contain sources and sinks, it
is recommended that the available bandwidth for streaming data connections be administered in a
central manner, particularly in larger networks. Administration of the streaming resources is, in this
case, handled by a Connection Manager that is responsible for all requests for establishing
connections.

2.1.1.1.3 Packet Data Channel

In contrast to the Control Channel, the Packet Data Channel is specified for transmissions requiring
high bandwidth in a burst-like manner. It is mainly used for transmitting data with large block size (e.g.,
graphics, picture formats, and navigation maps).

Just like the Control Channel, the Packet Data Channel is secured by CRC (Packet Data Channel
CRC) and has an ACK/NAK mechanism with automatic retry.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 33

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.1.2 Device Model

The following sections describe the logical model of a MOST device. A MOST device is a physical unit
that can be connected to a MOST network via a MOST Network Interface Controller.

2.1.2.1 Function Block

On the application level, a MOST device contains multiple components that are called function blocks
(FBlocks), for example, tuner, amplifier, or CD player. It is possible that there are multiple FBlocks in a
single MOST device, such as a tuner and an amplifier combined in one case and connected to the
MOST network via a common MOST Network Interface Controller.

In addition to the FBlocks, which represent applications, each MOST device has a special FBlock
called the NetBlock. The NetBlock provides functions related to the entire device.

Between the FBlocks and the MOST Network Interface Controller, the Network Service forms an
intermediate layer providing routines to simplify the handling of the MOST Network Interface
Controller.

MOST Device
FBlock FBlock FBlock
NetBlock Application 1 Application 2

™ ' al

’ Network Service ‘

'

’ MOST Network Interface Controller

—4% Physical Interface ’—*

Figure 2-1: Model of a MOST device

The MOST standard supports different physical interfaces. These are described in the respective
Physical Layer Specifications.

Each FBlock contains a number of single functions. For example, a CD player possesses functions
such as Play, Stop, Eject, and Time Played.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 34

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.1.2.1.1 Slave, Controller, HMI

Interaction with an FBlock requires two partners which are distributed over the MOST network: The
Controller and the Slave.

The FBlock functionality resides in the Slave. The Controller sends commands to a Slave and in return
receives reports from the Slave. The Slave executes the commands issued by a Controller and sends
status reports to the Controller.

In a device, Controllers and Slaves can coexist. This means that a device which contains Controllers
can also contain FBlocks and, therefore, be controlled by other devices. A Slave may be associated
with more than one Controller. Correspondingly, a Controller may be associated with more than one
Slave.

Controllers that have an interface to the user are called Human Machine Interfaces (HMIs).

Devices are commonly classified as HMI, Controller, or Slave with respect to their primary function.
However, a device may contain a combination of HMI, Controller, and Slave functionality.

2.1.2.1.2 First Introduction to MOST Functions

This section gives a brief introduction to the structure of MOST functions. This knowledge is necessary
to understand the following examples. Section 2.2 on page 40 explains the structure of MOST
functions in more detail.

On the application level, a function is addressed independently of the device it is implemented in.
Functions are grouped together in FBlocks with respect to their contents. Therefore, FBlocks are
references for external applications to localize a certain function. A function is addressed in an FBlock.
In order to distinguish between the different FBlocks and functions (Fkts) of a device, each function
and FBlock has an identifier:

FBlockID.FktID
When accessing functions, certain operations are applied to the respective function. The type of
operation is specified by the OPType. The parameters of the operation follow the OPType, resulting in

the following structure:

FBlockID.FktID.OPType(Data)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 35

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.1.2.2 Functions

A function is a defined attribute of an FBlock through which it communicates with the external world.
Functions can be subdivided into two categories:

e Functions that can be started and which lead to a result after a certain period of time.
These functions are called “methods”.

e Functions for determining or changing the status of a device, which refer to the current
properties of a device.
These functions are called “properties”.

In addition, there are events. Events result from changes of properties, if the properties are requested
to report these changes (notification).

FBlock

Method

Property/Event

Figure 2-2: Structure of an FBlock consisting of functions classifiable as methods, properties, and events

2.1.2.3 Methods

Methods can be used to control FBlocks. In general, a method is triggered only once at a certain point
of time, for example, starting the auto-scanning of a tuner. Methods can be defined without
parameters or with certain parameters that specify their behavior. For example, a method “auto-scan”
is possible without parameters or with a parameter that specifies the direction of the auto-scan.

When an FBlock receives a method call, it starts the respective process. If this is not possible, the
FBlock has to return the respective error message to the sender of the method call. This may happen
if the addressed FBlock has no method of that kind, if a wrong parameter was found, or if the current
status of the FBlock prevents execution of the method.

After finishing the process, the controlled FBlock should report execution to the Controller. This report
may contain results of the process, for example, a frequency found by the tuner. If a process runs for a
long time, it may be useful to return intermediate results before finishing, such as informing the
Controller about the successful start of the process.

For executing methods, the following kinds of messages are exchanged via the bus:

Controller Slave

Start of a method with parameters Error with cause for error (ErrorAck)

(StartAck/StartResultAck) Execution report with results (ResultAck)
Intermediate result (ProcessingAck)

The respective MOST mechanisms needed for this messaging are described in depth in section 2.2
on page 40.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 36

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

2.1.2.4 Properties

Properties can be read (e.g., temperature), written (e.g., passwords), or read and written (e.g., desired
value for speed control). For each property, the allowed operations are specified.

Within an FBlock, a property represents a value or a status.

2.1.2.4.1 Setting a Property

The process of setting a property is described by the example of the temperature setting of a heating
control.

Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Set(27)====) Temp : 27
Max : 80

Figure 2-3: Setting a property (temperature setting of a heating)

Function Temp is a member of the FBlock Heating, so the HMI sends the instruction
Heating. Temp.Set(27) to FBlock Heating.

2.1.2.4.2 Reading a Property

In order for the HMI to display the current temperature, the value of function Temp in FBlock Heating
must be read. Therefore, the HMI sends the instruction Heating. Temp.Get.

Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating. Temp.Get=====1) Temp : 27
Max : 80

Figure 2-4: Reading a property (temperature setting of a heating)

Heating replies by sending the status message Heating. Temp.Status(27).

Heating Control Heating
Fl Property
Temp : Byte
Min : -40 = ===Heating.Temp.Status(27)=== Temp : 27
Max : 80

Figure 2-5: Status report of property temperature setting

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 37

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

For changing and reading of properties, the following types of messages are exchanged via the bus:

Controller Slave

Setting a property (Set/SetGet) Status of property (Status)

Reading a property (Get) Error message with cause of error (Error)
Incrementing / decrementing a property (Inc/Dec)

The MOST functions needed for this messaging are described in depth in section 2.2 on page 40.

2.1.2.5 Events

Properties of an FBlock may change without an external influence, for example, the temperature in the
example above, or the current time of a CD player. To display current values using the functions
described up to now, a cyclical reading of the properties (polling) would be required.

To reduce communication with FBlocks, it would be useful if FBlocks could send status reports about
changes in properties without explicit requests. These are events that occur in a controlled FBlock,
which initiate the sending of a report (notification).

When using notification, it is not recommended to change properties with the SetGet OPType. Use Set
instead to avoid the potential transmission of two identical messages.

Notifications can be used to indicate reaching of limits, the change of measured values in FBlocks
(e.g., the play time of a CD player has changed), or in the HMI (e.g., reception of a new value of
mileage received via a CAN gateway). Notifications are sent only to those Controllers that have
previously applied for the notification by sending an appropriate request to the Slave (and are
therefore included in the Slave’s Notification Matrix).

(Refer to section 2.2.5 on page 111).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 38

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.1.2.6 Addressing MOST Functions

In a MOST network, the devices are connected in a ring structure. To address these devices, different
types of addresses can be used. The MOST Network Interface Controller provides six different types
of addresses, which are introduced below.

The detailed description can be found in section 3.2.2.

MOST address types:

1. Internal Node Communication address
This address is reserved for internal communication in a node.

2. Node position address (RxTxPos)
The node position is generated automatically in each node during the locking procedure of the
MOST Network. Thus, the node position address is based on the physical position of the MOST
Network Interface Controller. The node position address is 2 bytes long.
The node position address is called RxPos for a receiving node and TxPos for a transmitting node.

3. Logical node address (RxTxLog)
This address can be set by the application. It must be unique in the system and is 2 bytes long. A
logical node address can be either dynamic or static. A dynamic address is calculated based on
the node position address. A static address is predefined and is not recalculated on
reconfiguration of the network.
The logical node address is called RxLog for receiving nodes and TxLog for transmitting nodes.

4. Group address
The group address can also be set by the application. It is 2 bytes long. A group consists of
devices that have the same group address.

5. Broadcast address
The broadcast address is a special group address, which is 2 bytes long. The broadcast can either
be a “blocking broadcast” or an “unblocking broadcast”.

6. Ethernet MAC address
This address is 6 bytes long, can be set by the application, and is static.

7. Functional address
The combination of FBlockID and InstID is referred to as the functional address.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 39

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2 Application Layer Protocol Specification

The Application Layer protocol is the set of rules that governs the format and meaning of the
information exchange between the Application Layers in various devices. The Application Layer uses
the protocol to implement the Application Layer services definitions.

2.2.1 Application Messages in a MOST Network (Introduction)

The controlling mechanisms described in this document are generally independent of the kind of bus
used. Messages on the application level are described in a universal way. They are transported
virtually from one application to the other. In reality, they are transmitted with the help of a bus system,
here the MOST network, which is described in detail below.

Virtual communication
Application messages
Functional addressing

Application e > Application
Real Communication Real Communication
Network Service Network Service

Real communication
MOST telegrams

MOST Network Physical addressing MOST Network
Interface |t > Interface
Controller Controller

Figure 2-6: Virtual communication between two devices on the Application Layer and real communication over the
network

All application messages are finally transferred via the Control Channel or the Packet Data Channel of
the MOST network. From the application’s point of view, all messages are passed on to the Network
Service. Depending on the length, an application message is sent with a single transfer if it fits into
one MOST telegram, otherwise via segmented transfer.

In a MOST Network, nodes (devices) are addressed. In order to transport a message to an FBlock, the
MOST telegrams are provided with the address of the device that contains the FBlock.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 40

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Here, the entire data flow of an interaction between two devices via the Network Layer is described.
One device controls the functions of the other.

The figure below shows the properties of an FBlock with the FBlockID CD and the InstID 1. The
FBlock is found in the CD Changer (CDC) device.

CcDC

CDA1
TRAK | 10

‘TIME \ 01:23 \

\STATUS\ PLAY \

Figure 2-7: CDC device with CD Player FBlock and its functions

For example, another track can be chosen by reception of the following command:

CD.1.Track.SetGet(10)

This message is sent by a device that contains the controlling HMI. It will be passed on to the Network
Service in the following form:

???_.CD.1.Track.SetGet(10)

The first part is a special DevicelD, which means that the device address of the receiver is not known
on the application level. The Network Service will complement the address with the address of the CD
Changer. The result is:

CDC.CD.1.Track.SetGet(10)

For transmission, this is complemented by the sender’s device address:

HMI_.CDC.CD.1.Track.SetGet(10)

Since the receiving device knows its own device address, this address does not need to be passed on
to the application level. The received message, therefore, looks like:

HMI.CD.1.Track.SetGet(10)

If the function wants to report its new status, it builds the following reply:
HMI.CD.1.Track.Status(10)

Based on this, the Network Service builds the following telegram:
CDC.HMI .CD.1.Track.Status(10)

In the HMI, the receiver’s address is removed and the message is passed to the application:

CDC.CD.1.Track.Status(10)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 41

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

The general data flow via the different layers in the two devices is displayed in the following figure:

FBlockID.InstID.FktlD.OPType(Parameters)
Applicaton |[=gq---—-—-"-""-""""""""""""""-"-"-"—"—"—"—"——~ Application

D.InstID.FktID.OPType(Parameters)

DevicelD1.FBlockID.InstID.FktID.OPTyp

Network Service

Network Service

ockID.InstID.FktID.OPType(Parameters)

DevicelD1.FBlockID.InstID.FktID.OPTyp

MOST Network
Interface
Controller

MOST Network DevicelD1.DevicelD2.FBlockiD.InstiD.FktiD.OPType(Parameters)

Interface
Controller

Figure 2-8: Communication between two devices via the different layers

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 42

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.2 Controller / Slave Communication

For communication between Controllers and Slaves, properties and methods must be differentiated.
Properties describe the current operation status of the corresponding device function completely at
any time. Methods are used to control a process that usually does not provide a result immediately.

2.2.2.1 Communication with Properties Using Shadows

In section “2.1.2.1.1 Slave, Controller, HMI”, a general description of the Slave/Controller concept is
provided. The FBlock Shadow is an implementation concept where an FBlock is controlled through a
proxy for that particular FBlock.

Below, communication between a controlling and a controlled device is explained for properties by an
example:

e Controlling device (HMI device):
Contains FBlock Shadows for controlling the CD changer and Tuner FBlocks

e Controlled device (CDC device):
Contains only the CD changer FBlock

The properties of a device should describe the current operation status completely at any time. The
figure below shows the properties of an FBlock CD changer with FBlockID CD and the InstID 1 in the
CDC device.

CDC

CD.1
TRAK | 10

‘TIME \ 01:23 \

\STATUS\ PLAY \

Figure 2-9: Example of a Slave device

Operation status of the player is determined by the properties Disk (number of loaded CD), Track,
Time, and Status (Play, Stop, Forward, Rewind, and Eject). By changing these properties, the player
can be controlled by another device.

For example, another track can be chosen by sending the following command:
HMI -> CDC: CD.1.Track.Set(10)
If this operation is successful, the new state of the CD player is confirmed by the following reply:

CDC -> HMI: CD.1.Track.Status(10)

Note: The reply has the same functional address (FBlocklID.InstID) as the command. Only the logical
address (DevicelD) changes.

By sending this command, the player can be stopped:

HMI -> CDC: CD.1.Status.Set(Stop)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 43

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

Also in this case, the new state of property Status can be transmitted via a message:

CDC -> HMI: CD.1.Status.Status(Stop)

If another device is registered in the Notification Matrix of FBlock CD, these status messages are sent
by the CD player even when a property changes spontaneously, for example, when the player moves
to the next track during play mode.

The MOST device address of the CD changer (represented by the abbreviation CDC) together with
FBlockID, InstID, and FktID describe the property to be changed. To make sure that the messages for
controlling a device are transported properly, the property addressing must be unique in the entire
system.

If there are multiple CD players in the system, they get different InstIDs and, in addition, different
MOST addresses. Based on that, two players can be controlled by an HMI in the following way:

??? -> CDC1l: CD.1.Status.Set(Stop)
??? -> CDC2: CD.2.Status.Set(Stop)

By this, two CD FBlocks can be addressed unambiguously, even if they are located within one
physical device with one MOST address. This also guarantees that status reports can be assigned
unambiguously:

CDC -> ?77: CD.1.Status.Status(Stop) Status of CD in CDC

CDC1 -> ???: CD.l.Status.Status(Stop) Status of CD in CDC1
CDC2 -> ???: CD.2.Status.Status(Stop) Status of CD in CDC2

CDC -> ??7: CD.1.Status.Status(Stop) Status of 15 Player in CDC
CDC -> ?77: CD.2.Status.Status(Stop) Status of 2" Player in CDC

The controlling device (HMI device) contains the Shadows of the functions it controls. The Shadow of
a function in the HMI device represents an image of the property of the CDC device. That means, for
each controlled property of the CDC device, the HMI device contains a respective variable. For the
HMI device, the function seems to reside in its own memory area. This is shown in the figure below:

HMI

cDC
CcDA HMI->CDC: CD.1.TRACK.SET (TRACK+1) CcDA

RACK 03 ‘

TME | 01:23 ‘TIME \ 01:23 \

' STATUS = PLAY \ STATUS \ PLAY \
E ! ; CDC->HMI: CD.1.TRACK.STATUS (03)

Figure 2-10: Virtual illustration of the controlled properties in the control device

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 44

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

The HMI device shown in Figure 2-10 has an image of the Disc, Track, Time, and Status properties of
the CDC device stored in the respective. These variables are required to store the display values and
can be used for control purposes, too. The example shows the flow of communication when using the
“Next track” button.

When the button is clicked, the HMI device takes the contents of its local variable Track, increments it
by one, and sends the command CD.1.Track.Set(Track+1) to device CDC. After the player has
changed track, it replies by sending CD.1.Track.Status(3). Variable Track reacts only on that reply and
stores the new value. The change of variable Track causes the HMI to update its display.

HMI

(7 [0 [[0 Oasis SikeenSywloms | s

cbC
CD.1 CD.1

DISK \ 6

TRk | 05
CDC->?:CD.1.TRACK. STATUS

TRACK 03 |TIME | 01:23 |
CDC->HMI: CD.1l.TRACK.STATUS(03)

CDC->?:CD.1.TIME.STATUS

TIME \ 01:23

\STATUS\ PLAY \

CDC->?:CD.1.STATUS.STATUS

STATUS \ PLAY

Figure 2-11: Unambiguous assignment between function and variable

The next figure shows this approach when controlling multiple devices. The HMI has an image of the
controlled CD player, as well as an image of the tuner. Even during play operation of the CD player,
the tuner sends status changes to the HMI. In CD operation mode, this information is not shown on
the display but is stored in the respective variables. This means that the current information about the
tuner is available immediately if the operation mode is changed from CD to Tuner, with no extra polling
needed.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 45

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

HMI

CD.1

TRACK | 03

TIME | 01:23

_STATUS | PLAY

TUNER.1

 FREQUENCY | 984

BAND FM

 STEREO ON

HMI->CDC: CD.1.TRACK.SET (TRACK+1)

RADIO->HMI:
TUNER.1.STEREO.STATUS (ON)

Figure 2-12: Controlling multiple devices

—
£
o
P

‘TIME \ 01:23 \

\STATUS\ PLAY \

RADIO

TUNER.1

\ FREQUENCY \ 98,4 \

\ BAND \ FM \

\ STEREO \ ON \

A similar case could be imagined for several identical CD players, where, for example, two CD players
CD.1 and CD.2 can be operated via one HMI.

As shown in the following graphic, such an HMI would contain two sets of variables (Shadows), one
for each CD player. The variables for CD.1 react only upon messages of CD.1, while the variables for
CD.2 react only upon messages of CD.2. If both of the FBlocks are located in one device, handling

would be identical.

Both sets of variables are updated, even if only one set is displayed. When switching between the
players, all values are available immediately.

Specification Document
Page 46

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

HMI

o |n Ok SikeoeSywlonm

cbc

CD.1

CD.1

CDC->?:CD.1.DISK.STATUS

DISK 6
{“cpc->?2:CD. 1. TRACK. STATUS TRACK -

EWTRACK 03

CDC->HMI: CD.1.TRACK.STATUS (03) ‘TIME ‘ 01:23 ‘

CDC->?:CD.1.TIME.STATUS

TIME \ 01:23

\STATUS\ PLAY \

CDC->?:CD.1.STATUS.STATUS

STATUS \ PLAY
conc
D2 CcD.2
CDC->?:CD.2.DISK.STATUS
DISK \ 6

TRACK -

TRACK | 03 CDC->RMI: CD.2.TRACK.STATUS(03) | | |TIME | 01:23 |

CDC->?:CD.2.TRACK. STATUS

CDC->?:CD.2.TIME.STATUS

TIME \ 01:23

\STATUS\ PLAY \

CDC->?:CD.2.STATUS. STATUS

STATUS \ PLAY

Figure 2-13: Controlling two identical devices

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 47

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.2.2 Communication with Methods

The main difference between methods and properties is that methods are used to control a process
that usually does not provide a result immediately, while a property always has a current status.

Methods often interact with multiple Controllers and therefore may have different states at one time:

It may happen that a method is processing a request for one Controller, while it appears to another
Controller to be busy. In addition, in methods, a process is triggered that has a longer processing time.
The Controller may need to wait for a result.

2.2.2.2.1 Using Methods with SenderHandle

As several tasks within a device might access one method at the same time, it must be possible to
route the answer back to the respective task. This is achieved by using the SenderHandle parameter.

On Slave side, the SenderHandle in combination with DevicelD (of the originator) and FBlockID.InstID
is used to identify a method under execution. On the Controller side, the SenderHandle is used to
dispatch the responses of the Slave. It is in the responsibility of the controlling device to choose an
unambiguous value for SenderHandle. The SenderHandle must not contain any application relevant
information.

The presence of the SenderHandle is indicated by using the Ack-variants of the OPTypes (e.g.,
StartResultAck, ResultAck, and ErrorAck) (see 2.2.3.5.2).
An example:

Controller -> Slave: FBlocklID. InstlD.StartResultAck (SenderHandle, Data)
Slave -> Controller: FBlocklID. InstlD.ResultAck (SenderHandle, Data)

Slave -> Controller: FBlocklID.InstID.ErrorAck (SenderHandle,
ErrorCode, Errorinfo)

One example for the use of SenderHandles is the SMS service in a GSM module of a telephone
device: in the HMI, three tasks are attempting to send SMS text messages independently from each
other. The message of task 1 is successfully sent, the message of task 2 is buffered, while the
message of task 3 is rejected.

The respective status messages must now be assigned, which requires an approach that is described
below.

HMI

TASK1

TELEPHONE

GSM.1 GSM.1
TELEPHONE->HMT :

f? GSM.1.SMSSend.Error (Busy)

TASK 2 [SMS < SMSSend

TASK 3

Figure 2-14: Routing answers in case of multiple tasks (in one Controller) using one function

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 48

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

The SenderHandle is set by the HMI in StartResultAck. The SenderHandle will not be interpreted by
the telephone, but will be returned in an answer (ProcessingAck, ResultAck or ErrorAck).

The SMS call in Task 1 may look like:

HMI -> Telephone: Telephone.1l.SMSSend.StartResultAck (SenderHandlel, SMSData)

After successful transmission, Task 1 receives:

Telephone -> HMI: Telephone.1.SMSSend.ResultAck (SenderHandlel)

If Task 3 attempts to send in the meantime, it transmits:

HMI -> Telephone: Telephone.1l.SMSSend.StartResultAck (SenderHandle3, SMSData)

It then receives this answer:

Telephone -> HMI: Telephone.1.SMSSend.ErrorAck (SenderHandle3,
ErrorCode="Busy"'")
2.2.2.2.2 Using Methods without SenderHandle

In special cases, communication with methods is equal to communication with properties. This means
that a Controller controls a function in a Slave device and there will be a reply to the controlling device.

The behavior of the non-Ack OPTypes (e.g., StartResult, Result, and Error) is identical to that of the
Ack-variants. The only difference is that the SenderHandle parameter is omitted.

Note: Methods without SenderHandle are deprecated.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 49

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3 Structure of MOST Messages

The principal structure of messages on the Application Layer is:
DevicelD . FBlockID . InstID . FktID . OPType (Data)

Compared to section 2.1.2.1.2 on page 35, two components were added: DevicelD and InstID. The
individual elements are explained below.

2.2.3.1 DevicelD

The DevicelD stands for a physical device or a group of devices in the network (ID is network specific
and has a length of 16 bits). It precedes the message and does not need to be interpreted on the
application level.

If a function receives a message, the DevicelD contains the logical node address of the sender. In
case of an answer, it precedes the message as the receiver’s address.

If the controlling device does not know the Slave device’'s address, the DevicelD is set to OxFFFF. In
that case, it is corrected by the Network Service of the sender. This mechanism is not available for
communication directed from a Slave device to a controlling device.

2.2.3.1.1 Basics for Automatic Adding of Device Addresses

Since applications know only functional but not device addresses, a message that is transported must
be complemented by the device address (DevicelD). There are two possible ways to achieve this:

1. When the Slave answers a request it already has the DevicelD of the target node because it
was reported during the request.

2. When the Controller is sending a message and does not know the DevicelD of the target, it
sets the DevicelD to OxFFFF. The ID is complemented by the Network Service and inserted
into the MOST telegram as TxAdr. Refer also to sections 3.1.3.3.2 and 3.1.3.4.1 for
information regarding the Central Registry and the Decentral Registries respectively.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 50

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

This flow chart describes how a device seeks the logical node address of a communication partner:

Need for sending an
application message

Logical Node
Address of partner
available in De-central
Registry

yes

no

Request Logical
Node Address of
partner from Central
Registry

yes)
Store adress in De-

central registry.

Logical Node Address of
partner found?

Error! Report to
application

Send message

End

Figure 2-15: Seeking the logical address of a communication partner

2.2.3.2 FBlockID

The FBlocklID is the identifier of a special FBlock. Every FBlock with a certain FBlockID must contain
certain specific functions. In addition to those mandatory functions, it may contain other optional
functions.

“System Specific” proprietary FBlockIDs can be used by a System Integrator (e.g., a car maker). They
are specific for a system and are coordinated by the System Integrator between the suppliers
developing devices for this system. A second kind of proprietary FBlocklDs are called “Supplier
Specific’. Those FBlocklDs can be used by suppliers for any proprietary purpose. The special
FBlocklD OxFF addresses all FBlocks within a MOST device, except the NetBlock. Since this can be
regarded as a broadcast function, error status messages must not be returned.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 51

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

The table below shows a collection (incomplete) of FBlockIDs:

Kind FBlockID 8 Bit Name Explanation
Administration 0x0x
0x00 — This FBlocklID is used for
communication between Network
Service and Network Interface
Controller. Telegrams that are
related to network tasks are sent
and received here. They are not
passed to the application.
0x01 NetBlock Mandatory for each device
0x02 NetworkMaster Mandatory for each system
0x03 ConnectionMaster
0x04 PowerMaster
0x05 Vehicle
0x06 Diagnosis
0x08 Router
0x09 DebugMessages
0x0E Tool
O0xOF EnhancedTestability Mandatory for each device
Operation Ox1x
0x10 Human Machine Interface (HMI)
0x11 Speech Recognition
0x12 Speech Output Device
0x13 Speech Database Device
Audio 0x2x
0x20 Audio Master
0x21 Audio DSP
0x22 Audio Amplifier
0x23 HeadphoneAmoplifier
0x24 Aucxiliarylnput
0x25 AuxiliaryOutput
0x26 Microphonelnput
0x28 Handsfree Processor
0x29 AuxiliarylnputOutput
Drives 0x3x
0x30 Audio Tape Recorder
0x31 Audio Disk Player
0x32 ROM Disk Player
0x33 Multimedia Disk Player
0x34 DVD Video Player

Table 2-1: FBlockIDs (part 1)

Note: EnhancedTestability (0xOF) is mandatory for each device due to compliance reasons.

Specification Document

Page 52

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
Kind FBlockID 8 Bit Name Explanation
Receiver 0x4x

0x40 AM/FM Tuner

0x41 TMCTuner

0x42 TV Tuner

0x43 DAB Tuner

0x44 Satellite Radio

0x45 TPEG Tuner

0x46 ESDR ETSI Satellite Digital Radio
Communication | 0x5x

0x50 Telephone

0x51 Phonebook

0x52 Navigation System

0x53 TMC Decoder

0x54 Bluetooth
Video 0x6X

0x60 Display

0x61 Camera

0x62 Video Tape Recorder
Reserved 0x70 ...0x9F Reserved for future use
Proprietary

0xA0...0xC7 System Specific

0xC8 Reserved for Compliance Testing

0xC9...0xEF System Specific

0xFO ...0xFB Supplier Specific

0xFC Reserved

OXFD...OXFE Supplier Specific

OxFF All

Table 2-2: FBlockIDs (part 2)

The range between 0x00 and Ox9F can only be assigned by the MOST Cooperation.

2.2.3.2.1 Handling of Supplier Specific FBlocks

Supplier specific FBlocks are not reported in NetBlock.FBlockIDs.Status.
Supplier specific FBlocks have to ignore all commands which contain FBlockID OxFF.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 53

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.3 InstID

There may be several equal’ FBlocks (Instances) with the same FBlockID in the system (two CD
changers, four active speakers, several diagnosis blocks, etc.). In order to address these FBlocks
unambiguously, the FBlocklID is complemented by an eight-bit instance identification number (InstID).
The combination of FBlockID and InstID is referred to as the functional address.

2.2.3.3.1 Uniqueness of Functional Addresses

Each device is responsible for the uniqueness of its functional addresses within the device. The
NetworkMaster is responsible for the uniqueness of functional addresses within the entire system.
Refer to section 3.1.3.3.

2.2.3.3.2 Assigning InstID

By default, every FBlock has InstID 0x01. In case there are several FBlocks of the same kind within
one MOST device, the default numbering within the device starts at 0x01 and is then incremented. In
principle, as long as the InstID provides the possibility to differentiate between equal FBlocks, the
InstID can be chosen freely. For example, in static systems the System Integrator may choose to use
hard coded InstIDs or set the InstiIDs depending on certain ranges with respect to the supported

functions of the FBlock.

Note: Wildcards must not be used for InstID assignment.

2.2.3.3.3 InstID of NetBlock

InstIDs of NetBlocks are derived from the node position address of the MOST devices. Therefore, they
start counting at 0x00.

2.2.3.3.4 InstID of NetworkMaster

The InstID of the NetworkMaster may be zero; default value is 0x01. Requests to NetworkMaster shall
be sent to InstID 0x00 (wildcard ref 2.2.3.3.6).

2.2.3.3.5 InstID of FBlock EnhancedTestability

InstIDs of FBlock EnhancedTestability are derived from the node position address of the MOST
device. Therefore, they start counting at 0x00.

' The expression “equal” means that those function blocks have the same functionality (e.g., two CD
drives). This means that the basic functions are equal, but there is the possibility that they differ with
respect to the total functionality (e.g., CD drive with or without random play).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 54

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.3.6 InstID Wildcards

There are some special InstID values (wildcards) that can be used when addressing FBlocks. They
will be treated as follows:

0x00 Don't care (within a device). The device dispatches the message to one specific FBlock in
the device.

OxFF Broadcast (within a device). The message is dispatched to all instances of the matching
FBlock.

When replying to a request, wildcards may be used only under certain error conditions (see a-b
below). In all other cases, all replies shall use the correct InstID of the respective FBlock.

a) When any FBlock is addressed by using InstID 0x00 or OxFF, but the FBlock is not actually
implemented, the returned error message (“FBlockID not available”, ErrorCode 0x01) has to contain
the same InstID as used in the original command message (0x00 or OxFF respectively).

b) The error message “Segmentation Error” (ErrorCode 0x0C) shall have the same InstID as the
original message. This error is handled on the transport layer but not on the Application Layer,
therefore, the InstID is not evaluated.

2.2.3.4 FktID

The FktID represents a function. This means a function unit (Object) within a device that provides
operations that can be called via the network. Examples for functions are: Play status of a drive, speed
limit in an on-board computer, etc. On the network level, the FktID is encoded in 12 bits, so 4096
different methods and properties can be encoded per FBlock. On the application level, the FktID is
extended to 2 bytes. Exceptions to this rule will be explicitly marked.

The address range of FktIDs is subdivided in the following sections:

1. Coordination (0x000...0x1FF)
Functions for administrative purposes in an FBlock.

2. Application (0x200...0x9FF)
Functions in the Application range represent the main functionality of an FBlock.
Depending on the FBlock range, they are defined either by the MOST Cooperation, the
System Integrator, or the Supplier.

3. Unique (0xAOQ0...0xBFF)
Functions that are defined unambiguously in the entire system.
Attention, these must be coordinated throughout the entire system!

4. Proprietary / System Specific (OxCO00...0xEFF)
Functions that can be used by any System Integrator (car maker). They are specific to a
system and are coordinated by the System Integrator between the suppliers developing
devices for this system.

5. Proprietary / Supplier Specific (0xF0O0...0xFFE)
Functions that can be used by suppliers for any proprietary purpose.

e Supplier specific functions are not reported in <FBlocklD>.FktIDs.Status.

e |If a supplier specific property supports notification, notification of this property is not
affected by the <FBlockID>.Notification.Set(SetAll) command.

o If a supplier specific property supports notification, notification of this property is
cleared by the <FBlockID>.Notification.Set(ClearAll) command.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 55

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Some FktIDs in an FBlock that contains an application are predefined:

0x000 FktIDs Reports the FktIDs of all functions contained in the FBlock
(refer to section 3.1.3.4.6 on page 156).

0x001 Notification Distribution list for events (refer to section 2.2.5 on page
111).

0x002 NotificationCheck Check whether the distribution list for events is still as it
should be.

When developing proprietary FBlocks, all possible Function IDs can be used freely, except those
taken from the ranges:

e Unique

e Coordination

In case proprietary FBlocks contain functions within the ranges Unique or Coordination, those
functions must be in accordance with MOST FBlock Specifications.

For each function it can be determined if the use of function is mandatory, optional, or depends on a
condition specific to the application domain.

The following table regulates who is authorized to use certain FBlockID/FktID combinations.

FktID Coordination Application Unique Proprietary/ Proprietary/
System Specific Supplier
Specific

FBlockID (0x000...0x1FF) (0x200...0x9FF) | (OxA00...0xBFF) | (0xC00...0xEFF) | (0xF00...0xFFE)

MOST Co. MOST Co. MOST Co. MOST Co. System Supplier

(0x00...0x9F) Integrator

System MOST Co. System MOST Co. System Supplier

Specific Integrator Integrator

(0xAO0...0xC7,

0xC9...0xEF)

Supplier MOST Co. Supplier MOST Co. Supplier Supplier

Specific

(0xFO...0xFB,

OxFD...0xFE)

Table 2-3: Responsibilities for FBlocklD and FktID ranges

Note: It is recommended that before using any proprietary function or proprietary FBlock, a Controller
verifies the identity of the device. This can be done, for example, by reading the Devicelnfo or
FBlockinfo property.

Specification Document
Page 56

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.5 OPType

The OPType indicates which operation must be applied to the property or method specified in FktID:

OPType For Properties For Methods
Commands:
0 Set Start’
1 Get Abort'
2 SetGet StartResult'
3 Increment Reserved
4 Decrement Reserved
5 Getlnterface® Getlnterface?
6 Not allowed StartResultAck
7 Not allowed AbortAck
8 Not allowed StartAck
Reports:
9 ErrorAck® ErrorAck
A Not allowed ProcessingAck
B Reserved Processing’
c Status Result’
D Not allowed ResultAck
E Interface’ Interface>
F Error Error”

Table 2-4: OPTypes for properties and methods

! These non-Ack OPTypes for Methods are deprecated. They lack a SenderHandle parameter.
2 GetInterface and Interface are optional OPTypes.
® ErrorAck is required for properties to report syntax errors in conjunction with illegal OPTypes
SErrorCode 0x01...0x04).

OPType Error may be used in conjunction with methods in cases where the SenderHandle
parameter is not known or not applicable.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 57

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.3.5.1 Error

Error is reported only to the Controller that has sent the instruction. On Error, an error code is reported
in the data field (Data[0]), along with additional information as shown in Table 2-5 and Table 2-6.

Note: Data[0]...Data[n] represent the payload of an application message; see 3.2.5.2 Application
Message Service (AMS) for details.

ErrorCode ErrorCode Description Errorinfo Errorinfo Description
Data[0] Data[1]...Data[n]

on ErrorAck on ErrorAck

Data[2]" Data[3]...Data[n]

Syntax Errors

0x01 FBlockID not available — No Info

0x02 InstID not available — No Info

0x03 FktID not available — No Info

0x04 OPType not available Return OPType Invalid OPType

Segmentation Error

0x0C

Segmentation Error
After this ErrorCode, the following Errorinfo 0x01 up
to 0x07 can be sent.

0x01

First segment missing, that is,
the first telegram of a
segmented message was not
received.

0x02

Target device does not
provide enough buffers to
handle a message of this size.

0x03

Unexpected segment number.

0x04

Too many unfinished
segmentation messages
pending.

0x05

Timeout while waiting for next
segment.

0x06

Device not capable to handle
segmented messages.

0x07

Segmented message has not
been finished before the
arrival of another message
with identical FBlockID, InstID,
FktID, and OPType sent by
the same node.

0x08

Reserved, must not be used.

Application Errors

0x05 Invalid length — No Info
0x06 Parameter wrong / out of range Return Parameter | Unsigned Byte containing the
One or more of the parameters were wrong, i.e., not position of the parameter,
within the boundaries specified for the function. where 1 corresponds to the
first parameter. Value of first
Example: Function Temp shall be set to 200, incorrect parameter only
although maximum value is 80. (optional).?
0x07 Parameter not available Return Parameter | Unsigned Byte containing the
One or more of the parameters were within the position of the parameter,
boundaries specified for the function, but are not where 1 corresponds to the
available at that time. first parameter. Value of first
unavailable parameter only
(optional).?
0x08 Reserved. Usage deprecated — No Info
0x09 Reserved. Usage deprecated — No Info
0x0A Reserved — No Info
0x0B Device Malfunction — No Info

Table 2-5: ErrorCodes and additional information (part 1)

! ErrorAck requires a SenderHandle in Data[0] and Data[1]. This results in different ErrorCode and
Errorinfo positions for Error and ErrorAck.
2 Parameters with higher position numbers have been ignored.

Specification Document

Page 58

MOST Specification

Rev. 3.0 E2 07/2010

© Copyright 1999 - 2010 MOST Cooperation

MOST® MOST

Specification COOPERATION
ErrorCode ErrorCode Description Errorinfo Errorinfo Description
Data[0] Data[1]...Data[n]
on ErrorAck on ErrorAck
Data[2] Data[3]...Data[n]
0x20 Function specific

After this ErrorCode, any function specific Errorinfo 0x01...0xBF Function specific Errorinfo.
can be sent.
0xCO...0xEF System Integrator specific
0xFO0...0xFE Supplier specific
0x40 Busy — No Info
Function is available, but is busy
0x41 Not available — No Info
Function is implemented in principle, but is not
available at the moment
0x42 Processing Error — No Info
0x43 Method Aborted — No Info
This ErrorCode can be used to indicate, that a
method has been aborted by the Abort/AbortAck
OPTypes
System Integrator Specific Errors
0xCO0...0xEF | System Integrator (e.g., car maker) specific. | Optional |
Supplier Specific Errors
0xFO...0xFE Supplier specific Optional Supplier specific Errorinfo.
After this ErrorCode, any supplier specific Errorinfo
can be sent.

Table 2-6: ErrorCodes and additional information (part 2)

Controllers shall react to errors in a way that guarantees the best overall system stability, that is, the
devices should be desi%;ned as fault tolerant systems. With respect to that, the Slaves also shall rely
on the error messages defined in the ErrorCodes table. ErrorCodes in the ranges 0x01...0x0B and
0x40...0x43 shall be preferred over the definition and use of function specific ErrorCodes (0x20).

The following requirements apply to all errors except segmentation error:

For avoiding infinite loops with respect to reporting errors, errors are reported only from Slave to
Controller. In addition, no reply of error messages is allowed on reception of multicast messages
(broadcast, groupcast, as well as wildcards for “all FBlocks™— see 2.2.3.2— and “all instances” — see
2.2.3.3.6).

By OPType Error, different kinds of errors are reported. Incoming messages are scanned for all these
errors:

1. Syntax Error (ErrorCode 0x01...0x04)

A syntax error occurs, if, for example, a function is accessed that does not exist or if an OPType that is
not implemented is called. Syntax errors are reported by the ErrorCodes 0x01...0x04. A syntax error
will be reported directly after reception of a faulty command. This also applies to methods, which will
not be started in that case. A Slave must report ErrorCode 0x01 if an unavailable FBlocklD was
requested. ErrorCode 0x02 must be reported if the requested InstID is not available.

Example for requesting a non-existing FBlock:

SrcAdr -> TrgAdr:

FBlockID. InstID.FktID.OPType(.--..)

//iT FBlock not available:

TrgAdr -> SrcAdr:

FBlockID. InstID.FktID._Error(ErrorCode = 0x01)

' Error messages in general are not limited to single telegrams (except segmentation errors).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 59

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2. Application Error — Parameter Error (ErrorCode 0x05...0x06)

The specified length does not match the actual length of the data field. There have been too few
parameters, too many parameters, or one parameter is out of range. Parameter errors are reported by
the ErrorCodes 0x05 and 0x06. Messages are only accepted when being completely correct. In
particular, this means that the length of the parameter area must be correct. The only exception is the
handling of Arrays that are too short (refer to section 2.2.4.2 on page 86).

3. Application Error — Temporarily not Available (ErrorCode 0x07, 0x40, 0x41)
In some cases it may happen that the message is correct but the execution is not possible at the
moment. The following distinction of cases must be performed:

e It may be that both methods and properties are implemented but cannot be executed due to
operation status. An example of a method would be SMSSend of the telephone, which cannot
be executed if the communication network is not available. In case of being called anyhow, it
would report an OPType Error with ErrorCode 0x41 “not available”. In such a case, the
application can supervise the status of the telephone and may repeat the sending of the SMS
as soon as the network is available again.

e A method can be available but may be busy at the moment. So it would be possible that
method SMSSend of the telephone is busy in sending another SMS. In that case an
ErrorCode 0x40 “busy” would be reported. Here, the application may perform retries. This
case can only occur in connection with methods.

e A property cannot be busy by definition. It is solely possible that a value is within the valid
range but is not selectable at the moment. An example can be property DeckStatus of the CD
drive, which cannot be set to “Play” if there is no CD loaded. Depending on the system design,
this would generate an ErrorCode 0x07 “parameter not available”.

4. Application Error — General Execution Error (ErrorCode 0x42)
Especially when using methods, execution errors may occur. In general, such an error (unspecific;
command was correct, but execution failed) may be reported by ErrorCode 0x42 “processing error”.

5. Application Error — Specific Execution Error (ErrorCode 0x20)
Besides the already listed errors, a MOST application may report specific errors during execution by
using OPType Error as well. Here, ErrorCode 0x20 “function specific” is used.

6. Application Error — Device Malfunction (ErrorCode 0x0B)
This error indicates that the requested function is temporarily not available due to a device
malfunction.

7. Segmentation Error (ErrorCode 0x0C)

Errors during reassembling the original message in the receiver can be caused, for example, by
missing segments, wrong order of arrival, or exceeding the timeout between two segments. In case of
such an error, the parts of the message that have already been received are discarded. In addition,
the application within the receiver is notified of the error by the Network Service.

Note: “Segmentation Error” is not limited to the context of segmented messages. The error might also
be reported as a result of a single transfer reception failure. The most likely reason in that case is an
input buffer overflow.

The segmentation error notifies the sender about the failure of the transfer. Therefore, the sender’'s
application may react in an appropriate way, for example, by trying to send the same message again.
The reaction depends on the respective problem that caused the error.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 60

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Unlike all other errors, segmentation errors are also reported from Controller to Slave.

Since the segment containing the sender handle in case of an Ack method may be missing,
Segmentation Error is never sent as an ErrorAck message.

8. Application Error — Method Aborted (ErrorCode 0x43)

This error is used in case of abortion of methods by OPType Abort or AbortAck. A MOST device called
“A” starts a method in device “B”. Due to some exceptional events, a third device “C” aborts the
method running in device “B”. In that case, device “B” reports error “Method Aborted” to both the
device that started the method and to the device that aborted it since they are both currently involved
in the process. No other Controllers need to know about this.

The error report “Method Aborted” must always be sent back as a result of a successful abort request,
even if the method is not executed anymore, for example, because it has finished successfully
already.

The examination and processing of errors is done in the logical and temporary sequence as described
above and in Figure 2-16 on page 62.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 61

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

Receive application message

Send Error OPType Error

i ?
Segmentation error? ErrorCode 0x0C

no

Send Error OPType Error, ErrorAck
ErrorCodes 0x01..0x04

Syntax error?

Network Service (Addressing, OPType)

yes—p

no

Send Error OPType Error, ErrorAck
ErrorCodes 0x05, 0x06

Parameter error?
(Length, number, range)

MOST Application

no

Send Error OPType Error, ErrorAck
ErrorCodes 0x07, 0x40, 0x41

Temporarily not available?

no

Send Error OPType Error, ErrorAck

General execution error?
ErrorCode 0x42

yes—p

no

Send Error OPType Error, ErrorAck

- . ”
Specific execution error? ErrorCode 0x20

yes—p

no

G

Figure 2-16: Processing of messages including error check on different layers

Higher levels of error management and individual error messages are to be specified individually.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 62

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.3.5.2 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck

The behavior is equal to that of Start, StartResult, Processing, Result, and Error (refer to section
2.2.3.5.4 on page 65). The only difference is that the first parameter transports the SenderHandle
(refer to section 2.2.2.2 on page 48).

StartResultAck Received

Error?

Appl — not available?

Syntax, Appl — Parameter,

Yes
Send ErrorAck

Start Method

i

Start Timer tprocessingDefauitt

Start Timer tprocessingdefauit2

Error?

Processing

Method Ready?

Send ProcessingAck

Figure 2-17: Flow for handling communication of methods (Slave’s side)

P Send ErrorAck

Send ResultAck
(<Parameter>)

End

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification

Rev. 3.0 E2 07/2010

Page 63

MOST® MOST

Specification CODPERATION

StartResultAck Sent

'

Start Timer twaitForProcessing1

>

ErrorAck
received?

— Set Error Condition

Start Timer twaitrorProcessing2

ResultAck
received?

———P» Set Success Condition ————— P

Yes rocessingAck

received?

Set Error Condition — P

No End

Yes

Figure 2-18: Flow for handling communication of methods (Controller’s side)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 64

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.5.3 Start, Error

By using Start, a Controller triggers a method. This approach is useful only for methods that do not
return results.

Controller FBlock (Slave) Controller FBlock (Slave)
FktID.Start FktID.Start e

[

[
P>

Syntax-/ application error: FktID.Error

d
«

End of procedure T

Figure 2-19: Sequences when using Start with and without error

A method started by “Start” must be called only one time (multiple instances are not allowed). In case
a method that was started by “Start” is currently running, and a second Controller tries to start the
same method again, the method has to reply with an error “Busy”. The already running method is not
affected by this new incoming request. For running several instances of the same method, StartAck
must be used.

Note: Usage of non-Ack OPTypes is no longer recommended. In the above example, the OPType
StartAck should be used instead of Start.

2.2.3.5.4 StartResult, Result, Processing, Error

In opposite to triggering a method by using Start, the Controller requires feedback when it uses
StartResult. It then expects reports about the currently running procedure (with OPType Processing),
as well as about the result (with OPTypes Result or Error).

If there are syntax or parameter errors during the calling of a method, there will be a reply using Error.
The method will not be started.

If a method that was started can generate a result within terocessingberauitt after reception of StartResult, it
returns the result by using “Result(<Parameter>)" as soon as it is available. There will be no reply
“Processing” in that case. The same applies to application errors.

If a method cannot generate a result within tprocessingpetaurtt after having received StartResult and if there
is no application error, it replies after that time by using “Processing”. After that, it starts the timer
tprocessingDefauite- This timer works in the same way as tprocessingpefautt- 1hat means that in case of
terminating the method within tprocessingberauitz, @ reply “Result(<Parameter>)" will be sent. Otherwise,
“Processing” will be reported when the timer expires. Upon sending processing, the timer is restarted.
The Controller evaluates the first reply by using a timer interval of twaitrorprocessingt (COmpensation of
eventual delays). If there is no reply within this time (neither Result, nor Error, nor Processing), it
assumes an error. After receiving the first processing, it uses a timer with interval twaitrorprocessing2 for the
following receptions.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 65

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

The System Integrator may change the two default timing values for each method:

1. Initial timeout between StartResult and Processing (tprocessingDefauit1)

2. A second timeout between subsequent processing messages (tprocessingefault2)

Note: Usage of the Start and StartResult OPTypes is no longer recommended for Application FBlocks.
The OPTypes StartAck and StartResultAck should be used instead.

2.2.3.5.5 Get, Status, Error

By using OPType Get, a Controller asks for the status of a property. In case of a Get request, a reply
using Status will be generated, if the syntax check has shown no errors. Otherwise, Error will be
returned. A property shall reply to a request within tprpery. If the Controller does not receive a reply
within twaitrorproperty after having sent Get, this is an error. The Controller may react more tolerantly and
wait for a longer time. Nevertheless, an interruption of the waiting process is required.

2.2.3.5.6 Set, Status, Error

By using Set, the content of a property is changed. Set behaves equal to StartAck for methods. This
means that the Controller does not expect any reply (except error reports). If the syntax check is ok,
the command can be executed.

The changed status of the property will be reported to all Controllers that are registered for this
function. This is done via natification. If the triggering Controller is registered, it will receive a status
report indirectly. This way is recommended, for example, if the Controller is registered in the
Notification Matrix. In addition, it may be that the changing of a property, by a Controller from outside,
generates the changing of the status of several other properties by some internal mechanisms.

Therefore, the controlling of properties by using Set is the preferred mechanisms for Controllers that
are registered in the Notification Matrix of a controlled FBlock.

2.2.3.5.7 SetGet, Status, Error
SetGet is the preferred way of controlling FBlocks for Controllers:

e that control a property only in rare cases
e that are not registered in the Notification Matrix

SetGet is a combination of Set and Get, which means that the Controller (in case of a correct syntax)
automatically gets the changed status in return.

In case of a request by using SetGet, a reply using Status is generated, if the syntax check has shown
no errors. Otherwise Error will be returned. A property shall reply on a request within tprpery. If the
Controller does not receive any reply within twairoreroperty after having sent SetGet, an error can be
assumed. It is not critical if the Controller reacts more tolerantly and waits for a longer time.
Nevertheless, an interruption of the waiting process is required.

2.2.3.5.8 GetlInterface, Interface, Error

With the OPType Getlnterface the Function Interface is requested, which is returned with the OPType
Interface. The behavior of these OPTypes is similar to Get and Status (refer to section 2.2.3.5.5).

Note: Getlnterface and Interface are optional OPTypes (see 4 Appendix A: Optional OPTypes).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 66

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.5.9 Increment and Decrement, Status, Error

Increment and Decrement provide a relative changing of a variable in opposite to the absolute
changing by using Set. When using Increment or Decrement, the new status will be reported to the
triggering Controller, as well as to the Controllers registered in the Notification Matrix. This is similar to
SetGet. In case of a Controller requesting Increment or Decrement although the respective maximum
or minimum is reached, no error will be reported. In fact the old value will be reported. This answer is
directed to the triggering Controller only. A reporting to the Controllers registered in the Notification
Matrix is not required since the value actually did not change.

Note: Usage of the OPTypes Increment and Decrement is not recommended in conjunction with
multicast messages; the OPType SetGet should be used instead.

2.2.3.5.10 Abort, Error

These OPTypes are available for methods only. When used, Abort terminates the execution of a
method. The message abortion is confirmed through an Error(Aborted) message. Abort must not have
any parameters. Please note that methods in general should be aborted only by that application which
has started the method. After the method has been aborted, information about this is sent out. Please
see 8 Application Error — Method Aborted (ErrorCode 0x43) on page 61 for more information.

Note: Usage of the Abort OPType is no longer recommended. The OPType AbortAck should be used
instead.

2.2.3.5.11 AbortAck, ErrorAck

This OPType is available for methods only. When used, AbortAck terminates the execution of a
method. The message abortion is confirmed through an ErrorAck(Aborted) message. In opposite to
“Abort”, AbortAck transports additional “routing” information (SenderHandle, as described in section
2.2.2.2 on page 48). AbortAck must not have any parameters except SenderHandle.

Please note that methods in general should be aborted only by that application which has started the
method. After the method has been aborted, information about this is sent out. Please see 8
Application Error — Method Aborted (ErrorCode 0x43) on page 61 for more information.

2.2.3.6 Function Formats in Documentation
In documentations that must be human readable, messages have to be presented in a suitable form:
SrcAdr -> TrgAdr: FBlockID.InstID._FktID.OPType(Parameter)
SrcAdr and TrgAdr are the node position addresses of the sending and the receiving device,
respectively. In most cases, only one instance of the FBlock is available in the system and InstID can
be omitted.
SrcAdr -> TrgAdr : FBlockID.FktlD.OPType(Parameter)
Example:
Choosing track of the CD changer:
HMI -> CDC : AudioDiskPlayer.Track.Set(5)

CDC -> HMI : AudioDiskPlayer.Track.Status(5)

The messages are included in a library and are grouped by functions (FBlock Library).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 67

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.7 Length

Length specifies the length of the data field in bytes. It is encoded in 16 bits.

Length = 0x0000 Data field of length O
Length = 0x0001 Data field of length 1 byte.
Length = OxFFFF Data field of length 65535 bytes.

The system-specific maximum length is defined by the System Integrator. Functions that need to
transport large application messages communicate via MOST High Protocol and the Packet Data
Transfer Service. These functions will be marked in the FBlock Specification.

For the description of length determination, please refer to 3.2.5.2 Application Message Service
(AMS).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 68

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.8 Data and Basic Data Types

Within a data field, none, one, or multiple parameters in any allowed combination of the following data
types can be transported. They are transported most significant bit (MSB) first. The sign is encoded in
the most significant bit and 2's complement coding is used for signed values. There are the following
basic data types:

Boolean Unsigned Byte String

BitField Signed Byte Stream

Enum Unsigned Word Classified Stream
Signed Word Short Stream

Unsigned Long
Signed Long

Floating point representation
Using only the data types mentioned above, no floating point format would be possible. The missing
information about the location of the decimal point is added via an exponent of type Signed Byte.

Note: The exponent is a parameter-specific constant. It is therefore not transmitted over MOST when
the value is transmitted.

The value to be displayed must be transported in the following way:

value to be displayed = transmitted value * 105"

Example 1:
transmitted value: 1073 (word)
exponent: -1
step: 1
unit: MHz

value to be displayed: 107.3 (MHz) (can be changed in steps of 100 kHz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107.3 MHz to 107.8 MHz.

Example 2:
transmitted value: 1073 (word)
exponent: +5
step: 1
unit: Hz

value to be displayed: 107,300,000 (Hz) (can be changed in steps of 100 000 Hz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107,300,000 Hz to 107,800,000 Hz.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 69

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Example 3:
transmitted value: 1000 (word)
exponent: -3
step: 10
unit: m

value to be displayed: 1.000 (m) (can be changed in steps of 10 mm)

In case of an Increment operation with NSteps = 5, the current length would be incremented from

1.000 m to 1.050 m.

The exponent can be already known through the receiver of the parameter (Controller), or it can be
requested through the sender (function) of the value (refer to section 2.2.4 on page 77).

2.2.3.8.1 Boolean

Definition of Type Comments

1 byte Only one bit of the byte can be used.
2.2.3.8.2 BitField

Definition of Type Comments

Size byte = (Mask.Data)
Size: - (Total Size of the BitField): 1, 2, 4, or 8 bytes
Data: Y2 Size byte (Data Content Area)

Mask: Y2 Size byte (Masking Area):

Example:
State:
Operation:
NewState:

“Mask” is a masking bit field of the same size as the Data Content
Area “Data”. It indicates to which bits in the Data Content Area of the
BitField an operation shall be applied. The LSB of “Mask” masks the
LSB of the Data Content:

bit k (Mask) =1 -> apply Operation to bit k (Data)
bitk (Mask) =0 -> do not apply operation to bit k (Data)

MyBitField.Status (XXXX XXXX, 1010 1001)
MyBitField.Set (0000 1000, 1010 0111)
MyBitField.Status (XXXX XXXX, 1010 0001)

“X” means “don’t care” in this example. These bits should be set to zero by the sender of the Status
message. However, their content must be ignored in the receiver of the Status message.

BitField in Arrays and Records:

A BitField in an Array or Record represents one variable. That means it is addressable as an entity via
one dedicated value of Pos.

Specification Document
Page 70

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Example:

MyArray = Array of BitField:

Requesting Status report (1):
MyArray.Get (PosX=0x0)

Answer:
MyArray.Status (PosX=0x0,

Requesting Status report (2):
MyArray.Get (PosX=0x2)
Answer:

MyArray.Status (PosX=0x2,

Performing a Set operation (1):
MyArray.Set (PosX=0x0,

Result:
MyArray =

Performing a Set operation (1):
MyArray.Set (PosX=0x4,

Result:
My Array =

XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX

XXXX

1000
1000
1000
1000

XXXX
XXXX
XXXX
XXXX

1111

XXXX
XXXX
XXXX
XXXX

XXXX,0100
XXXX,1110
XXXX,0010
XXXX,0111

XXXX,0100
XXXX,1110
XXXX,0010
XXXX,0111

XXXX,1110

0001,1000
0001,1000
0001,0111
0001,0111

XXXX,1100
XXXX,1110
XXXX,0010
XXXX,0111

0000,1000

XXXX, 1100
XXXX,1110
XXXX,0010
XXXX,1000

1001
0011
1101
1111

1001,
0011,
1101,
1111)

0011)

0001,
0001,
1110,
1110)

1001
0011
1100
1110

0001)

1001
0011
1100
1110

Specification Document

MOST Specification
Rev. 3.0 E2 07/2010

© Copyright 1999 - 2010 MOST Cooperation

Page 71

MOST®

Specification

MOST

COOPERATION

2.2.3.8.3 Enum

Definition of Type

Comments

1 byte -

2.2.3.8.4 Unsigned Byte

Definition of Type

Comments

1 byte -

2.2.3.8.5 Signed Byte

Definition of Type

Comments

1 byte -

2.2.3.8.6 Unsigned Word

Definition of Type

Comments

2 bytes -

2.2.3.8.7 Signed Word

Definition of Type

Comments

2 bytes -

2.2.3.8.8 Unsigned Long

Definition of Type

Comments

4 bytes -

2.2.3.8.9 Signed Long

Definition of Type

Comments

4 bytes -

Specification Document
Page 72

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.8.10 String

Definition of Type Comments

Variable length | = (Identifier.Content.Terminator)

In general, only “most significant bit (MSB) first, high byte first” notation must be used for strings.
Every string starts with an Identifier and is Null terminated.

Identifier: 1 byte
Code String type ASCII compatible
0x00 Unicode, UTF16 No
0x01 ISO 8859/15 8bit Yes
0x02 Unicode, UTF8 Yes
0x03 RDS No
0x04 DAB Charset 0001 No
0x05 DAB Charset 0010 No
0x06 DAB Charset 0011 Yes
0x07 SHIFT_JIS No
0x08 - OxBF | Reserved
0xCO0...0xEF | System Integrator (e.g., Car Maker)
0xFO0...0xFF | Supplier

Content: Characters
Terminator: 1 Character Null character. Number of zeros. Depends on encoding.

For calculating length, only the number of characters is relevant. Length explicitly excludes the
Identifier and the terminating character(s). Strings that are using the RDS character set may contain
codes for switching the code pages. This can produce strings, which need more bytes in memory than
the number of characters they contain.

The encoding of an “empty” string depends on the used code:

Code “Empty” String Comment
UNICODE, UTF16 0x00,0x00,0x00 -
ISO 8859/15 8 bit 0x01,0x00 -

Unicode, UTF8 0x02,0x00 -
RDS 0x03,0x00 -
SHIFT_JIS 0x07,0x00,0x00 -

Since all strings are null terminated, character sets that use a null character are not allowed.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 73

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.8.11 Stream

Definition of Type Comments

Variable length | Any data content

Streams can be unstructured or structured. An unstructured stream contains arbitrary data. A
structured stream is closely related to the notion of a Variant Record (disjoint union) in common
programming languages. In MOST, these are called “stream cases”.

Unstructured streams
Unstructured streams do not contain any stream cases.

Structured streams
A structured stream consists of one or multiple stream cases. The individual stream cases contain
either a series of stream parameters or stream signals.

Simple Stream
A simple stream is either an unstructured stream or a structured stream with exactly one stream case.

Complex Stream
A complex stream is a structured stream that consists of multiple stream cases.

The following restrictions apply to the use of data type Stream:

1. If a parameter is of data type Stream, this parameter must be the last parameter of a
message.

2. If a member of a record is of data type Stream, this member must be the last element of the
record.

3. Data type Stream cannot be used in any Array function class (including DynamicArrays,
LongArrays and Maps).

2.2.3.8.11.1 Stream Cases
A selector value determines which defined type is used, that is, which stream case applies.

— The selector value itself is not part of the Stream and must be in front of the Stream it controls;
however, the selector of a complex stream may be embedded in another stream.

— Other parameters may occur between the selector and the Stream.

— A string selector must be coded with string code 0x01 (ISO8859/15 8bit).

Example:

In this example, information about a contact is to be transmitted over MOST. The contact could be a
real person, a company, or an institution. Depending on the kind of contact (ContactType), the number
of transmitted data items (ContactData) will vary.

ContactType: The ContactType Enum is the selector. If, for instance, the value of parameter
ContactType is 0x00, the contact is a person.

Basis datatype Range of Code Description
values
Enum 0x00...0x02 [0x00 Person
0x01 Company
0x02 Institution
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 74

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

ContactData: This is the actual contact information. Depending on the value of the selector
(ContactType), ContactData will contain different items. If, for example, ContactType is 0x00 (the
contact is a person), ContactData will contain LastName, MiddleName, and FirstName.

Basis datatype Length Condition Description

Stream ContactType = 0x00 | Content: LastName, MiddleName, FirstName
ContactType = 0x01 | Content: CompanyName, CompanyType
ContactType = 0x02 | Content: InstitutionName

2.2.3.8.11.2 Stream Signals
A stream signal represents a value that consists of an arbitrary number of bits.

Example:
In this example, the state of one 4-bit port and two 2-bit ports is to be transmitted over MOST in a
Stream.

PortState: The PortState stream is divided into three stream signals. One of them is 4 bits wide, two
of them are 2 bits wide.

Basis datatype Max. Length | Condition Description
Stream - Stream signals: Port0, Port1, Port2
Signal Name Bit position [Number of Description
bits
Port0 0 4 State of 4-bit Port .

Port1 4 2 State of 2-bit Port 1.

Port2 6 2 State of 2-bit Port 2.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 75

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.3.8.12 Classified Stream

Definition of Type Comments

Variable length | =(Length.MediaType.Content)

Classified Stream acts as a container for different objects.
Length: 2 bytes Length of MediaType and Content in bytes.

MediaType: Null terminated ASCII string (no coding identifier) containing the data typing of the
object that is transported in the Classified Stream. The format used for this is the
same as for HTTP/1.1.

MediaType = type “/” subtype *(“;” parameter)

The MediaType’s values type, subtype, and parameter are specified by the Internet
Assigned Number Authority IANA.

Example:

Length [MediaType Content
Byte Nr. 0 1 2 | 3|4 |56 |7 8 |9 10|11 |12 |13 | 14 | 15| 16
Data 0x00|0Ox0F| t e X t / p | a i n |[0Ox00f M | O | S T

When MediaType is an empty string, “application/octet-stream” shall be assumed:

Length [MediaType Content
ByteNr. | 0 | 1 2 3456|789 10]11][12]13]14
Data 0x00{0x0D 0x00 < binary data >

Information about HTTP/1.1 can be found in:
RFC 2616 - Hypertext Transfer Protocol — HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. (Obsoletes RFC 2068).

2.2.3.8.13 Short Stream

Definition of Type Comments

Variable length | =(Length.Content)

The Short Stream type supports the same structuring mechanisms as the Stream data type, that is,
stream cases and stream signals.

Length: 1 byte Length of the Content.
Content: max. 255 bytes Any data.
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 76

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4 Function Classes

When having a look at function classes, properties and methods must be differentiated. The properties
themselves consist of such with one variable, and of such with multiple variables.

In the next sections, the following universal parameters are used by the optional OPTypes
Getlinterface and Interface:

Flags: 8 bits

Bit 6-7 Bit 4-5 Bit 3 Bit 2 Bit 1 Bit 0

Reserved | Channel Type | Notification | Unicode | Enabled | Visible

By using the Visible bit, the device can influence whether the function is displayed at the moment or
not (default = 1 = visible). It is possible to disable a function temporarily. This is done by setting the
Enabled bit to 0. Bit 2 indicates whether a function uses Unicode or standard strings. The Notification
bit shows whether a function supports notification. This bit is valid only for properties. The Channel
Type bit field consists of two bits. It shows the type of channel that is used when communicating with
the function. Table 2-7 shows the three possible modes.

OPType | Property Method Mode O | Mode 1 | Mode 2

0 Set Start C A A/C

1 Get C A C
Abort C C C

2 SetGet StartResult C A A/C

3 Increment C C C

4 Decrement C C C

5 Getinterface” | Getinterface' | C C c

6 StartResultAck | C A A/C

7 AbortAck C C C

8 StartAck C A A/IC

9 ErrorAck C C C

A ProcessingAck | C C C

B Processing C C C

C Status Result C A A/C

D ResultAck C A A/C

E Interface’ Interface’ C C C

F Error Error C C C

Table 2-7: The different modes of the bit field Channel Type

The OPTypes Getlnterface and Interface need to be available on the Control Channel so that the
interface can be received regardless of if the requesting node is using MOST High or not.
Furthermore, MOST High Protocol connections must not be established for the OPTypes Increment,
Decrement, AbortAck, ProcessingAck, Processing, Error, and ErrorAck.

MOST High Protocol connection errors and syntax errors (see section 2.2.3.5.1) are implicitly
indicated by the failure to open a MOST High connection. If syntax errors and application errors are
reported, this must be done via the Control Channel.

The meaning of the characters “C” and “A” in the table is as follows:

C: messages on Control Channel

A: messages on the Packet Data Channel using MOST High

A/C: messages either on the Control Channel or the Packet Data Channel using MOST High

! Getinterface and Interface are optional OPTypes.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 77

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Mode 0:
This is the standard mode where all communication with the function is done via the Control Channel.

Mode 1:
Main communication is done via the MOST High Protocol on the Packet Data Channel.

Mode 2:
This is a mixed mode where only the OPTypes that are carrying a lot of data are accessed over the
Packet Data Channel via the MOST High Protocol.

Bits 6 and 7 are reserved for future use.

The following table describes the remaining parameters.

Parameter Size Code [Description

Class 8 bits 0x00 [Unclassified Method
0x01 | Trigger Method

0x02 | Sequence Method
0x10 | Unclassified Property

0x11 Switch

0x12 | Number

0x13 | Text

0x14 | Enumeration

0x15 | Array (Refer to section 2.2.4.2.2 on page 89.)
0x16 | Record (Refer to section 2.2.4.2.1 on page 87.)

0x17 | DynamicArray (Refer to section 2.2.4.2.3 on page 92.)

0x18 | LongArray (Refer to section 2.2.4.2.4 on page 95.)
0x19 | BoolField

0x1A | BitSet

0x1B | Container

0x1C | Sequence Property

0x1D | Map
OxFF | Abort (No further specifications behind this location)
OPTypes 16 bits Flag field of available OPTypes (1 = OPType available).

LSB represents the least significant OPType “Set”, which
has code 0x0.

Name Name of function as null terminated string.

Table 2-8: Parameters for Interface descriptions: Class, OPTypes, and Name

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 78

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.4.1 Properties with a Single Parameter

Many functions contain only a single parameter. These functions can be divided into classes, which
correspond with the type declaration in programming languages. The class of a property is derived
from the basis data type (Refer to section 2.2.3.8 on page 69) of its variable.

At the moment there are the following function classes for single properties:

Function Class | Explanation

Switch Properties of this class contain a variable of type Boolean (on/off; up/down). It
can be set (Set, SetGet) or read (Get, Status).

Number Properties of this class contain a numeric variable (frequency, speed limit,
temperature), which can be read (Get, Status), set absolutely (Set, SetGet) or
changed relatively (Increment, Decrement).

Text Properties of this class have a string variable (Status), e.g., Warning, Hint.

Enumeration Properties of this class contain a variable of type Enum. They provide an
unchangeable number of invariable elements, from which can be chosen
(Set). Examples: Drive status (Stop, Pause, Play, Forward, Rewind), Dolby
(B, C, Off).

BoolField Properties of this class contain a number of bits that should either be used as
flag field, or as controlling bits that are always manipulated together.

BitSet Properties of this class are based on data type BitField. They contain a
number of bits, which can be manipulated individually.

Container Properties of this class contain either a Stream, Classified Stream, or Short
Stream.

Table 2-9: Classes of functions with a single parameter

The function classes (basic classes) with one variable and their resulting protocols are described in

detail below.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

Page 79

MOST®

Specification

MOST

COOPERATION

2.2.4.1.1 Function Class Switch

OPType Parameters
Set Content’
Get
SetGet Content
Getinterface?
Status Content
Interface Flags, Class, OPTypes, Name
Error ErrorCode, Errorinfo
Content: Boolean 0 for off
1 foron
Example: RDSONOff in AM/FMTuner1
Function: RDSONOTf e.g., Ox00A
Flags: visible, enabled, 0000 1011 = OxO0B
no Unicode, notification
Class: Switch Ox11
OPTypes: Get, SetGet, Status 1101 0000 0010 0110 = 0xD026
GetlInterface, Interface,
Error
Name: RDSONOFF ""RDS""

Setting RDS = OFF:

HMI -> Tuner: AM/FMTuner.1.RDSOnOff.SetGet (00)

Note: This is a hypothetical example. It does not necessarily follow the MOST FBlock Specification.

' In the next sections that introduce individual function classes, some parameters appear in boldface
type inside the OPType tables. These marked parameters are characteristic for a function class and

are described in detail below the tables.
2 Interface and Getlnterface are optional OPTypes. This applies to function class Switch and all
function classes described in the following sections.

Specification Document

Page 80

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.1.2 Function Class Number

OPType Parameters
Set Content

Get

SetGet Content

Increment NSteps

Decrement NSteps

Getlnterface

Status Content
Interface Flags, Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step
Error ErrorCode, Errorinfo
Content: Unsigned Byte The value of this property.
Signed Byte
Unsigned Word
Signed Word
Unsigned Long
Signed Long
DataType: Unsigned Byte Type of variable:
0x00 Unsigned Byte
0x01 Signed Byte
0x02 Unsigned Word
0x03 Signed Word
0x04 Unsigned Long
0x05 Signed Long
Exponent: Signed Byte Position of decimal point; Value = Number * 105"
Min: Minimum value of variable of type DataType
Max: Maximum value of variable of type DataType
Step: Step width for adjusting type DataType. The following

condition must always be true:
Max = Min + (n * Step)

NSteps: Unsigned Byte Number of steps, as defined under “Step
width for adjusting”.
Default value is 1; value 0 is not allowed.
NSteps has no exponent, but has the same unit
as the Number parameter.

Units: Unsigned Byte Unit, according to Table 2-10.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 81

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Unit Encoding Unit Encoding
none 0x00 Temperature and Pressure:
°C 0x60
Distance: F 0x61
cm 0x01 K 0x62
m 0x02 bar 0x63
km 0x03 psi 0x64
miles 0x04
Miscellaneous:
Time: dB 0x70
ps (Micro second) 0x10 % 0x71
ms (Millisecond) 0x11
s (Second) 0x12 Voltage:
min (Minute) 0x13 mV 0x80
h (Hour) 0x14 \Y 0x81
d (day) 0x15
mon (Month) 0x16 Current:
a (Year) 0x17 mA 0x90
A 0x91
Frequency:
1/min 0x20 Angle:
Hz 0x21 Degrees 0xA0
kHz 0x22 Minutes 0xA1
MHz 0x23 Seconds 0xA2
360°/ 2% 0xA3
Volume: 360°/ 2° 0xA4
| (Liter) 0x30
gal (UK) 0x31 Resolution:
gal (US) 0x32 Pixel 0xB0O
ccm 0x33
Data:
Consumption: Byte 0xCO
1/100km 0x40 kByte 0xC1
miles/gal 0x41 MByte 0xC2
km/| 0x42 GByte 0xC3
TByte 0xC4
Speed and Acceleration: bit 0xC5
km/h 0x50
miles/h 0x51 Data Rate:
m/s 0x52 bps 0xDO
cm/s 0x53 kbps 0xD1
°ls 0x54 Mbps 0xD2
m/s’ 0x55 Bps 0xD3
kBps 0xD4
MBps 0xD5

Table 2-10: Available units®

' According to the International System of Units (SI).

Specification Document

Page 82

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.4.1.3 Function Class Text

OPType Parameters

Set Content

Get

SetGet Content

Getlnterface

Status Content

Interface Flags, Class, OPTypes, Name, MaxSize

Error ErrorCode, Errorinfo

Content: String The actual text.

MaxSize: Unsigned Byte Maximum length of the string

2.2.4.1.4 Function Class Enumeration

OPType Parameters
Set Content
Get
SetGet Content
Getlnterface
Status Content
Interface Flags, Class, OPTypes, Name, Size, Namel, Name2...
Error ErrorCode, Errorinfo
Content: Enum Number of active element or of element to be activated
Size: Unsigned Byte Length of enumeration
0 = no element
1 = one element
2 = two elements....
Name x: String Null terminated string, representing the name of element x.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 83

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.4.1.5 Function Class BoolField

OPType Parameters
Set Content
Get
SetGet Content
Getlnterface
Status Content
Interface Flags, Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
Error ErrorCode, Errorinfo
Content: Unsigned Byte Data area, containing, e.g., flags
Unsigned Word
Unsigned Long
DataType: Unsigned Byte Type of variable:
0x00 Unsigned Byte
0x02 Unsigned Word
0x04 Unsigned Long
NElements: Unsigned Byte Number of Elements in the BoolField
BitName: String Null terminated string, indicating the name of the
respective element
BitSize: Unsigned Byte Number of bits required for encoding the element.

7 Encoding starts at the LSB.

When function class BoolField is used, a field of either 8bits, 16bits, or 32bits will be reserved. Using
the flags starts at the least significant bit (LSB). The value 0b**** ***0 means false and Ob**** ***1
means true. Manipulating a BoolField always requires the writing of the entire field.

Example:

This example shows a BoolField based on “Unsigned Word”. There are 11 bits used for representing
some flags. Please note that it is also possible to combine several bits for representing a special
element (flag).

B Y T E 1 B Y T E 0
D7, D6 | D5 | D4 | D3 | D2 | D1 | DO D7 | D6 | D5 | D4 | D3 | D2 | D1 |DO
F.10| F.9 | F. 8 F.7 | F.6 | F.5| F.4 | F.3|F.2|F1]|F.O0

Specification Document

Page 84

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.4.1.6 Function Class BitSet

OPType Parameters

Set Content

Get

SetGet Content

Getlnterface

Status Content

Interface Flags, Class, OPTypes, Name, Size

Error ErrorCode, Errorinfo

Content: BitField

Size: Unsigned Byte Size of SetOfBits (Mask + Data) in bytes

2.2.4.1.7 Function Class Container

OPType Parameters
Set Content

Get

SetGet Content

Getlnterface

Status Content

Interface Flags, Class, OPTypes, Name, Datatype, MaxLength
Error ErrorCode, Errorinfo

Function class Container is used for objects that cannot be described in a satisfying way by the other

structures.
Content: Stream
Classified Stream
Short Stream
DataType: Unsigned Byte Type of variable:
0x00 Stream
0x01 Classified Stream
0x02 Short Stream
MaxLength: Unsigned Word MaxLength indicates the maximum size of the stream in

7 bytes.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

Page 85

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.2 Properties with Multiple Parameters

Some functions contain multiple parameters. Here the principle should be to only combine functions
that are very similar in nature (e.g., Station name and PI). Parameters that do not match like that
should be modeled in separate functions (e.g., Station name and current frequency).

Functions with multiple parameters can also be assigned to classes called Array and Record. In an
Array, parameters are of the same type, in a record they are of different types. It is possible to build an
Array of Records or a Record containing an Array. Such “two dimensional” constructs are allowed.

More complex constructs with dimensions exceeding two (Array of Array of Record or a Record with
two Arrays) are definitely not allowed. In addition, it is not allowed to reference other functions from
within a function. This means that an interface description of a function must not reference the
interface descriptions of other functions. A function must be described completely and independent of
other functions.

Function Class | Explanation

Record Properties of this class contain a variable of a composite type. It may consist
of any number of single properties.

Array Properties of this class contain only elements of the same type.

DynamicArray Properties of this class use a more dynamic approach than ordinary Arrays.

LongArray Properties of this class are used to handle large Arrays in a sophisticated
way.

Sequence Properties of this class consist of a number of single values that can be

Property treated together as a single property.

Map Properties of this class are similar to DynamicArrays; however, no ordering of
the elements may be assumed.

Unclassified Unclassified Properties cannot be matched to any other function class in a

Property meaningful manner.

Table 2-11: Classes of functions with multiple parameters.

Note:

1. All basic data types, except the data type ‘Stream’ can be used without restrictions as parameters
in Arrays, Records and Sequences. Stream does not have a defined length and is therefore
excluded for Arrays. Stream may be used as last element in Records or as last parameter in a
Sequence.

2. Inthe interface description of function classes with multiple parameters, the OPTypes are omitted.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 86

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.2.1 Function Class Record

OPType Parameters
Set Position, Data

Get Position

SetGet Position, Data

Increment Position, NSteps

Decrement Position, NSteps

Getlnterface

Status Position, Data

Interface Flags, Class, Name, NElements, IntDescl, IntDesc?2...
Error ErrorCode, Errorinfo

Position always consists of two bytes and indicates what will be set, requested, or read in the record.
The first byte (x) indicates the position of an element in the record. If the record contains an Array (two
dimensions), the second byte specifies the element in the Array. On:

° X:y:O,
the operation is related to the entire record.

e x=(Position of Array in Record) AND y>0,
the operation is related to the y-th element in the Array.

e x=(Position of Array in Record) AND y=0,
the operation is related to the entire Array.

e x<>(Position of Array in Record) AND y=0,
the operation is related to the respective element in the record.

Even if the record does not contain an Array, the position consists of two bytes, but the second byte is
not used in this case.

Data represents data according to the structure of the record and the specifications by position.

If a record contains an Array, the Array must be the last element of the record.

NElements Unsigned Byte Number of elements in Record

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of the
interface descriptions defined for the respective class can be inserted. Please note that here in case of
elements, parameter Flags is not available. For parameter OPTypes only Set, Get, SetGet, Status,
Increment, Decrement, and Error can be used.

Note: IntDesc only represents a group of parameters. No referencing of other functions and their
interface descriptions is done here!

Below, IntDesc is displayed with respect to the basic classes:

Class IntDesc

Switch Class, OPTypes, Name

Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Text Class, OPTypes, Name, MaxSize

Enumeration Class, OPTypes, Name, Size, Namel, Name2, ...

BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 87

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Class IntDesc

BitSet Class, OPTypes, Name, Size

Array Class, Name, NElements, IntDesc
Container Flags, Class, OPTypes, Name, MaxLength

Even if the record does not contain an Array, the position consists of two bytes, but the second byte is
not used in this case.

X —> 1

Record —>

Record —>

2 3 4 5
R1 R2 R3 R4 R5
Array y
2 3 4 5
R5
R1 R2 R3 R4 R 1
A2 2
A3 3

Figure 2-20: Meaning of position x in a record (above) and of position y in a record with an Array (below)

Specification Document

Page 88

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

2.2.4.2.2 Function Class Array

OPType Parameters
Set Position, Data

Get Position

SetGet Position, Data

Increment Position, NSteps

Decrement Position, NSteps

GetlInterface

Status Position, Data
Interface Flags, Class, Name, NMax, IntDesc
Error ErrorCode, Errorinfo

Function class Array is very similar to Record. NMax, of type Unsigned Byte, represents the maximum
number of elements. Since the Array contains only elements of the same type, there only needs to be
one IntDesc of the following type:

Class IntDesc

Switch Class, OPTypes, Name

Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Text Class, OPTypes, Name, MaxSize

Enumeration Class, OPTypes, Name, Size, Namel, Name2, ...

BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size

Array Class, Name, NElements, IntDesc

Record Class, Name, NElements, IntDesc1, IntDesc2, ...

Container Flags, Class, OPTypes, Name, MaxLength

Analogous to the determinations of a record, the following is valid here for an Array:

Array

|

H

%]
N

K
w

z
~

]
[S,]

Record —>

e

[6,]

Array

|

1

2 2

2%

.

N

.
w

2&

. .
N N
. .
w w

23X

A5
R1

.

N

.
w

3l

Figure 2-21: Position x in case of an Array of basic type (left), y in case of an Array of Record (right)

As in the case of a record, Position always consists of two bytes, independent of whether the Array
contains a record or not. If there is no record, the second byte is not used.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

Page 89

MOST® MOST

Specification COOPERATION

The first parameter x (first byte) always refers to the outer structure, that is, the Array for an Array of
Record, and the record for a Record with Array.

If a partial structure is transmitted by using Position, the sending device is responsible for keeping
consistency with the general structure transmitted before. As an example, the AM/FMTuner may
update the signal qualities in a station list that was transferred earlier. It must make sure that the
signal quality values are assigned to the correct stations.

Transmitting an Array is the only time when it is possible to transmit fewer elements than the
maximum number of elements. As an example, on 10 receivable stations the entire list of perhaps 100
possible entries does not need to be transferred. It must be kept in mind that each individual element
of the Array must always be transferred completely. If not, this is an error. The specification of the
length is done in parameter Length of the application protocol.

If an Array is empty, the status is reported without data:

FBlockID. InstID_Array.Status (PosX=0x00, PosY=0x00)

Examples:
Disk information in CD changer:

The CD changer contains a magazine of up to 10 CDs. Each disk contains several tracks. The
information is modeled in the two properties Magazine and Disk.

Magazine = Array[1..10] of Record of

DiskTitle: String (Text)
TotalTime: Int (Number)
NTracks: Unsigned Byte (Number)

If a disk is not available, this can be recognized by TotalTime and NTracks containing 0x00.
Disk = Array[1..99] of Record of

TrackTitle: String (Text)
TrackTime: Unsigned Byte (Number)

On request

Controller -> CDC: AudioDiskPlayer.0x01l_Magazine.Get (03. 01)

one receives the title of the third disk. On request

Controller -> CDC: AudioDiskPlayer.0x01l_Magazine.Get (00. 01)

the titles of all disks are returned.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 90

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Selecting In Arrays:

In many Arrays, lines will be selected. Here, selections “1 of n” (one single line selected only) need to
be differentiated from selections “n of N” (several lines can be selected at the same time).

e nofN:
The selection here should be done by an individual parameter Selected of type Switch, which
is used as prefix (Array of Record of {Selected, ...}). The change in the status of the switch can
be modified by Controller or Slave either single (Selected of a single line), or for an entire
column (Selected of all lines). In principle, this kind of selection can be used in case of 1 of N
as well.

e 10fN:
In case of 1 of N there is an alternative modeling which is less expensive with respect to
communication than n of N. Here a property Selected is modeled, which points onto the
selected line. The kind of pointer differs individually. So, for example, in case of station lists
the pointer may point onto the PI of the station currently active. In other cases, the position
may be more effective. This way can be very effective, if a single line shall be selected in
several Arrays (e.g., an entry in all telephone directories).

Notification on Arrays:

In case of a notification update, only those elements that have been changed are transmitted to the
notified Controllers.

This is done by transmitting partial structures (elements or lines) as described above.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 91

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.2.3 Function Class DynamicArray

The Arrays described above are optimized with respect to a high data volume. Navigation is based on
the fixed sequence of elements in the Array (Position = PosX, PosY). The position will not be
contained in the data field. In DynamicArrays, navigation is based on accessing a unique tag which
identifies each element individually (tag is of data type Unsigned Word, replaces PosX, and is defined
as the first parameter in the record). With the aid of these unique tags, it is possible to insert and
delete elements at every position of the DynamicArray. Hence, the length of the DynamicArray may
vary but the relative ordering is kept after inserting and deleting of elements.

DynamicArrays are defined as follows:

DynamicArray = Array of Record of {Tag, -..-}

For function class DynamicArray, the messages are defined as follows:

OPType Parameter
Set Tag, PosY, Data

Get Tag, PosY

SetGet Tag, PosY, Data

Increment Tag, PosY, NSteps

Decrement Tag, PosY, NSteps

Getlnterface

Status Tag, PosY, Data

Interface Refer to section 2.2.4.2.2 on page 89

Error ErrorCode, Errorinfo

Tag Unsigned Word = 0x0000 all lines
<> 0x0000 one special line

PosY Unsigned Byte <> 0x00 one special column (only if Tag <> 0x0000)
= 0x01 not allowed, no access to Tag

The Tag belongs to the data field. This means that it is returned at the start of every line. PosY = 0x01
denotes the Tag. With respect to consistency, accesses to a column are not reasonable. The last line
in a DynamicArray indicates the end. It starts with Tag OXxFFFF and contains dummy data. This line is
included within the NMax counter.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 92

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Examples for positioning:

1. Array of Record of {Tag, E1, EI2, EI3}

2. Tag = 0x0000 and PosY = 0x00

3. Tag = 0x2006 and PosY = 0x00

4. Tag = 0x6389 and PosY =3

(1) (2) 3) 4)
|tag [EM [E2 |E3 | |Tag |EM |E2 |EI3 | |Tag |EM |EI2 |EIB | |Tag [EM |EI2 [EI3 |

0356 0356 0356 0356
3467 3467 3467 3467
3624 3624 3624 3624
2006 2006 2006 2006
0101 0101 0101 0101
6389 6389 6389 6389
0900 0900 0900 0900
3581 3581 3581 3581
9023 9023 9023 9023
FFFF FFFF FFFF FFFF

Editing In DynamicArrays:

As with simple Arrays, data contents can be modified by using Set. In many cases, this is sufficient for
DynamicArrays as well, especially if the inserting and deleting of lines is done within the Slave only. If
the inserting and deleting of lines is done by the Controller as well, more complex editing functions are
required. They will be defined as separate methods.

Below there are two examples which are defined in a way that they can be applied to several
DynamicArrays (FktIDs), for example, several telephone directories. There is no need for an individual
instance per Array. These functions will be placed in the range of Coordination (0x000...0x1FF).

By DynArraylns (FktID=0x080), a number Quantity (Unsigned Word) of Array elements (entire lines)
will be inserted in DynamicArray FktID. The lines will be inserted after that line containing Tag. A
special case is inserting lines before the first line. In this case, Tag 0x0000 is used. The data contents
of the lines to be inserted will be transferred as Data.

DynArraylns._StartResultAck (SenderHandle, FktlD, Tag, Quantity, Data)

Examples:
e DynArraylns.StartResultAck (SenderHandle, FktID, 0000, 5, Data)
Inserts 5 lines at the beginning of the DynamicArray

e DynArraylns.StartResultAck (SenderHandle, FktID, 8795, 1, Data)
Inserts 1 line after the line containing Tag 0x8795

DynArrayDel (FktID=0x081) deletes a number Quantity (Unsigned Word) of Array elements (entire
lines). This is performed starting at the element containing Tag, which is included within deletion.

DynArrayDel .StartResultAck (SenderHandle, FktlD, Tag, Quantity)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 93

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Examples:
e DynArrayDel .StartResultAck (SenderHandle, FktiD, 0000, FFFF)
Deleting of entire Array

e DynArrayDel .StartResultAck (SenderHandle, FktiD, 8795, FFFF)
Deleting of entire Array starting at line containing Tag 0x8795

e DynArrayDel .StartResultAck (SenderHandle, FktiD, 8795, 0001)
Deleting of the line containing Tag 0x8795

e DynArrayDel .StartResultAck (SenderHandle, FktiD, 8795, 0000)
No deleting

Notification on DynamicArrays

Notification on DynamicArrays is done in the same way as notification on Arrays. In contrast to Arrays
the length of DynamicArrays is not fixed. If the length of a DynamicArray changes or a Tag value is
changed (one entry replaced by another), the complete DynamicArray is transferred to the notified
Controllers.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 94

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.2.4 Function Class LongArray

A Slave transfers the Arrays and DynamicArrays (as described above) to the registered Controller
using Shadows. In case of changes, the Shadows then will be updated. In case of big Arrays that are
changed very often, this may not be practicable any longer (amount of memory in Controller,
transmission time, bus load). Here another model — LongArray — must be applied. Where to place the
boundary between LongArray and DynamicArray is a matter of an individual decision.

The class LongArray consists of a function MotherArray and one or more ArrayWindow functions. It is
possible to generate instances of ArrayWindows dynamically. An ArrayWindow represents an extract,
a window to the MotherArray. Function class LongArray, therefore, requires a minimum of two
functions.

The Tag belongs to the data field. This means that it is returned at the start of every line. PosY = 0x01
denotes the Tag. With respect to consistency, accesses to a column are not reasonable. The last line
in a MotherArray starts with Tag OxFFFF and contains dummy data. The tag 0x000 is reserved to the
Controller for initialization of the ArrayWindow. Therefore, it must not be used in the MotherArray.

2.2.4.2.41 MotherArray

The MotherArray is structured like a function of class DynamicArray but handling of MotherArrays is
independent of any other Array.

The main difference compared to other Arrays is that the MotherArray is not controlled and viewed
directly but via one or more different functions. Below there is an example of a MotherArray as Array of
Record of {Tag, Character, Number}:

Tag Ell1]| ElI2
6243 a 01
2100 b 02
5428 c 03
0101 d 04
3245 e 05
4562 f 06
0012 g 07
5342 h 08
9473 i 09
9343 j 0A
8367 k 0B
3752 I ocC
7698 m 0D
6354 X 1E
3425 y 1F
1045 z 20
FFFF FF FF

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 95

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

224242 ArrayWindow

The ArrayWindow represents a part of the MotherArray. One main difference to other function classes
is that it is not useful to instantiate an ArrayWindow in a static way (via the FBlock Specification). In
other function classes, where functions are instantiated in a static way, those functions describe fixed
properties and methods of the Slave. Their state is identical for all Controllers. With respect to its
status, an ArrayWindow is strongly bound to a Controller.

There must be an individual ArrayWindow for each Controller. It is possible that several HMIs have
individual ArrayWindows to an address directory (MotherArray), which have different size and position.
Functions of class ArrayWindow are instantiated dynamically at runtime. Therefore, an FBlock (that
has a MotherArray, which shall be accessed by ArrayWindows) must provide a method
CreateArrayWindow for instantiation and a method DestroyArrayWindow (both of class Unclassified
Method). The FktIDArrayWindow is used as instance handle, which is transferred from Slave to
Controller during instantiation.

Function OPTypes Parameter
CreateArrayWindow StartResultAck SenderHandle, FktIDMotherArray, PositionTag, WindowSize
ResultAck SenderHandle, FktIDArrayWindow
ErrorAck SenderHandle, ErrorCode, Errorinfo
DestroyArrayWindow StartResultAck SenderHandle, FktIDArrayWindow
ResultAck SenderHandle
ErrorAck SenderHandle, ErrorCode, Errorinfo
SenderHandle Unsigned Word Unique identifier of a task.
FktIDMotherArray FktID of the MotherArray. It is not dynamic, since MotherArray is a

property of class DynamicArray of the Slave

FktIDArrayWindow FktID of the ArrayWindow. It is generated dynamically and represents the
object handle, which is transferred during instantiation. A range for such
dynamically generated FktlDs is occupied in advance.

PositionTag Unsigned Word Top left corner of the ArrayWindow is positioned at PositionTag

WindowSize Unsigned Byte Number of elements contained by the ArrayWindow

The methods CreateArrayWindow and DestroyArrayWindow can instantiate and destroy
ArrayWindows even of several MotherArrays. If, for example, in a telephone all telephone directories
are available as MotherArrays, every HMI that is interested in a telephone directory may instantiate an
ArrayWindow for the respective MotherArray. So it can be that, for example, three telephone
directories may be watched by three ArrayWindows.

There are some situations, where Controller and Slaves destroy their ArrayWindows:

1. If modulated signal goes off, all instances of ArrayWindows are destroyed
2. If the FBlock containing the MotherArray is removed from the Central Registry.

3. Reception of Configuration.Status(NotOK)

A Controller is only allowed to destroy its own ArrayWindows.

Every Controller stores the position of its ArrayWindow with the help of the Tag of the first line inside
the ArrayWindow. During CreateArrayWindow and by the help of MoveArrayWindow (SenderHandle,
MovingMode, FktIDArrayWindow, Absolute, Tag), the window can be positioned again.

Upon creation an ArrayWindow is placed with its upper left corner to the Tag defined by the variable
PositionTag. If the Controller has no information yet about the content of the MotherArray it can set
PositionTag to 0x0000. That places the ArrayWindow to the top of the MotherArray.

A CreateArrayWindow with a PositionTag too close to the bottom of the MotherArray has the same
effect as MoveArrayWindow.Bottom: It creates an ArrayWindow that contains the last WindowSize
number of valid elements plus the last element with tag OxFFFF.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 96

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

If a Controller tries to position the ArrayWindow on a non-existent PositionTag, the ArrayWindow is
positioned on the next greater tag. If there is no greater tag available, the previous lesser tag is used.
The status of an ArrayWindow is kept up to date in the Controller by using a Shadow. It is the Slave’s
task to keep the Shadow up to date. Here the notification mechanism of the Network Service cannot
be used, since it is static. Notification for ArrayWindows is to be implemented at the application level.
A creation of an ArrayWindow implies a notification on that ArrayWindow without the need of sending
a Notification.Set message. For each ArrayWindow there is only one single Shadow, which is located
in the Controller that has instantiated it. The DevicelD of the Controller is transferred to the Slave
during instantiation, so there is no need to implement a special notification mechanism for registering
the Controller.

A Slave always sends complete ArrayWindows (that does not necessarily mean full ArrayWindows)
with parameter Tag = 0x0000 and PosY = 0x00 (this is also true for non-full ArrayWindows with less
elements than WindowSize).

By using the ArrayWindow, editing the MotherArray can be done in the conventional way:

ArrayWindow.SetGet (Tag, PosY, Data)

Tag | EI1 | EI 2
6243 | a 01
2100| b 02
5428 | c 03
0101 | d 04
3245| e 05
4562 | f 06
0012 g 07 0012] g 07 0012] g 07
5342 | h 08 5342 | h 08 5342 | h 08
9473 i 09 9473 i 09 9473 i B3
9343 | j 0A 9343 | j 0A 9343 | j 0A
8367 | k 0B 8367 | k 0B 8367 | k 0B
3752 [0C
7698 | m 0D
6354 | x 1E
3425| vy 1F
1045| z 20
FFF | FF FF
MotherArray ArrayWindow Set (9473, 03, B3)

The Slave reacts on the Set operation by notifying all Controllers having an ArrayWindow on the
edited column.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 97

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

For inserting and deleting lines the following methods can be used:

These methods manipulate the ArrayWindow. The changes of the ArrayWindow are mirrored back to
the MotherArray. Due to the fact that the MotherArray has changed its content, all ArrayWindows
needing updates are getting an automatic update by the implicit notification, which was built up during
instantiation of the ArrayWindows.

All changes to the content of the MotherArray, which result in changes to the content of an Array-
Window or to the parameters AbsolutePosition or CurrentSize, lead to an update of the respective
Shadows. In order to keep the communication load low, all changes to the MotherArray that do not
lead to changes of an ArrayWindow or these parameters should not result in an update of the
Shadows.

Function OPType Parameter
ArrayWindowlns StartResultAck SenderHandle, FktIDArrayWindow, Tag, Quantity, InsertData
ErrorAck SenderHandle, ErrorCode, Errorinfo
ProcessingAck SenderHandle
ResultAck SenderHandle
SenderHandle Unsigned Word Unique identifier of a task.
Tag Unsigned Word Unique handle of a row (OxFFFF no valid value) after which the new lines are
inserted 0x0000 indicates an insertion before the first line of the ArrayWindow
FktIDArrayWindow Unsigned Word FktID of ArrayWindow
Quantity Unsigned Word Number of rows
InsertData Stream Data to be inserted
Function OPType Parameter
ArrayWindowDel StartResultAck SenderHandle, FktIDArrayWindow, Tag, Quantity
ErrorAck SenderHandle, ErrorCode, Errorinfo
ProcessingAck SenderHandle
ResultAck SenderHandle
SenderHandle Unsigned Word Unique identifier of a task.
Tag Unsigned Word Unique handle of a row (OxFFFF no valid value) after which the given number
of lines is deleted
FktIDArrayWindow Unsigned Word FktID of ArrayWindow
Quantity Unsigned Word Number of rows

If any element of the ArrayWindow is deleted, the ArrayWindow keeps its position. All following
elements move one position up and the resulting gap is filled up with the next element of the
MotherArray.

Deleting elements within an ArrayWindow positioned to the bottom generates partially filled
ArrayWindows because there are no elements in the MotherArray left to fill the gap. The ArrayWindow
stays at its position. This exception is introduced to stabilize displays of the ArrayWindow to the user.
The deletion can be caused by the Controller via command or by internal changes within the Slave.

If the last meaningful element of an ArrayWindow positioned at the bottom of the MotherArray is
deleted, the ArrayWindow is shifted one window size up on the MotherArray. The result is the same as
a Bottom operation. The ArrayWindow shows the WindowSize last elements of the MotherArray again.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 98

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Function OPType Parameter
ArrayWindow Set Tag, PosY, Data
Get Tag, PosY
SetGet Tag, PosY, Data
Increment Tag, PosY, Nsteps
Decrement Tag, PosY, Nsteps
GetInterface
Status Tag, PosY, CurrentSize, AbsolutePosition, Data
Interface Refer to section 2.2.4.2.2 on page 89
Error ErrorCode, Errorinfo
Tag Unsigned Word = 0x0000 all lines
<> 0x0000 one special line
PosY Unsigned Byte <> 0x00 one special column (only if Tag <> 0x0000)

CurrentSize

AbsolutePosition

Unsigned Word

Unsigned Word

0x01 not allowed, no access to Tag

Current size of the MotherArray

The termination line with Tag OxFFFF is not counted for CurrentSize.
CurrentSize only indicates the number of meaningful lines

Absolute position of the ArrayWindow in the MotherArray.

The value specifies the position of the top left cell in the MotherArray and the
counting starts at 0.

2.2.4.2.4.3 Positioning an ArrayWindow on a MotherArray

Since an ArrayWindow represents an extract of the MotherArray, it must be positioned on the
MotherArray in an appropriate way. Therefore, two methods are defined. Method MoveArrayWindow is
mandatory. An instance of MoveArrayWindow is used for all instances of ArrayWindows (FktID) of an

FBlock.

MoveArrayWindow.StartAck (Senderhandle, FktlDArrayWindow, MovingMode,

SenderHandle
FktIDArrayWindow
Mode

Number
Tag

Unsigned Word
Unsigned Word
Enum

Unsigned Word
Unsigned Word

Number, Tag)

Unique identifier of a task
FktID of the ArrayWindow to be moved

00

04

Top
Bottom
Up
Down
Absolute

Number of lines to move the window

Unique handle of a row

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

Page 99

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Top and Bottom:

Top and Bottom move the ArrayWindow to the start or the end of the MotherArray. The parameters
Number and Tag are transferred as well, but they are not used in this mode.

If an ArrayWindow is positioned to Bottom, it contains the last WindowSize valid elements plus the last
element with tag OxFFFF. This means that in this case the ArrayWindow is one element bigger than in
other cases.

Tag |EI1| EI2

6243 | a 01 6243 a 01

2100 | b 02 2100 b 02

5428 | ¢ 03 5428 c 03

0101 d 04 0101 d 04

3245 | e 05 3245 e 05

4562 | f 06

0012 | g 07 0012 g 07

5342 | h 08 5342 h 08

9473 i 09 9473 i 09

9343 | j 0A 9343 j 0A

8367 | k 0B 8367 k 0B

3752 | 0C

7698 | m oD

7589 | v OF 7589 v OF
9643 | w 1D 9643 | w 1D
6354 | x 1E 6354 X 1E
3425 | y 1F 3425 y 1F
1045 | z 20 1045 z 20
FFFF | FF | FF FFFF | FF FF
MotherArray ArrayWindow

MoveArrayWindow.StartAck (SenderHandle, FktID, Top, XX, XXXX)
MoveArrayWindow.StartAck (SenderHandle, FktID, Bottom, XX, XXXX)

Up and Down:

Up and Down are used for relative movement of the ArrayWindow where the parameter Number
(Unsigned Byte) defines the number of lines by which the ArrayWindow shall be moved. If the
ArrayWindow is moved to a position that is outside of the MotherArray, it will be positioned at the
closest point within the MotherArray. This means that it will be positioned at the Top or Bottom position
depending on whether it was an Up or a Down command that tried to move it. No error will be
reported.

The ArrayWindow stays at the Top or Bottom position.

A Controller cannot move the ArrayWindow out of the MotherArray’s area - the ArrayWindow remains
full. A MoveArrayWindow.Up command to an ArrayWindow positioned to the top of the MotherArray or
a MoveArrayWindow. Down to an ArrayWindow positioned to the bottom result in no change to the
position.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 100

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION
Tag |EI1| EI2

6243 | a 01

2100 | b 02

5428 | ¢ 03

0101 | d 04 0101] d 04

3245 | e 05 3245| e 05

4562 | f 06 4562 | f 06

0012 | g 07 0012] g 07 0012] g 07

5342 | h 08 5342 | h 08 5342 | h 08

9473 | i 09 94731 i 09 9473 i 09
9343 | j 0A 9343 j 0A 9343 | j 0A
8367 | k 0B 8367 | k 0B 8367 | k 0B
3752 | | 0C 3752 | | 0C
7698 | m 0D 7698 | m 0D
6354 | x 1E

3425 | y 1F

1045 | z 20

FFFF | FF | FF

MotherArray ArrayWindow

MoveArrayWindow.StartAck (SenderHandle, FktID, Up, 03, Xxxx)
MoveArrayWindow.StartAck (SenderHandle, FktID, Down, 05, XXXX)

Absolute:

Absolute adjusts an ArrayWindow in a way that the first line contains the desired Tag. If the Tag is
located too close to the end of the MotherArray, so that the ArrayWindow would exceed the valid
range, the ArrayWindow will be placed as if Bottom had been used.

Tag |ElI1| El2

6243 | a 01

2100 | b 02 2100 b 02
5428 | c 03 5428 | c 03
0101 | d 04 0101| d 04
3245 | e 05 3245| e 05
4562 | f 06 3245 | f 06
0012 [g 07 0012] g 07

5342 | h 08 5342 | h 08

9473 i 09 9473 i 09

9343 | j 0A 9343 | j 0A

8367 | k 0B 8367 | k 0B

3752 | 0C

7698 | m | OD

6354 | x 1E

3425 | y 1F

1045 | z 20

FFFF | FF | FF

MotherArray ArrayWindow

MoveArrayWindow.StartAck (SenderHandle, FktID, Absolute, xx, 2100)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 101

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

The second method SearchArrayWindow is optional. SearchArrayWindow provides a method to look
for Searchstring in the MotherArray by means of an ArrayWindow (FktIDArrayWindow). Search is
performed in that element of each line, which is specified by PosY:

SearchArrayWindow.StartResultAck (SenderHandle, FktlDArrayWindow, PosY,
Searchstring)

Seeking starts from the first line of ArrayWindow and runs down to the end of the MotherArray. Then
seeking continues automatically at the start of the MotherArray and ends at the first line of the
ArrayWindow. In case of success, the first line of the ArrayWindow is positioned onto the first line of
the MotherArray which contains Searchstring. In case of failure, an error is reported (ErrorCode 0x07
“parameter not available”).

If the Searchstring is closer to the bottom of the MotherArray than the size of the ArrayWindow, the
ArrayWindow is placed as described in the section “MoveArrayWindow(Bottom)”.

Tag | EI1 [EI2

6243 a 01

2100 b 02

5428 c 03 5428 | c 03

0101 d 04 0101 d 04

3245 e 05 3245| e 05

4562 f 06 4562 f 06

0012 g 07 0012 g 07 0012 g 07

5342 h 08 5342| h 08

9473 i 09 9473 i 09

9343 j 0A 9343 j 0A

8367 k 0B 8367 k 0B

3752 | 0C

7698 m 0D

6354 X 1E 6354 | x 1E
3425 y 1F 3425 | vy 1F
1045 z 20 1045 z 20
FFFF | FF | FF FFF | FF FF
MotherArray ArrayWindow SearchArrayWindow.StartResultAck (SenderHandle, FktID, 02, “c”)

SearchArrayWindow.StartResultAck(SenderHandle, FktID, 02, “z")

2.2.4.2.4.4 Re-Synchronization of ArrayWindows

Each device containing one or several LongArrays must offer the property LongArrayinfo to its
Controllers. One instance of this property services all LongArrays present in the node. The purpose of
this property is to enable Controllers to re-synchronize after a system error. By this property,
Controllers can see if the ArrayWindows they created before still exist. It works like a normal Array
except that it is only possible to perform a Get operation on it.

Note: When multiple Controllers for the same LongArray exist in one device, the resynchronization
has to be coordinated within the device.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 102

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.2.5 Function Class Map

The structure of the function class Map is similar to DynamicArray; however, no ordering of the
elements may be assumed. It is optimized for Arrays with dynamic changes through both the
Controller and the Slave. By not assuming an order of the lines in a Map, the communication overhead
for notifications can be minimized.

Similar to the function class DynamicArray, lines of a Map are identified by a uniquely defined handle
named Tag of data type Unsigned Word, which replaces PosX. Tags are not necessarily sorted and
not necessarily continuous. Additionally, Tag is always the first element inside the record that defines
the lines of the Array. The value OXFFFF for Tag is reserved for indicating the end of the transmission
of a whole Array in a status message (see below). The elements of the record are identified through
PosY.

Map = Array of Record of {Tag, ---}

For the function class Map, the messages are defined as follows:

OPType Parameter
Set Tag, PosY, Data

Get Tag, PosY

SetGet Tag, PosY, Data

Increment Tag, PosY, NSteps

Decrement Tag, PosY, NSteps

GetlInterface

Status Tag, PosY, {Data}
Interface Refer to section 2.2.4.2.2 on page 89
Error ErrorCode, Errorinfo
Tag Unsigned Word = 0x0000 all lines
<> 0x0000 one special line
PosY Unsigned Byte <> 0x00 one special column (only if Tag <> 0x0000)

= 0x01 not allowed, no access to Tag

The Tag belongs to the data field and is returned at the start of every line. PosY = 0x01 denotes the
Tag. With respect to consistency, accesses to a column are not reasonable. As with PosX, the value
0x0000 for Tag is reserved to indicate the whole Array. Because of the unordered nature of the
function class Map, no last line with a Tag value of OxFFFF needs to be stored. However, OxXFFFF is
used to indicate the end of the transmission of the whole Array.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 103

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Examples for Accessing Elements of a Map:

Array of Record of {Tag, El1, EI2, EI3 }
Tag = 0x0000 and PosY = 0x00
Tag = 0x2006 and PosY = 0x00
Tag = 0x6389 and PosY = 0x03

(1) (2) (©) (4)

Itag [EM [E2 |E3 | |Tag |EM |[E2 |[E3 | |Tag |EM [EI2 |EI3 | |Tag [ENM |EI2 [EI3 |
0356 0356 0356 0356
3467 3467 3467 3467
3624 3624 3624 3624
2006 2006 2006 2006
0101 0101 0101 0101
6389 6389 6389 6389
0900 0900 0900 0900
3581 3581 3581 3581
9023 9023 9023 9023
2712 2712 2712 2712

Status Transmission for Function Class Map:

The status messages a Slave sends as a response to a Get request and for notifying the Controller of
changes to a Map property contain the parameters Tag, PosY, and Data. Data contains one element,
a whole line or several lines of the Array including the unique Tag of each line. The data field may be
omitted to indicate the deletion of lines.

Map.Status (Tag, PosY, {Data})

The contents of a function class Map property are transmitted as follows:
1. Transmission of single entries:

To transmit only one entry of a given line as a response to a corresponding Get request (PosY
<> (), the Slave sends a status message with the line’s Tag, the position of the entry in PosY,
and the contents of the entry in the parameter Data.

The Slave may also use this type of transmission to notify the Controller when only one
element of a line has changed.

2. Transmission of single lines:

To transmit a whole line as a response to a Get request (PosY = 0), the Slave sends a status
message containing the line’s Tag, a PosY of 0x00, and the contents of the whole line in the
parameter Data (including the line’s Tag). Note that in this case the value of the parameter
Tag and the line’s Tag entry in the parameter Data have to be identical.

The Slave may also use the single line transmission to notify the Controller of a change or
insertion of a given line. In case of an insertion of a line the Slave sends a status message
with the new line’s Tag, a PosY of 0x00, and the contents of the line in Data to the Controller.

If the Controller receives a message with a Tag already contained in its local copy, it must
update the respective line accordingly. If it receives a notification message with an unknown
Tag, it must add this line to its copy.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 104

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3. Combined transmission of changes and insertions:

In a notification, multiple changes or insertions can be combined. In this case, the Tag is set to
0x0000 (to indicate that the complete Array is affected), PosY to 0x00, and the parameter
Data contains a list with those lines that have changed or have been inserted. It is also
allowed to notify single changes in this way. The Controller handles each item of Data
separately as with single changes of insertions.

4. Transmission of whole Map property:

If the whole contents of the Map property are transmitted, either as response to a
corresponding Get request or as a notification, parameter Tag is set to 0x0000, parameter
PosY to 0x00, and the last Tag in the parameter Data is the end Tag OxFFFF. Tag OxFFFF will
be followed by dummy data. When receiving such a notification, the Controller must discard its
local copy of the Map property and use the new, completely transmitted list.

5. Removal of line:

To signal the removal of a certain line, the Slave sends a status message with only the Tag of
the line and PosY to the Controller. To signal the deletion, parameter Data is not sent;
parameter PosY is set to 0x00. If the Controller receives such a notification, it deletes the line
with the transmitted Tag from its local copy.

The notification behavior for the function class Map is illustrated by the following examples:

Example 1: Notification of added line’

notification:
old list Tag = 0x3624, PosY = 0x00 new list
Data =
|Tag |EM |EI2 |EB | |Tag |EM |ER2 |EB | [|Tag |EHW [EI2 [EI3 |
0356 | 011 | 012 | 013 13624 [031 032 | 033 | 0356 | 011 012 013
3467 |021 022 023 3467 |021 [022 |023
3624 | 031 [032 | 033

Example 2: Notification of modified line (using single line transmission)

notification:

old list Tag = 0x3467, PosY = 0x00 new list
Data =
ITag |EM |E2 |EI3 | |Tag |EM |EI2 |EI3 | |Tag |EN [EI2 [EI3B |
0356 [011 [012 [013 | 3467 [No01 [N0O2 [NO3 | 0356 [011 |012 [013
3467 021 [022 [023 3467 | NO1 | NO2 | NO3
3624 [031 [032 [033 3624 [031 [032 [033

' Note that because of the unordered nature of the function class Map, the line could be inserted at
any point in the array.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 105

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Example 3: Notification of multiple modifications

notification:
old list Tag = 0x0000, PosY = 0x00 new list

Data =
|Tag |EM |EI2 |EB | |[Tag |EM |ER2 |EB | [|Tag |EM [EI2 [EI3 |
0356 [011 012 [013 3467 [N11 | N12 [N13 0356 {011 [012 [013
3467 | AAA| AAA [AAA 2006 [041 [042 [043 3467 [N11 [N12 [N13
3624 | 031 | 032 |033 3624 | 031 [032 | 033
2006 | 041 | 042 | 043

Example 4: Notification with transmission of whole Array1

notification:
old list Tag = 0x0000, PosY = 0x00 new list
Data =
|Tag |EM [ER2 |EIB | |Tag |EM |ER2 |EI3 | |Tag |ENM [ER2 |E3 |
0356 011 |012 (013 3624 | 031 [032 [033 3624 031 | 032 [033
3467 | BBB | BBB | BBB 2006 | N21 | N22 [N23 2006 [N21 [N22 [N23
3624 1031 | 032 [033 0101 | 051 | 052 [053 0101 | 051 | 052 [053
2006 | 041 | 042 | 043 FFFF |d/c |d/ic [dic
Example 5: Deletion of line
notification:
old list Tag = 0x2006, PosY = 0x00 new list
|Tag |EM |E2 |EI3 | |Tag |EHM |ER2 [EIB |
3624 031 | 032 [033 3624 | 031 | 032 {033
2006 | N21 [N22 | N23 0101 | 051 | 052 | 053
0101 | 051 | 052 [053

Editing in Function Class Map:

As in case of simple Arrays, data contents of a property of function class Map can be modified by
using the operation types Set or SetGet in a similar way. However, similar to function class
DynamicArray, more complex editing functions are required if insertion and deletion of lines is done by
the Controller. These will be defined as separate methods in the coordination range (0x000 ... Ox1FF)
and can be applied to different Maps of an FBlock indicated by their FktIDs.

Using the method Maplns (FktID = 0x082), a number of Array elements (entire lines) will be inserted in
the Map with the given FktlD. Because the elements of a Map are not ordered, no given position for
the insertion can be specified. The number of Array elements to insert is given in the parameter
Quantity of data type Unsigned Word. The data contents of the lines to be inserted will be transferred
in the parameter Data of type Stream. Because the Slave is responsible for assigning Tags, the Tag
values in Data must be ignored (to avoid misunderstandings, these values should be set to OxFFFF).

In case of using StartResultAck and if the insertion of the elements has been successful, the assigned
Tags will be returned in the parameter TagList of the ResultAck message. The items in TagList must
have the same order as the items in the parameter Data of the corresponding StartResultAck request.

Maplns.StartAck (SenderHandle, FktlD, Quantity, Data)
Maplns.StartResultAck (SenderHandle, FktlID, Quantity, Data)
Maplns._ResultAck (SenderHandle, FktID, Quantity, TagList)

Tdlc (don’t care) describes data that is to be ignored.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 106

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Examples:

Controller -> Slave: Maplns.StartAck (
SenderHandle, FktlD, 0x0002, OxFFFF EI1 EI12 EI13 OxFFFF EI1 EI12 EI3)

Inserts two lines into the specified Map property.

Controller -> Slave: FBlock_Maplns.StartResultAck (

SenderHandle, FktlD, 0x0002, OxFFFF El1 EI12 EI3 OxFFFF EI1 EI2 EI3)
Slave -> Controller: FBlock_Maplns._ResultAck (

SenderHandle, FktID, 0x0002, 0x4312 0x4834)

Two lines have been inserted into the specified Map property with Tags 0x4312 and 0x4834.

The method MapDel (FktID = 0x083) deletes a number of Array elements (entire lines) from the Map
with the given FktID. The number of elements to delete is described through the parameter Quantity of
data type Unsigned Word. The Tags of lines to be deleted are contained in the parameter TagList of
type Stream. Because the elements in a Map are not ordered, no deletion of ranges is possible.
However, using a Quantity of OXFFFF and an empty TagList will delete the whole Map.

If the method MapDel is called with the OPType StartResultAck and if the deletion of the lines is
successful, the given FktID is returned together with the number and the tags of the deleted lines in
the parameters Quantity and TagList.

MapDel .StartAck (SenderHandle, FktlD, Quantity, {TagList})

MapDel .StartResultAck (SenderHandle, FktlID, Quantity, {TagList})
MapDel .ResultAck (SenderHandle, FktlD, Quantity, {TagList})

Examples:

Controller -> Slave: FBlock.MapDel.StartAck (
SenderHandle, FktlD, 0x0001, 0x0101)

Deletes the line with Tag 0x0101.

Controller -> Slave: FBlock.MapDel.StartAck (
SenderHandle, FktID, 0x0002, 0x3581 0x2006)

Deletes the lines with Tags 0x3581 and 0x2006.

Controller -> Slave: FBlock.MapDel.StartAck (
SenderHandle, FktID, OxFFFF)

Deletes the entire Array.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 107

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.2.6 Function Class Sequence Property

The Sequence Property function class has a number of characteristics, which distinguish it from the
Unclassified Property:

e OPType Status is mandatory and must have at least two parameters.

o |If the OPTypes Set and/or SetGet are defined, the parameter list has to be identical to
OPType Status.

e OPType Get must not have any parameters.

Note: The individual parameters of the sequence do not have to be of the same type, that is, no
repetition of one particular type is necessary.

OPType Parameters
Set <Parameter>, <Parameter>{, <Parameter>}

Get

SetGet <Parameter>, <Parameter>{, <Parameter>}

GetlInterface

Status <Parameter>, <Parameter>{, <Parameter>}
Interface Flags, Class, Name, NElements, IntDescl, IntDesc?...
Error ErrorCode, Errorinfo

Parameter: Boolean Parameter in the sequence.
BitField
Enum
Unsigned Byte
Signed Byte
Unsigned Word
Signed Word
Unsigned Long
Signed Long
String
Stream’
Classified Stream
Short Stream

NElements: Unsigned Byte Number of elements in function class Sequence Property

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of
the interface descriptions defined for the respective class can be inserted. Please note that in case of
elements, parameter Flags is not available. For parameter OPTypes only Set, Get, SetGet, Status,
and Error can be used.

' |f data type Stream is used, the corresponding parameter must be the last parameter.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 108

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.3 Function Classes for Methods

For methods there are only two function classes, since methods may differ significantly with respect to
the parameters transferred during StartAck and ResultAck (in opposite to properties). Methods that do
not belong to these classes belong to class “Unclassified Method”. They must be defined in a specific
way.

Function Class Explanation

Trigger Method | This class of methods is used to trigger something. They have no parameters.

Sequence This class of methods has a number of parameters. An interface description
Method can be generated according to section 2.2.4.3.2.

Unclassified Unclassified Methods cannot be matched to any other function class in a
Method meaningful manner.

Table 2-12: Classes of functions for a method.

2.2.4.3.1 Function Class Trigger Method

There are no parameters in case of Start/StartResult and it does not return parameters in case of
Result or Processing.

OPType Parameters

Start

StartResult

Getlnterface

StartResultAck SenderHandle

StartAck SenderHandle

ErrorAck SenderHandle, ErrorCode, Errorinfo

ProcessingAck SenderHandle

Processing

Result

ResultAck SenderHandle

Interface Flags, Class, OPTypes, Name

Error ErrorCode, Errorinfo

SenderHandle: Unsigned Word Unique identifier of a task.
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 109

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.4.3.2 Function Class Sequence Method

In contrast to function class Sequence Property (see 2.2.4.2.6), the parameter lists for OPTypes
StartAck, StartResultAck, and ResultAck do not have to be identical. However, at least one parameter
besides SenderHandle is required.

Note: The individual parameters of the sequence do not have to be of the same type; that is, no
repetition of one particular type is necessary.

OPType Parameters
Start <Parameter>{, <Parameter>}
Abort
StartResult <Parameter>{, <Parameter>}
Getlnterface
StartResultAck SenderHandle, <Parameter>{, <Parameter>}
AbortAck SenderHandle
StartAck SenderHandle, <Parameter>{, <Parameter>}
ErrorAck SenderHandle, ErrorCode, Errorinfo
ProcessingAck SenderHandle
Processing
Result <Parameter>{, <Parameter>}
ResultAck SenderHandle, <Parameter>{, <Parameter>}
Interface Flags, Class, Name, NElements, IntDescl, InDesc2, ...
Error ErrorCode, Errorinfo
Parameter: Boolean Parameter in the sequence.
BitField
Enum
Unsigned Byte
Signed Byte
Unsigned Word
Signed Word
Unsigned Long
Signed Long
String
Stream’
Classified Stream
Short Stream
SenderHandle: Unsigned Word Unique identifier of a task.
NElements: Unsigned Byte Number of elements in function class Sequence Method.

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of the
interface descriptions defined for the respective class can be inserted. Please note that in case of
elements, parameter Flags is not available.

' |f data type Stream is used, the corresponding parameter must be the last parameter.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 110

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

2.2.5 Handling Message Notification

In many cases, HMIs and Controllers must get information about changes of properties in FBlocks. To
avoid polling, events for automatic notification are defined. Such events must often be sent to several
devices (e.g., two HMIs). Consequently, a Notification Matrix is implemented in every FBlock. The
devices that should be notified of changes to the status of a property are registered in this matrix.

Only properties can be admitted to the Notification Matrix!

Entry Fkt | Fkt | Fkt | Fkt | Fkt
1 2 3 4 5

DevicelD1 X X X X X

DevicelD2 X X

Free for entry
Free for entry
Free for entry
Free for entry

Table 2-13: Notification Matrix (x = notification activated)

The size of a Notification Matrix depends on the FBlock, on the number of properties, and on the
number of device entries, each of which must be registered individually.

When taking into consideration that a DevicelD has 16bits, an FktID has 12bits, and that in some
FBlocks possibly all 64 possible nodes of the network must be registered, the Notification Matrix may
be very big. Nevertheless, the following subjects should be kept in mind:

e The Notification Matrix is only a model. It does not dictate the software implementation
method.

¢ In most cases it is sufficient if the Notification Matrix has only a few entries.
e Group addresses are allowed as DevicelD in the Notification Matrix.

¢ Implementation may be done in more economical ways, for example, by pointers, in every
function object that point to DevicelDs.

For very simple FBlocks, for example, a CD changer, it is sufficient if the Notification Matrix provides
only three entries for DevicelDs. For example, by using a group address, all HMIs in the network can
be notified of status changes.

Administration of the Notification Matrix is done via function Notification or by definition of the System
Integrator.

If a Controller desires to register, or to remove registration, it sends the following command:

Controller -> Slave:
FBlockID. InstID.Notification.Set
(Control, DevicelD, FktlD1l, FktiID2...)

Furthermore, it is up to the System Integrator or device supplier to define implicit notifications when
necessary. This includes:

o the FBlock and property sending the event

e the DevicelD to which the event is sent

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 111

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

The implicit notification is set within the device like a normal notification on transition from System
State NotOK to OK. So, the DevicelD that should be notified is registered in the Notification Matrix.
Therefore, on this transition, the initial event is sent over MOST. Updates are sent upon changes of
the property. The (implicitly set) notification can be requested by NotificationCheck and may be
removed by FBlock.Notification.Set (Clear | ClearAll...) as with a notification set by function call. On
transition from System State OK to NotOK, the implicit notification is cleared, as well.

When defining implicit notifications, the following restrictions have to be taken into account:

e The notification must only be defined for addresses, not depending on the dynamic address
calculation (group addresses that do not depend on dynamic address calculation, broadcast
address, static address, debug address, node position address of TimingMaster).

e After transition from System State NotOK to OK, the Controller receives the status reports of
all functions which are activated as events.

A Slave should always be prepared to receive status messages, regardless of whether it implements a
shadow FBlock. Also the reception of a status message when not being initialized must not confuse
the shadow FBlock.

The DevicelD of the Controller is transported at the start of the message, as described in section 2.2.1
on page 40, but in order to enter group addresses, the DevicelD is transmitted in the parameter field
as well. Parameter Control specifies where the entry or deletion is done:

Control Name Comment

0x0 SetAll Entry is done for all functions

0x1 SetFunction Entry is done for the following functions

0x2 ClearAll DevicelD of Controller is deleted for all functions

0x3 ClearFunction DevicelD of Controller is deleted for the specified functions
Rest Reserved

Table 2-14: Parameter Control

In the table below, the messages with the different Control values for making entries in the Notification
Matrix are listed together with the respective resulting entries.

Message Entry Fkt | Fkt | Fkt | Fkt | Fkt
1 2 3 4 5

Notification.Set (SetAll, DevicelD1) DevicelD1 X X X X X

Notification.Set (SetFunction, DevicelD2, FktlD2, FktlD4) DevicelD2 X X

Free for entry
Free for entry
Free for entry
Free for entry

Table 2-15: Messages with different Control values and the resulting entries in the Natification Matrix

After receiving a Notification.Set message, the Slave has to initiate the reply of the first status
message of the registered functions within tproperty. After having sent the Notification.Set message, the
Controller waits for the reception of any of the status reports of the registered functions for twaitrorproperty-
If a device registers for a property that has already been registered for this device, the report is sent as
if the device had been registered for the first time. However, this does not generate a second entry in
the Notification Matrix. This also applies to registering with group addresses.

Deleting entries is done in a similar way. Deletion of a not notified function shall not cause an error
message.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 112

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

If a Controller desires to read information from the Notification Matrix, it sends:

Controller -> Slave: FBlockID.InstID_Notification.Get (FktlD)

In general, all “Report” OPTypes (Status, Error, and Interface) are notified. Status and (possibly) Error
are reported spontaneously after registration. Interface is not reported directly after registration.

As an answer to this request, a list is returned that contains all DevicelDs that activated the respective
FktID:

Slave -> Controller: FBlocklID. InstID.Notification.Status (FktlID, DevicelDl1,
DevicelD2, ..., DevicelDN)

If a device sends a status message based on a notification and the MOST Network Interface
Controller indicates to the Network Service that the transmission failed due to an invalid target
address, all entries for this target address shall be deleted from the Notification Matrix of the FBlock
sending this status message. This applies to notifications that were set by the Notification function as
well as implicit notifications that were defined by the System Integrator.

Please note that when using the notification mechanism with group addresses, the notification must be
deleted if the message could not be transmitted to any node. As long as there are one or more nodes
receiving the message, the notification must not be deleted. Furthermore, the notification will not be
deleted when using the debug address 0xOFFO to send the notification.

Error handling:
The Notification property reports one of the following error messages, if any error occurred:

e No more registration possible1
If no more registering is possible, function Notification answers:

Slave -> Controller: FBlocklID. InstID._Notification.Error (0x20, 0x01)

e FBlock not registered in the Notification Service
This happens when the corresponding FBlock is not registered in the Notification Service.

Slave -> Controller: FBlocklID. InstID.Notification.Error (0x20, 0x20)

¢ No more registration possible
If no more registering is possible, function Notification answers:

Slave -> Controller: FBlocklID. InstID.Notification.Error (0x20, 0x21)

¢ Notification.Set rejected
The corresponding properties (FktIDList) reject the “Notification.Set” command because of
a Notification Matrix overflow or because the property is not registered in the Notification
Service.

Slave -> Controller: FBlocklID.InstID.Notification.Error (0x20, 0x10,
FktIDList)

¢ Notification.Get not possible
On a received “Notification.Get” command, whenever the respective property is not registered
in the Notification Service, the following is reported:

Slave -> Controller: FBlocklID. InstID.Notification.Error (0x07, Ox01, FktiID)

! Errorinfo 0x01 is equivalent to Errorinfo Ox21. Errorinfo 0x21 should be preferred.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 113

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

No valid values or property failure

In case a Controller registers at a time where no valid values of the respective property are
available or a property becomes temporarily unavailable, Notification sends the following
message to all nodes that are registered for the respective property:

Slave -> Controller: FBlockID.InstID.Fktld.Error (0x41)

Application Example:

This ErrorCode could be used to indicate the failure of a sensor. If the sensor signal
disappears, the Sensor function would report the error “Not available” (0x41). If the function
has an implemented notification mechanism, the error is distributed to the registered
Controllers.

This message is also sent, in case a node registers for the property after the problem
occurred. Failure of a whole FBlock is described in section 3.1.5.4.

Reactions on system events

Configuration.Status(NotOK)
After reception of NotOK (and every time the system is regarded in state NotOK, for example,
after start up) the Notification Matrix is deleted.

Configuration.Status(NewExt)

After receiving Configuration.Status(NewExt), every device checks whether it has to notify
itself for one or more properties of the new registered FBlocks.

In that case, the device has to register itself using Notification.Set.

Only those notifications have to be requested which are related to the new FBlocks. It is not
necessary to rebuild other notifications

Configuration.Status(Invalid)

After receiving Configuration.Status(Invalid), every device checks whether it has notified itself
for one or more properties in the deregistered FBlocks.

In this case, the device has to react in an appropriate way to adjust its internal structure to the
new situation.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 114

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3 Network Section

The Network Section comprises of Network Layer Service Specification and the Network Layer
Protocol Specification. This includes network management, connection management, dynamic
behavior, and error management.

The MOST Network Service provides all the basic functionality to operate a MOST system. It contains
a comprehensive library of API functions to interface with the hardware and simplify use of MOST for
the application.
The MOST Network Service offers a wide variety of functions for implementing applications. Some
functions are mandatory for a MOST device. MOST Network Service provides a basic framework for a
MOST device.

MOST
Supervisor
Layer 2

NetworkMaster Address Handler

BB FE Shadow Decentral Registry

Notification
Service

MOST Command Interpreter

Network Service

Application Message Service
Streaming Data Transmission Service
(includes synchronous and isochronous data)

Packet Data Transmission Service
MOST Network Interface Control Service

Control Message Service

Figure 3-1: Application and Network Service of a MOST device

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 115

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

Note: The MOST Supervisors combine a number of different responsibilites and are therefore not
described as single components in this specification. The MOST Supervisor is, for example,
responsible for initialization (3.1.3.1.1.1), Lock handling (3.1.2.2.2), Netinterface state transitions

(3.1.2.2), and ring break diagnosis (3.1.4.1).

The MOST Supervisor Layer 2 handles address generation (3.2.2) and System State changes within

the Netinterface Normal Operation state (3.1.3.2).

3.1 Network Layer Service Specification

The Network Layer Service Specification defines the abstract interface between the Application Layer

and the Network Layer.

3.1.1 MOST Data

MOST Data

Control Data

Source Data

Streaming Data

Packet Data
Data

Synchronous

Isochronous Data

DiscreteFrame Isochronous
A/V Packetized Isochronous

QoS IP

Figure 3-2: MOST data transport mechanisms

Specification Document
Page 116

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.1.1 Control Data
Messages on the Control Channel provide control of applications.

The messages can be sent as single cast (logical or node position addressing), groupcast, or
broadcast.

Arbitration is provided automatically by the MOST Network Interface Controller in case a node wants
to send a message. In order to provide fair arbitration even at high bus loads, a double arbitration
mechanism is used. This ensures that an access is not depending on the communication load of
upstream devices and the priority is not depending on the network position.

Rejection of messages by the receiver is flagged and automatic retransmission is performed. The
number of retries can be defined by the application software. If the maximum of retries is reached
without success, a transmission error is indicated to the application.

3.1.1.2 Source Data

The MOST Network Interface Controller handles and converts a variety of local data formats and
transmits that data over MOST. “Source data” refers to every kind of data that is not transmitted over
the Control Channel: packet data and streaming data (see Figure 3-2: MOST data transport
mechanisms).

3.1.1.3 Distinction between Source Data and Control Data

Depending on the kind of data and bandwidth, the MOST system provides different transmission
procedures.

Telegrams for controlling devices or slow packet data are transmitted via the Control Channel of the
MOST Network Interface Controller. For transmitting packet data of higher bandwidth, a packet-
oriented data area is available. Streaming data, such as audio signals of a CD drive, can be
transmitted directly in the streaming data area of the network. A more detailed description of the
different data areas can be found in the sections below.

3.1.1.4 Differentiating Streaming Data and Packet Data

The number of streaming and packet data bytes is specified by the Boundary Descriptor value
described in 3.2.8.1.

3.1.1.5 Synchronous Data

Streaming data connections are available for real-time data (synchronous data) such as audio/video or
sensor data and eliminate the need for additional buffering in analog-to-digital converters (and digital-
to-analog converters) or in single speed CD devices for audio and video.

Accessing this data is provided by time division multiplexing (TDM) and allocation of quasi-static
physical connections for a certain period of time (e.g., while playing an audio source). The bandwidth
for such a connection can be adjusted by allocating the required number of bytes.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 117

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.1.6 Isochronous Data

Isochronous data is source data which is received or sent at a rate that is unrelated to the MOST
system clock. Accessing this data is provided by time division multiplexing (TDM) and allocation of
quasi-static physical channels for a certain period of time. The bandwidth for such a channel can be
adjusted by allocating any number of bytes to one logical channel.

As with synchronous data, data on an isochronous channel is transmitted from a single source to one
or more sinks. Therefore no arbitration has to be done.

The isochronous transmission class does not provide error detection (e.g., CRC). The receiving
application has to cope with frames corrupted during transmission.

Three use cases are distinguished:

a)

c)

DiscreteFrame Isochronous (Streaming)
Isochronous streams containing data and additional timebase information in parallel. Typically

the data is arranged in frames.

All PCM streams fall into this category. Here the PCM data is accompanied by a frame sync
signal.

A/V Packetized Isochronous (Streaming)
Isochronous streams containing only data. Additional timebase information may be
transported 'inside’ the data. Typically the data is arranged in packets.

MPEG System Layer streams (e.g., MPEG2-TS) fall into this category. No frame sync signal is
included; nevertheless the data contains multiple MPEG timestamps.

QoS IP (Streaming)
This mode is used for packet transmission which allows for full quality of service requirements.

Note: For more information on isochronous data, refer to the MOST Stream Transmission
Specification.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 118

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.1.7 Packet Data

Another time slot is available for packet data transport as required for burst-like data. In contrast to the
Control Channel, the Packet Data Channel provides transmission of longer data packets. It also
provides two different addressing mechanisms:

16 bit Target Address (classic MOST addressing)
48 bit Target Address (MAC addressing)

Access to this type of data is provided in a token ring manner. Each node has fair access to this
channel and its bandwidth can be controlled using the Boundary Descriptor in a step of four bytes
(quadlets).

The maximum packet length on the Packet Data Channel in 48 bit addressing mode is 1522 bytes. In
this mode, each node must support the full packet length.

The maximum packet length on the Packet Data Channel in 16 bit addressing mode is 1532 bytes.

In the 16 bit and 48 bit addressing modes, data is transported byte aligned.

The data on this channel, consisting of target address, source address, and the payload (Data area) is
CRC protected by the Packet Data Channel CRC. The packet data message is defined as follows.

Area Size / bytes Task
Administration | H Data Link Layer Overhead
(e.g., Arbitration, Length in bytes, Transmission Status,
Addressing Type |dentifier (16 bit or 48 bit mode))
Target address
Own address (Source address)
Packet Data Channel CRC
N=6"... 1524

b4ENINILS

Data

Table 3-1: Structure of packet data (16 bit addressing)

Area Size / bytes Task
Administration | H Data Link Layer Overhead
(e.g., Arbitration, Length in bytes, Transmission Status,
Addressing Type Identifier (16 bit or 48 bit mode))
Target address
Own address (Source address)
Packet Data Channel CRC = Ethernet FCS
Data (containing Ethernet frame without destination, source and FCS)
N=0... 1506

z|a|lo|o

Data

Table 3-2: Structure of packet data (48 bit addressing)

Since the packet data area is variable, it can take several frames to complete a message. The
corresponding management such as arbitration and channel allocation is provided by the MOST
Network Interface Controller.

A hardware Packet Data Channel CRC is provided. The Packet Data Channel CRC is calculated in
the background and can be indicated in a register at the end of each packet data message.

Low-level retries are supported for both addressing modes. The number of low-level retries and the
time between individual low-level retries are defined by the System Integrator.

! For information on the use of the first 6 bytes, please refer to section 3.2.6.1.1.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 119

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.2 Dynamic Behavior of a Device

3.1.2.1 Overview

This section describes the dynamic behavior of the system — the states and state transitions of the
system, with a special focus on network dynamics (i.e., the dynamics of the Network Interface of a
device). The expression Netinterface stands for the entire communication section of a node, that is,
the physical interface, the MOST Network Interface Controller, and the Network Service.

A MOST Node implements the NetBlock, FBlock EnhancedTestability, and Network Service.

For network analysis purposes, a certain node kind can be configured to operate in “listen only” mode.
From the network view, these nodes are invisible.

“Listen only” nodes are typically not part of MOST systems in the field; they are only included during
system design and for failure diagnosis.

A MOST device contains at least one MOST Node. If the device contains more than one node, it is
called a multi-node device.

Generally, for each device, the Device Specification must define all the possible combinations of the
states of the application section and the communication section. Particularly from the view of the
network, there are three states that are mandatory for each device:

DevicePowerOff: Communication section is in state Netinterface Off.

1. DeviceStandBy: The logical function of the application is running, while peripherals with high
power consumption such as drives are switched off. This state is reached after state
DevicePowerOff. The communication section is in state NetInterface Normal Operation.

2. DeviceNormalOperation: The communication section, as well as the application, is in state
normal operation.

The following description gives an impression of what may happen in the single states with respect to
the communication and application sections.

DevicePowerOff:
e The application may be awakened (for example, by a timer), can check an external signal, and
return to sleep mode without waking up the Netinterface. The device does not leave the mode.

e The application may be awakened, for example, by a timer, and can then wake up the
NetInterface, and by that, the entire network. The device changes to state DeviceStandBy or
state DeviceNormalOperation.

e The application may be awakened when detecting a modulated signal on the bus and then
wakes the application during initialization phase. The device changes to state DeviceStandBy.

DeviceStandBy:
e If the application is used, or its peripherals are in use, the device changes to state
DeviceNormalOperation.

e If the modulated signal on the bus is switched off, the device changes to state
DevicePowerOff.

DeviceNormalOperation:
e If the modulated signal on the bus is switched off, the device changes to state
DevicePowerOff.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 120

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3.1.2.2 NetiInterface

Here, the states of a device are seen from the view of the Netinterface. Operations within the
application of a device are not considered. Only the interfaces to the application are shown.

The figure below shows the states of the NetInterface and the events that lead to state transitions. In
addition, the System State that corresponds to the Netinterface state is indicated.

The state NetInterface Diagnosis Result is optional.

The following sections explain the individual states.

Ring Break
Diagnosis

,~'Net|nterfacé~.

Diagnosis
- Result /

Result Start Error

on Diagnosis o, tdown
Error ‘Position

Diagnosis detected’ Diagnosis
Start
Result
Init Diagnosis Ready Diagnosis
Start Ready

Netlnterface
Off

Normal

Start Up Shutdown

Init Error Error
Shutdown Shutdown

etinterface
Normal
Operation

~_"—>
Init Read

Figure 3-3: Overview of the states in Netlnterface

NetlInterface
Init

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 121

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.2.2.1 NetInterface Off
In state Netinterface Off, the NetInterface is switched off from the view of the network. That means

there is no modulated signal. The MOST Network Interface Controller does not necessarily need to be
switched off since the application may still use function groups of it (e.g., local clock generation).

State Netinterface Off is left when one of the following events occurs:

Event Transition to Cause

Start Up Netinterface Init A Netinterface is activated either by a modulated
signal at the receiving physical interface, by the
application (hypothetical example: phone receives a
call), or by a switch at the device.

Diagnosis Start Netlnterface Ring Break Diagnosis A Netlnterface is activated by connecting to power.

Diagnosis Result Start NetInterface Diagnosis Result Diagnosis error “Position detected”.

Table 3-3: Events in state Netlnterface Off

3.1.2.2.2 Netlnterface Init

In this state, Netlnterface is initialized to the point where the MOST Network Interface Controller is
able to communicate with other nodes.

When entering state Netinterface Init, the TimingMaster clears the System Lock Flag on Data Link
Layer. This value is transferred to all MOST Network Interface Controllers. As soon as the
TimingMaster recognizes a Stable Lock, it sets the System Lock Flag in the administrative area of the
MOST frame.

This state is left when one of the following events occurs:

Event Transition to Cause
Init Ready NetInterface Normal Operation NetInterface is ready for communication (see below).
Init Error Shutdown NetInterface Off Error occurred during initialization (see below).
The Shutdown Flag is not set and tsso_shutdown dOES
not apply.
Init Diagnosis Start NetInterface Ring Break Diagnosis A Diagnosis Start trigger is received.

Table 3-4: Events in state Netlnterface Init

Causes for event Init Ready:

¢ Inthe TimingMaster device:
Stable Lock (for a minimum time of t ,«) was recognized. Lock is called stable if for a period
of time t o« NO unlock events occurred.

¢ Ina TimingSlave device:
Stable Lock was recognized and the System Lock Flag is set. Lock is called stable if for a

period of time t_ .« NO unlock events occurred.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 122

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Causes for event Init Error Shutdown:

¢ Inthe TimingMaster device:
Timeout tconig OCCUrs before a Stable Lock can be recognized.

e In a waking TimingSlave device:
Timeout tconig 0OCCuUrs before a modulated signal is recognized.

¢ In a woken TimingSlave device:
— Timeout tconiig €Xpires before stable lock has occurred and a closed ring is recognized

— The modulated signal was switched off again.

In a woken TimingSlave device, the bypass of the MOST Network Interface Controller is deactivated
(opened) as soon as a short lock is recognized (i.e., the lock does not need to be stable for t). In
case of a waking TimingSlave device and the TimingMaster device, the bypass is deactivated
immediately after having entered this state (modulated signal at the output).

As soon as the initialization of the MOST Network Interface Controller starts, the logical node address
has to be set to OXOFFE.

The flow chart below shows the behavior in state Netinterface Init. A differentiation is made between
Master and Slave. On this level, Master means TimingMaster and Slave means TimingSlave.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 123

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

Device with the TimingMaster

The Start Up Event will be
activated either by a switch at

Start Up the device, by modulated signal
at the input of the physical input,
or by the application.

Y

MOST Network Interface
Controller will be configured
as Master
(Modulated signal at output)

Y
Set NodeAddress in MOST
Network Interface Controller to
O0xOFFE

h 4

Clear System Lock flag

v

Start timer tcondig
Clear StableLockOccurrence

StableLockOccurrence
indicates that StableLock
occurred at least once.

es
—— < Modulated signal y
at input? ¢
no
no StableLock
Occurrence
yes

Lock stable?

set
StableLockOccurrence

.

The ring is closed when the
TimingMaster has verified that
 J the received MOST frame is

identical with the transmitted
MOST frame. That is, it is barred
that the PLL in the TimingMaster
has engaged stable lock based
on a modulated signal that was
generated by another MOST
yes node.

no)
. ring closed?

Timeout?

v
Set System Lock flag

A

Init Ready

Init Error
Shutdown

Figure 3-4: Behavior of a TimingMaster device in state NetInterface Init

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 124

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

Waking Slave Device

The Start Up event will be
generated by the application
(Start Up) (e.g. telephone receives a call),

or by a switch at the device.

r

MOST Network
Interface Controller
will be configured
as Slave
(bypass disabled,
light at output)

r

Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

Start timer
tConfig

4

no
Timeout?

yes no

Modulated signal
at input?

yes
A4

Init Error
Shutdown Shutdown

Figure 3-5: Behavior of a waking TimingSlave device in state Netlnterface Init

After having woken the ring (a modulated signal generated by the TimingMaster is received at the

input), the TimingSlave device goes to Shutdown'. From there it starts up as a standard TimingSlave
device, woken by the TimingMaster.

' The “Shutdown” transition is not contained in Figure 3-3: Overview of the states in Netinterface. It
leads to state NetInterface Off.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 125

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Woken Slave Device

Start Up

MOST Network
Interface Controller
will be configured
as Slave
(bypass enabled)

v

Set NodeAddress in
MOST Network
Interface Controller

to OXOFFE

v

Start timer tconsig
Clear
StableLockOccurrence

The Start Up Event
will be generated at
the input of the
physical interface.

StableLockOccurrence
indicates that Stable Lock
occurred at least once.

Modulated signal

yes

Lock stable?

Qdfn

yes

set
StableLockOccurrence

[y
P

Deactivate bypass at
recognized Lock

Modulated signal
at input?

yes

no

StableLockOccurrence
and ring closed?

yes

Init Ready

Y
yes%é

The ring is closed as
soon as the System
Lock flag is detected.

Init Error
Shutdown

Figure 3-6: Behavior of a woken TimingSlave device in state NetInterface Init

Specification Document
Page 126

MOST Specification
Rev. 3.0 E2 07/2010

© Copyright 1999 - 2010 MOST Cooperation

MOST® MOST

Specification COOPERATION

3.1.2.2.3 NetiInterface Normal Operation

This state is reached as soon as the initialization has reached a level where the MOST Network
Interface Controller can start to communicate with other nodes in the network. When entering this
state, the part of the application that is connected to the communication section is initialized.

The NetInterface Normal Operation state is also commonly referred to as NetOn state.

Examples for initializing a higher layer due to the Init Ready event:
e Check of system configuration and building of the Central Registry (refer to section 3.1.3.3).
e Setting of the logical node address and group address (refer to section 3.1.3).
¢ Initialization of the sending and receiving parts of the Network Service.

In certain circumstances, other application units are initialized earlier, independently from the state of
the Netlnterface.

Event Transition to Cause

Normal Shutdown NetInterface Off Netinterface will be deactivated by switching off the
modulated signal.

Error Shutdown Netinterface Off NetInterface will be deactivated due to a Critical
Unlock.

Init Ready Report to an application Entering state NetInterface Normal Operation

Table 3-5: Events in state NetInterface Normal Operation

The Normal Shutdown event is generated as soon as no modulated signal is recognized at the input.

In state Netinterface Normal Operation, the Network Service checks the lock state of the PLL of the
MOST Network Interface Controller. If an unlock occurs, the application must be informed as soon as
possible by an unlock event. Please refer to section 3.1.5.2 ‘Unlock’ on page 167 for more information
regarding this type of error.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 127

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

The flow chart below shows the behavior in state Netinterface Normal Operation:

Every device

Init Ready

Recalculate node
address;
report to application:
Init Ready Event

es
Off Request? Y >

Refer to procedure
“PowerMaster initiates
Shutdown”
in Figure 3-21

Initialization of the next upper
layer e.g. setting address,
verifying system configuration,
etc.

Off Request is the request (by
the local PowerMaster
application) to switch off the
modulated signal.

no

Shutdown

Modulated signal
lag present 2

at input?

This includes transmission of
ShutDown.Start(Execute) and
setting the Shutdown flag.

Switch off
signal at output

A Sudden Signal Off, i.e., without
having started method ShutDown
in NetBlock before, will be
interpreted as Error Shutdown in

Change in
number of MOST
Devices?

Report to application:

no Network Change Event
Y
yes
Unlock? ———————————————— P

Report to application:
Unlock Event

no

Report to application:
Stable Lock Event

Critical Unlock?

yes

>
«

Refer to procedure
“Signal Off or Critical
Unlock” in Figure 3-21

Report to application:
Transition to state
Netinterface Off

the higher layer

The Stable Lock Event
is reported as soon as
tLock expires.

Report to application:
Transition to state
NetInterface Off

Error
Shutdown

Normal
Shutdown

Figure 3-7: Behavior in state Netlnterface Normal Operation

Specification Document
Page 128

MOST Specification
Rev. 3.0 E2 07/2010

© Copyright 1999 - 2010 MOST Cooperation

MOST® MOST

Specification COOPERATION

3.1.2.2.4 NetiInterface Ring Break Diagnosis
Ring break diagnosis serves the purpose of localizing a fatal error in the network.

The ring break diagnosis process can be started by various triggers, which must be chosen and
implemented by the System Integrator.

In state Netinterface Ring Break Diagnosis, a relative node position is determined in every device.
This information can be used in case of a fatal error (ring break, attenuation—no lock possible, or
defective device) to localize the error (see 3.1.4.1 Ring Break Diagnosis).

If there is no fatal error, the Netinterface immediately changes to state Netinterface Normal Operation.
In case of a Diagnosis Error Shutdown event, the position determined in each device describes the

position relative to the device that was configured as TimingMaster at the end of ring break diagnosis
(since there was no modulated signal at its input).

Tx

rel. Pos.: 1

rel. Pos.: 0 rel. Pos.: 3

Figure 3-8: Localizing a fatal error with the help of ring break diagnosis.

Event Transition to Cause

Diagnosis Ready Netlnterface Normal Operation No fatal error.

Diagnosis Error Shutdown | Netinterface Off Fatal error (Ring break or defective device).
The Shutdown Flag is not set and tsso_shutdown dO€S
not apply.

Diagnosis Error Shutdown | Netlnterface Diagnosis Result Fatal error (Ring break or defective device)

This transition is only available if the optional
Netlnterface Diagnosis Result state exists.

The Shutdown Flag is not set and tsso_shutdown dOES
not apply.

Table 3-6: Events in state Netinterface Ring Break Diagnosis

3.1.2.2.5 NetiInterface Diagnosis Result

This is an optional state.

Event Transition to Cause

Diagnosis Result Ready Netlnterface Off Phase 3 of RBD (delivery of result) complete.
The Shutdown Flag is not set and tsso_shutdown dOES
not apply.

Table 3-7: Events in state NetInterface Diagnosis Result

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 129

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.2.3 Power Management

Power management means that the administrative function, which is above the Network Service,
wakes and shuts down the MOST network or specific devices. The power management is handled
mainly by the PowerMaster, which uses NetBlock functions for this purpose.

3.1.2.3.1 Waking of the Network

Waking the network is done by switching on a modulated signal. In principle the network can be
awakened by any node. The PowerMaster itself will usually wake the network, for example, when
there is communication on the car’s bus or based on the status of the vehicle (Clamp status).

A device must only wake the network when this is initiated by the application. Failure (e.g., supply
voltage too low or too high) must not initiate waking of the network. Other solutions for waking up the
network have been implemented as well, such as using a separate electrical wake-up line. It is up to
the System Integrator to choose the preferred wake-up method. The process described here is
independent of the wake-up method.

When an application wakes the network, it calls the respective routine in the Network Service, which
switches on a modulated signal at the output of the device. Every node that recognizes the modulated
signal at its input switches on a modulated signal at its output and initializes. In this way, the
modulated signal travels from node to node until the entire network is awake.

Applic. Applic.
\

Start Up Init Ready

\
Net Net

Interface Interface

Y
Device Device

Modulated signal on

Figure 3-9: Example (2 devices) for waking of the MOST network via a modulated signal on the network

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 130

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.2.3.2 Network Shutdown

Switching off the network is done on lowest level by switching off the modulated signal. A device,
which has switched off the modulated signal, must not switch it on again before trestart OCcurred. This
applies even if it recognizes a modulated signal at its input (modulated signal wake-up) or any other
wake-up trigger.

Error Shutdown
All devices only switch off the modulated signal when certain errors occur (Critical Unlock, low voltage
with reset). Refer to 3.1.5.2 Unlock and 3.1.4.2 Detection of Sudden Signal Off and Critical Unlock.

Normal Shutdown

In all other cases, only the PowerMaster switches off the network. For avoiding that devices have to
save their status to persistent memory very often, the PowerMaster implements a shutdown procedure
that has two stages. This procedure contains request and execution. For requesting, it starts method
ShutDown with parameter Query in all NetBlocks of the system. This is one of the rare cases where a
telegram is broadcasted.

After that, the PowerMaster waits for twaisuspena before it sends ShutDown.Start(Execute), using the
blocking broadcast address, to announce the shutdown of the system. A device without any further
need for communication does not respond on ShutDown.Start(Query).

The execution is announced by the PowerMaster by starting ShutDown.Start(Execute). By this
function call, the shutdown process is started irrevocably. The devices do not reply to this call. They
prepare for shutting down (saving status) and then wait for the modulated signal to be switched off.

The PowerMaster switches off the modulated signal when tspupownwait @Nd tsso_shutdown €XpPire (see
Figure 3-21) after ShutDown.Start(Execute). Among other purposes, this time allows shutdown of
audio output without audible side effects. If the modulated signal was not switched off within
tsiaveshutdown, @ Slave device may switch off the modulated signal.

If an FBlock desires to continue to communicate, it must notify the PowerMaster after
ShutDown.Start(Query) with ShutDown.Result(Suspend).

If the PowerMaster receives ShutDown.Result(Suspend) within time twaitsuspend, it POStpones its attempt
to switch off for time treryshuown, before retrying to shut down. The PowerMaster may override
suspend requests from its Slaves and complete the shutdown, for example, to prevent the occurrence
of critical conditions like low voltage.

If during twaitsuspend OF tretryshutoown the shutdown reason ceases to exist, the PowerMaster cancels the
shutdown: it does not send out further Shutdown.Start (Query) messages.

For switching off, the PowerMaster calls the respective routine in the Network Service. The status
“modulated signal off” travels around the ring in the same way as “modulated signal on” when waking
the network. A certain delay time tpyrswitchorfpelay, after switching off the modulated signal, the nodes
change to sleep mode.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 131

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

1) ShutDown.Start (Query)
3) ShutDown.Start (Execute)

h 4
Power 2) PowerMaster
NetBlock NetBlock — requests # Applic.
Master
shutdown
\ A
4) perform 6) NetInterface
shutdown Off Event
v \
Net Net
Interface Interface
Device i Device

5) Modulated signal off

Figure 3-10: Switching off MOST network by starting method ShutDown in every NetBlock

If a device desires to wake the network directly after a shutdown, it has to wait at minimum for trestart
(running from modulated signal off), before it switches on the modulated signal again.

1) ShutDown.Start (Query)

2) PowerMaster

requests
Power . 4) ShutDown.Result | shutdown .
NetBlock (Suspend) NetBlock Applic.
4—3) Suspend!

Net Net
Interface Interface
Device Device

Figure 3-11: Prevention of switching off MOST network via ShutDown.Result (Suspend)

If the modulated signal is switched off during shutdown, for example, by low voltage, Critical Unlock, or
fatal error, the PowerMaster must not wake the network in order to finish its shutdown procedure. The
PowerMaster must regard the shutdown procedure as complete.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 132

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.2.3.3 Device Shutdown

In order to minimize power consumption on system and device level, it is possible to shut down
specific MOST devices. This process is called Device Shutdown. Shutting down a device may affect
the application on a system level; avoiding such effects is handled by other mechanisms. It is optional
to support Device Shutdown.

When a device is shut down, all applications in the device may be shut down with the exception of
NetBlock, which is still active with limited functionality: the NetBlock properties FBlockIDs,
NodePositionAddress, NodeAddress, GroupAddress, and ShutDown have to be supported.

Also, the device has to know the current System State when it wakes from Device Shutdown,
therefore, the NetworkMaster Shadow has to keep track of the current System State even while the
device is in Device Shutdown state.

The NetBlock.ShutDown.Start message is used to bring a device into or out of Device Shutdown.

When managing Device Shutdown, this message may be sent to one device or a group of devices, as
opposed to Network Shutdown where this message has to be broadcast. The behavior of a device
during Network Shutdown is not affected by whether the device is in Device Shutdown or not. Refer to
section 3.1.2.3.2 for information about Network Shutdown.

Note: In Device Shutdown state, the shutdown reason (see 3.1.4.2 Detection of Sudden Signal Off
and Critical Unlock) cannot be stored.

3.1.2.3.3.1 Performing Device Shutdown

The process of shutting down a device or a group of devices can be divided into two stages, a request
stage and an execution stage. The request stage is optional.

Request Stage (Optional)

This stage guarantees that a device is not shut down while its FBlocks are communicating with
FBlocks on other devices. It is also useful if the PowerMaster wants to shut down a group of devices
but only if the whole group is ready.

The PowerMaster sends ShutDown.Start (Query) to a single device or a group of devices.
The PowerMaster will wait for twaisuspena t0 allow devices to suspend its own shutdown.

A device that requires communication will respond with ShutDown.Result (Suspend).

Ao bd -~

If a device responds to the Query, the PowerMaster will wait for trerysnupown before trying
again.

5. Steps 1 through 4 may be repeated. If no request to suspend the Device Shutdown process is
received, twaitsuspend €XPires and the execution stage is entered.

Devices with system functions (e.g., NetworkMaster and Connection Manager) shall reject requests by
the PowerMaster to perform a Device Shutdown. Those devices return error code 0x07 (“parameter
not available”).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 133

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Execution Stage

To execute Device Shutdown, the PowerMaster starts method Shutdown with parameter
DeviceShutdown in a single device or in a group of devices.

1. The PowerMaster sends ShutDown.Start(DeviceShutdown).

2. A source device de-allocates the bandwidth. A sink device secures any streaming outputs. For
sinks, the Mute property remains unchanged.

The device unregisters itself from Notification Matrices in other devices, if any.

The device unregisters its FBlocks by sending an FBlocklDs.Status with an empty
FBlockIDList.

5. The NetworkMaster, using the blocking broadcast address, broadcasts the device’s invalid
FBlocks.

6. The device can shut down its application but the NetBlock has to stay active.

3.1.2.3.3.2 Waking from Device Shutdown
The device can be woken by the PowerMaster or by the device itself.

Wake-Up by PowerMaster

The PowerMaster sends ShutDown.Start(WakeFromDeviceShutdown).
The device wakes its application.

The device registers its own FBlocks using FBlocklIDs.Status(FBlockIDList).

N~

When NetworkMaster reports the new FBlocks, they can be used.

Internal Wake-Up

1. The device wakes its application.

2. When the System State is OK or when explicitly asked by the NetworkMaster, the device
registers its own FBlocks using FBlockIDs.Status(FBlockIDList).

3. When NetworkMaster reports the new FBlocks, they can be used.

Furthermore, a device that is woken from Device Shutdown must perform the complete
“SystemCommunicationlnit” procedure (see section 3.1.3.1.1.2 Initialization on Application Level).

3.1.2.3.3.3 Persistence of Device Shutdown
The state of being in Device Shutdown is not memorized after a system restart.
If the PowerMaster application in a system that supports Device Shutdown is reset in System State

OK, the PowerMaster shall broadcast ShutDown.Start(WakeFromDeviceShutdown) at the end of its
reset procedure to establish a defined Device Shutdown state.

3.1.2.3.3.4 Response when Device Shutdown is Unsupported

Since Device Shutdown is optional, the NetBlock of a device that does not have support for Device
Shutdown responds to a request for Device Shutdown with ErrorCode 0x07 (parameter not available).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 134

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3 Network Management

Network Management is the process by which the NetworkMaster ensures secure communication
between applications over the MOST Network. This section describes the conditions that must be met
by the NetworkMaster and the NetworkSlaves to enable safe Network Management. The tools used
for this process include the control of the System State and the administration of the Central Registry,
as well as the Decentral Registries.

Section 3.1.3.1 contains general descriptions of Network Management. Detailed requirements of the
behavior of MOST devices regarding Network Management are described in sections 3.1.3.2 through
3.1.3.4. For more implementation specific information and examples refer to Appendix A.

3.1.3.1 General Description of Network Management

3.1.3.1.1 System Startup

This section describes the System Startup following the Init Ready event.

3.1.3.1.1.1 Initialization of the Network

The NetworkMaster is responsible for initializing the network at System Startup. It collects the system
configuration by requesting the configuration of each individual NetworkSlave; this is referred to as a
System Scan. The collected information is entered into the Central Registry.

The NetworkMaster sets the System State to OK to indicate that the Central Registry is valid or NotOK
to indicate that the Central Registry is invalid. When the System State is OK, MOST devices may
communicate freely. When the System State is NotOK, communication is limited.

Setting the System State to NotOK resets the system from a network point of view, that is, any
network related information is reset in all NetworkSlaves.

The NetworkMaster will set the System State to NotOK whenever an error is caused by a
NetworkSlave registration. The NetworkMaster will perform a System Scan as described in section
3.1.3.34.

A transition to System State OK indicates the completion of the network initialization.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 135

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.1.1.2 Initialization on Application Level

After the NetworkMaster has set the System State to OK, initializations that have to do with the
interacting of multiple devices on the Application Layer should be performed. However, initialization of
the individual applications may start earlier. The application may now initialize communication
controlled by itself. This initialization phase is referred to as “SystemCommunicationInit”.

During SystemCommunicationinit, for example, notification is established, so the application of a
device may register in the Notification Matrices of those FBlocks from which it desires to get status
information.

The system must be prepared for devices connecting to or disconnecting from the network (Network
Change Event) and FBlocks being activated and deactivated during runtime. In these cases, the
system must run consistently without disturbances and reinitializing phases must be as short as
possible. On a Network Change Event, parts of SystemCommunicationinit must be run again, but
initialization must not be run completely due to the time this would take.

3.1.3.1.2 General Operation

3.1.3.1.2.1 Finding Communication Partners

When an application seeks a communication partner, that is, an FBlock, it requests the whereabouts
of the FBlock from the NetworkMaster. The requesting application receives the available InstIDs of the
sought FBlock and the logical node addresses of the devices in which they reside. Alternatively, if a
specific FBlock is sought, the InstID may also be specified.

A Controller device may store the information concerning its communication partners in a Decentral
Registry. The benefit of having a Decentral Registry is that the NetworkSlave does not have to request
the logical node address of its communication partners every time it needs to communicate. The
Decentral Registry must be deleted whenever the NetworkMaster sets the System State to NotOK.

3.1.3.1.2.2 Network Monitoring

The NetworkMaster monitors the system for changes and errors. When a Network Change Event is
detected, the NetworkMaster must find out if a device has entered or left the network. It scans the
network and reports any new information to all NetworkSlaves in the system. This way a device will be
notified if one of its communication partners is missing or if new potential communication partners
enter the system.

The NetworkMaster may scan the system at any time.

3.1.3.1.2.3 Dynamic FBlock Registrations

It may happen that devices activate and deactivate FBlocks at any time; these changes have to be
reported to the NetworkMaster. The NetworkMaster then updates the Central Registry and informs all
NetworkSlaves.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 136

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.2 System States

A MOST Network is in either of two System States, OK or NotOK. The System State reflects the
validity of the Central Registry. The NetworkMaster builds and maintains the Central Registry, as well
as distributes the System State to all NetworkSlaves.

The NetworkMaster builds the Central Registry by collecting logical node addresses and FBlock
configuration from all NetworkSlaves. The system relies on a valid Central Registry, not only because
it contains the information used by Controller devices to find their communication partners, but also
because it is crucial that a device is informed if one of its communication partners disappears.

The NetworkMaster distributes the System State of the network to the NetworkSlaves by broadcasting
Configuration.Status messages, using the blocking broadcast address. The state diagram in Figure
3-12 shows the System States and which events affect the states.

~

Configuration.Status(OK)

/\‘ Configuration.Status(NewExt)
v\ oK
(CR Valid)

Configuration.Status(NotOK)

ShutDown.Start(Execute)
Configuration.Status(Invalid)

Figure 3-12: States of the network and the Central Registry in Netinterface Normal Operation !

NotOK
(CR Invalid)

)

Configuration.Status(NotOK)

The network should be considered to be in a reset state directly following the broadcast of
Configuration.Status(NotOK) by the NetworkMaster. Following this event, all devices delete any
network configuration related information they may have (e.g., logical node address, Central Registry,
Decentral Registry).

Sections 3.1.3.3 NetworkMaster and 3.1.3.4 NetworkSlave describe device specific behavior in the
different System States, as well as making transitions between states.

! Shutdown.Start(Execute) will not cause the re-calculation of logical node addresses (see 3.1.3.2.1).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 137

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

3.1.3.2.1 System State NotOK

System State NotOK is always entered after an Init Ready event. In this state, communication must
not take place except for special applications that do not rely on a valid registry, in particular the
System Scan performed by the NetworkMaster and other optional features that may be done on a per-
device, position-dependent basis. The system can fall back into System State NotOK at any time by
declaration of the NetworkMaster.

Also, the system is regarded as being in System State NotOK after NetBlock.ShutDown.Start(Execute)
has been broadcast.

An optional delay may be specified on a per-system basis between the broadcast of this message and
the point in time where the change of state becomes effective. Dynamic logical node addresses are
not re-calculated upon this implicit change of state; this is only done when the message
Configuration.Status(NotOK) has been received.

Event Transition to Cause Effect

Configuration.Status

NotOK No transition - Un-initialized NodeAddress in Network Configuration Reset:
NetworkMaster - Clear Central Registry
- Erroneous registration by - Clear Decentral Registries
NetworkSlave. - Recalculate NodeAddress

OK System State OK - Central Registry verified - Network configuration available

in Central Registry

- Set up Decentral Registries,
where necessary.

- (Re-) initialize applications.

Table 3-8: Events in System State NotOK (refer to Figure 3-12)

3.1.3.2.2 System State OK

While in System State OK, the Central Registry is valid. So the exact set of FBlocks in the system,
each with its attributes InstlID and DevicelD, is defined. Therefore, application communication (i.e.,
messages with FBlocklDs other than NetBlock or NetworkMaster are allowed) may take place on the
Control Channel and Packet Data Channel. All the dynamic communication on the application level
within the distributed system should be done only in System State OK.

Event Transition to Cause Effect
Configuration.Status
NotOK System State - Erroneous registration by Network Configuration Reset:
NotOK NetworkSlave. - Clear Central Registry
- Clear Decentral Registries
- Recalculate NodeAddress
NewExt No transition - New FBlocks are available - Notify application
Invalid No transition - FBlocks were removed - Notify application

Table 3-9: Events in System State OK (refer to Figure 3-12)

As a result of a Configuration.Status(NotOK) event in System State OK, the following tasks have to be
performed by all devices as part of the Network Configuration Reset:

e Every FBlock containing streaming sinks: set the Mute property to “On” for all sinks and
disconnect them.

e Every FBlock containing streaming sources: De-allocate all sources.

¢ Close MOST High Protocol connections.

e Clear any Decentral Registry; the NetworkMaster clears the Central Registry.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 138

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

e The Connection Manager must delete its connection table.
e Empty Notification Matrix.
e Destroy all ArrayWindows on LongArrays.

e Derive and set the new logical node address (section 3.2.2).

3.1.3.3 NetworkMaster

The device that contains the NetworkMaster FBlock is referred to as the NetworkMaster. There must
be one, and only one, NetworkMaster in a MOST Network.

The NetworkMaster controls the System State and administrates the Central Registry. The
NetworkMaster monitors the network for certain events and continuously manages incoming
information from NetworkSlaves about their current FBlock configuration and whenever necessary
informs all NetworkSlaves about updates to the Central Registry.

3.1.3.3.1 Setting the System State

The NetworkMaster distributes the System State by broadcasting Configuration.Status messages,
using the blocking broadcast address. More information about the different System States and
Configuration.Status messages is available in section 3.1.3.2.

It is critical that Configuration.Status broadcast messages are received by all devices in the MOST
network. If at least one MOST NetworkSlave has not received a Configuration.Status broadcast
message, the NetworkMaster device performs low-level retries. If these are not successful, the
NetworkMaster application should perform additional retries. The number of retries is System
Integrator specific.

3.1.3.3.1.1 Setting the System State to OK

By setting the System State to OK, the NetworkMaster confirms the validity of the Central Registry.
Therefore, before setting the System State to OK, the NetworkMaster must make sure that all
functional addresses are unique in the system (section 2.2.3.3).

The NetworkMaster must do the following when setting the System State to OK:
1. Broadcast Configuration.Status(OK).
2. Trigger initialization of applications in own device.

3. Continue to maintain the Central Registry.

3.1.3.3.1.2 Setting the System State to NotOK (Network Reset)

By broadcasting Configuration.Status(NotOK), the NetworkMaster resets the system (from a network
point of view).

The NetworkMaster then executes the actions that are described in section 3.1.3.2.2. The
NetworkMaster waits a time twaieforescan after broadcasting Configuration.Status(NotOK) and
afterwards perform a System Scan (section 3.1.3.3.4).

In case the Central Registry becomes unavailable due to an internal failure of the NetworkMaster, the
system must be notified with an Configuration.Status(NotOK) message by the device that contains the
NetworkMaster.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 139

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.2 Central Registry

The NetworkMaster generates the Central Registry during the initialization of the network and it
continues to administrate it until Network Shutdown (section 3.1.2.3.2). The Central Registry is an
image of the physical and logical system configuration. It contains the logical node address and the
respective FBlocks of each device:

RxTxLog RxTxPos FBlockID InstiD

0x0100 0 AudioDiskPlayer 1
NetworkMaster 10
ConnectionMaster 1

0x0101 1 AudioDiskPlayer 2

0x0102 2 AM/FMTuner 1
AudioTapeRecorder 1

0x0103 3 AudioAmplifier 2

Etc.

MaxNode MaxNode HumanMachinelnterface 1

Table 3-10: Example of a Central Registry

3.1.3.3.2.1 Purpose

The Central Registry is used when the NetworkMaster checks the system configuration and when
devices are searching for communication partners.

3.1.3.3.2.2 Contents

The Central Registry must contain the logical node address and the respective functional addresses
(combination of FBlocks and InstiDs) of the FBlocks in each responding MOST device. This
information must be made available to all NetworkSlaves.

3.1.3.3.2.3 Responsibility

Any new information gained regarding the system configuration must be entered into the Central
Registry and distributed to all NetworkSlaves as described in section 3.1.3.3.6.

The NetworkMaster must only start supervising and store errors for those NetworkSlaves that have
answered requests and which are registered in the Central Registry.

3.1.3.3.2.4 Responding to Requests for Information from the Central Registry

The NetworkMaster must respond to requests for CentralRegistry.Get from the NetworkSlaves while
the System State is OK. This is described in section 3.1.3.4.4.

If the NetworkMaster receives CentralRegistry.Get from a NetworkSlave while the system is in System
State NotOK, the NetworkMaster answers the request with the ErrorCode 0x41 and broadcasts
Configuration.Status(NotOK). The message is sent to the blocking broadcast address.

Broadcasting the System State again ensures that every device in the system is updated on the
current System State, including and in particular the NetworkSlave that attempted to query the Central
Registry.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 140

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.3 Specific Behavior during System Startup

After the Init Ready event, the NetworkMaster must initialize the system. This process depends on the
availability of a valid' logical node address.

3.1.3.3.3.1 Valid Logical Node Address Not Available

If the NetworkMaster does not have a valid logical node address available at System Startup, it
assumes that the entire system must be re-initialized. The NetworkMaster must set the System State
to NotOK (section 3.1.3.3.1.2) and then start a System Scan (section 3.1.3.3.4).

3.1.3.3.3.2 Valid Logical Node Address Available

If the NetworkMaster has a valid logical node address at System Startup, it must restore its logical
node address and then start a System Scan (section 3.1.3.3.4).

The NetworkMaster must wait a time tywaigeforescan P€fOre scanning the system for the first time. This
latency time allows the system to stabilize after the Init Ready event. This latency time must not
exceed twaitafierNCE-

3.1.3.3.4 Scanning the System (System Scan)

The NetworkMaster scans the system at System Startup and after a Network Change Event (NCE).
It may also be instructed to scan the system at any other time.

The NetworkMaster scans the system by requesting the FBlock configuration of each device. The
responses from the NetworkSlaves are interpreted as described in section 3.1.3.3.5. Any information
gained concerning the configuration of the network must be written to the Central Registry and
reported to all NetworkSlaves as described in section 3.1.3.3.6.

The NetworkMaster will set the System State to NotOK whenever an error is caused by a
NetworkSlave registration.

3.1.3.3.4.1 Configuration Request Description

During a network scan, the NetworkMaster requests NetBlock.FBlocklDs.Get from each
NetworkSlave.

3.1.3.3.4.2 Addressing

The NetworkMaster scans the system by node position addressing. The logical node address of the
requested NetworkSlave is contained in the response message.

3.1.3.3.4.3 Non Responding NetworkSlaves

The NetworkMaster must wait until the expiration of twaitroranswer fOr a reply from a NetworkSlave.
The NetworkMaster must send another request to the NetworkSlave as described in section
3.1.3.3.4.4.

' A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.2.2.1.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 141

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.4.4 Retries of Non Responding NetworkSlaves

When a NetworkSlave does not respond to a request, the NetworkMaster must try again after
tpelayCigrequestt OF DelayCigRequest2- IDelaycigrequestt 1S USed for the first 20 request attempts after entering
NetInterface Normal Operation, after that tpejaycigrequestz iS Used.

Refer to section 3.2.9 for more information about timers.

3.1.3.3.4.5 NetworkSlave Continuous cause for System State NotOK

If a node caused a Configuration.Status(NotOK) the third time in direct succession, the NetworkMaster
will check if its own address is involved into that conflict. All conflicting NetworkSlaves are ignored until
the next NCE or shutdown; the NetworkMaster node must never be ignored.

Ignore in this context means

a) On subsequent system scans FBlockIDs are not requested from the respective nodes
anymore.

b) FBlockIDs.Status events from the respective nodes are not evaluated. Other messages from
ignored nodes may still be processed.

Note: The nodes to be ignored are identified by the InstiDs of their NetBlocks (representing the
NodePosition).

<Resolve address conﬂict>

Did node or
message cause
Configuration NotOK \
third time? Yes

Conflict with
Network Master
Address?

No
No
Yes i
v
Configuration NotOK Ignore naog;gvsitsh invalid Ignore all conflicting nodes

Restart check of system
. . End
configuration

Figure 3-13: NetworkMaster behavior in case of an address conflict

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 142

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.4.6 Duration of System Scanning

The NetworkMaster must continue to scan the system until all NetworkSlaves have answered the
requests. Refer also to section 3.1.3.3.4.4.

3.1.3.3.4.7 Reporting the Results of a System Scan without Errors

The NetworkMaster must report the result of the System Scan if it has any new information to
distribute, such as a change in System State or changes in the FBlock configuration of one or more
NetworkSlaves. Refer to sections 3.1.3.3.1 and 3.1.3.3.6.

3.1.3.3.5 Invalid Registration Descriptions

The NetworkMaster interprets the incoming registrations and determines if the registration is accepted.
The following are considered to be invalid registrations, but all are not considered erroneous since
some may be corrected by the NetworkMaster.

3.1.3.3.5.1 Un-initialized Logical Node Address

If any NetworkSlave, at any time, registers an un-initialized logical node address (section 3.2.2.1), the
NetworkMaster must set the System State to NotOK (section 3.1.3.3.1.2), interrupting any ongoing
System Scan.

3.1.3.3.5.2 Invalid Logical Node Address

When the NetworkMaster receives a registration from a NetworkSlave in which its logical node
address is outside of the specified address range, the NetworkMaster must set the System State to
NotOK (section 3.1.3.3.1.2), interrupting any ongoing System Scan.

Refer to section 3.2.2 for more information about the valid address range.

3.1.3.3.5.3 Duplicate Logical Node Addresses

When the NetworkMaster receives a registration from a NetworkSlave in which its logical node
address has already been registered by another NetworkSlave, the NetworkMaster must set the
System State to NotOK (section 3.1.3.3.1.2), interrupting any ongoing System Scan.

3.1.3.3.5.4 Duplicate InstID Registrations

The NetworkMaster is responsible for the uniqueness of functional addresses (combination of
FBlockIDs and InstID) within the entire system. The NetworkMaster must try to resolve the issue of
two or more NetworkSlaves registering identical functional addresses.

In the case of duplicate InstIDs, the InstID of the FBlock that is already registered in the Central
Registry must not be changed.

The NetworkMaster decides a new InstID for the last FBlock to be registered. It then sets the new
InstID in the corresponding NetworkSlave by using the logical node address. If the new InstID was
accepted by the NetworkSlave, the NetworkMaster enters the new value into the Central Registry. The
NetworkMaster must inform all NetworkSlaves as described in section 3.1.3.3.6 or by ultimately setting
the System State to OK.

If the NetworkSlave cannot accept the new InstlD, it has to respond with an unchanged
NetBlock.FBlockIDs.Status list. The NetworkMaster tries to repeat the procedure with the same or

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 143

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

another InstID value. The maximum number of attempts per instance is to be defined by the System
Integrator.

If the request to change the InstID of a conflicting FBlock is not successful, the NetworkMaster must
either exclude the FBlock or the entire device from the Central Registry. Figure 3-14 describes the
behavior of the NetworkMaster in detail.

InstID Conflict NetworkMaster

detected

Retries
exhausted?

yes—» Discard FBlock

Start timer twaitroranswer
Send FBlockIDs.SetGet

no
Status os . InstiD P
received? Y accepted? = 4

no

Error
received?

no

Timeout
tWaltForAnswer?

no

System
State OK?

Retries
exhausted?

yes
no

v

Start timer twaitroranswer
Send FBlockIDs.Get

registered?

yes

)

Send
Configuration.Status(Invalid)

Status
received?

<
[

no

Y

y
» Discard device 44

Error
received?

Timeout
twaitForAnswer?

A 4
yes InstID Conflict
Resolution
complete

Figure 3-14: InstID conflict resolution

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 144

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.5.5 Error Response

A NetworkSlave that answers a request from the NetworkMaster with an error must be treated as a
non-responding NetworkSlave (section 3.1.3.3.4.4).

3.1.3.3.6 Updates to the Central Registry

The NetworkMaster must inform all NetworkSlaves about changes of the system configuration. This
information may become available during a System Scan or as NetworkSlaves make additional
registrations, which are not requested by the NetworkMaster.

This section describes how the NetworkMaster handles changes to the system configuration while in
System State OK.

3.1.3.3.6.1 Disappearing FBlocks in System State OK

If the NetworkMaster receives a registration from a NetworkSlave in which there is one or more
FBlocks missing compared to the last registration from the same NetworkSlave, the NetworkMaster
must update the Central Registry and inform all NetworkSlaves about the missing FBlocks.

This is done by broadcasting (as blocking broadcast):
Configuration.Status(Invalid, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the previously registered but now invalid FBlocks. The
DeltaFBlockIDList must not contain more entries than a single transfer can transport. If there are more
FBlocks, several single transfers must be performed.

If the FBlock 0x03 (ConnectionMaster) is unregistered in the Central Registry, a
NetworkMaster.Configuration.Status(NotOK) must be broadcast. Afterwards, a System Scan is
performed (see section 3.1.3.3.1.2).

When one or more FBlocks have disappeared the NetworkMaster should inform all NetworkSlaves
about the missing FBlocks as quickly as possible, even if this information is gained while scanning the
network.

“Own configuration invalid” handling (optional)

If the NetworkMaster receives an OwnConfiglnvalid.StartResultAck(..., State=active, DevicelD) from a
NetworkSlave, the NetworkMaster starts the “own configuration invalid” handling.

The end of the “own configuration invalid” state is reached when the NetworkMaster has completed
the handling of “own configuration invalid” by removing all FBlocks of the device from the Central
Registry, in which case it will send OwnConfiginvalid.ResultAck(State=finished) to the NetworkSlave
that initiated the handling. The end of the “own configuration invalid” state is also reached when a
transition to state Netinterface Off occurs or the System State is set to NotOK.

Note: The NetworkMaster has to be able to handle OwnConfiginvalid messages from multiple
devices.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 145

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.6.2 Appearing FBlocks in System State OK

If the NetworkMaster receives a registration from a NetworkSlave in which there is one or more
additional FBlocks compared to the last registration from the same NetworkSlave, the NetworkMaster
must update the Central Registry and inform all NetworkSlaves about the new FBlock.

This is done by broadcasting (as blocking broadcast):
Configuration.Status(NewExt, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the new FBlocks, InstIDs, and the corresponding
DevicelDs. The DeltaFBlockIDList must not contain more entries than a single transfer can transport. If
there are more FBlocks, several single transfers must be performed.

If this information is gained while scanning the network, the NetworkMaster may continue to scan the
system before it informs all NetworkSlaves.

If a device that has already been present in the MOST ring as a node tries to register some more
FBlocks and the NetworkMaster cannot include the new FBlocks in the Central Registry because the
registry is “full”, there will be no broadcast.

In the case that some but not all of the new FBlocks can be included in the Central Registry, the
broadcast list would not be empty but would contain the subset of the instances that were included in
the Central Registry:

Configuration.Status(NewExt, <partial list>)

3.1.3.3.6.3 System scan without any change in Central Registry

The NetworkMaster = must broadcast (using the blocking broadcast address)
Configuration.Status(NewExt) with an empty list when a network scan that was triggered by an NCE
did not detect any changes to the registry.

Note: Configuration.Status(NewExt) with an empty list can only be sent after the scan has been
completed.

3.1.3.3.6.4 Non-responding Devices in System State OK

If a NetworkSlave, which has registered in the Central Registry since startup, does not respond to a
request before twaitroranswer €Xpires, the NetworkMaster removes the NetworkSlave from the Central
Registry and informs all NetworkSlaves as described in section 3.1.3.3.6.1.

3.1.3.3.7 Miscellaneous NetworkMaster Requirements

3.1.3.3.7.1 Network Change Event (NCE)

When an NCE is detected, the NetworkMaster must start a complete System Scan (section 3.1.3.3.4)
after twaitaernce- This also applies to a Verification Scan at System Startup (section 3.1.3.3.3). Any
scan in progress when the NCE is detected must be interrupted and restarted.

3.1.3.3.7.2 Positioning of the FBlock NetworkMaster in the MOST Network
The NetworkMaster has to reside in the same device as the TimingMaster.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 146

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.3.7.3 System Configuration Status Information

Particularly when dealing with diagnostic mechanisms, it is important to have a reliable way of
determining when the full system configuration has been reached. This information is, for example,
necessary as the trigger for certain checks—such as the comparison of rated and actual
configuration—and the precondition for diagnostic services.

Note: This mechanism is optional.

FBlock Function OPType Parameter
NetBlock (0x01) ImpIFBlockIDs Get -
(0x012) Status ImplFBlocklDs
Error ErrorCode, Errorinfo

Parameter ImplFBlockIDs

Basis datatype Length Condition Description
Stream - Content: FBlockID, InstID
{FBlockID1, InstID1, FBlocklD2, InstID2...}

All Application FBlocks (i.e., not NetBlock, EnhancedTestability) implemented by the device are
contained in this list with their FBlockID and InstID. FBlocks that are implemented more than once
must be included the corresponding number of times. In case of dynamic InstIDs, the InstIDs are
numbered as reported by the device after first power on.

In the case that the node is not fully operable, the NetBlock must return an error message if this
function is called (0x41 - function temporarily not available). Otherwise, the NetBlock must return a
complete list with the implemented FBlocks.

Note: If the application is available and ImplFBlockiDs returns an empty list, the device does not
implement Application FBlocks; e.g. the device is a Controller only.

After System State OK is entered, the NetworkMaster shall query the property ImplFBlockIDs of each
device that reported a non empty list as FBlockIDs.Status.

If a device reported an empty list as FBlocklDs.Status, it is up to the System Integrator to decide
whether the NetworkMaster shall query the property ImplFBlockIDs.

The NetworkMaster shall request ImplFBlockIDs exactly once from every device after System State
OK was entered. However, the NetworkMaster shall also query the property ImplFBlockIDs after it has
received an FBlockIDs.Status message from a device that has not replied to ImplFBlockIDs.Get at all
or has replied with ImpIFBlocklIDs.Error(0x41) before.

A System Integrator may decide to delay that request according to the specific needs.
By comparing the list of implemented FBlocks with the list of registered FBlocks in the Central

Registry, the NetworkMaster can determine the current state of the system configuration and makes
this information available via the function SystemAuvail.

FBlock Function OPType Parameter
NetworkMaster (0x02) | SystemAvail (0xA10) | Get -
Status DeviceAvail, FBlockAvail
Error ErrorCode, Errorinfo
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 147

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Parameter DeviceAvail

Basis datatype

Range of
values

Code

Description

Enum

0x00...0x02

0x00

Incomplete. At least one node is not fully operable

because of one of the following conditions:

— All nodes have answered but at least one node has
answered with the error 0x41.

— The property ImplFBlockIDs is not requested, for
example, because the system scan has detected an
unsolvable DevicelD conflict or the system scan is not
finished.

0x01

Complete. All nodes are fully operable:
All available nodes have reported their implemented
FBlocks through the property ImplFBlocklIDs.

0x02

Error. At least one node has not answered to
ImplFBlockIDs or has returned an error not equal to
0x41.

Parameter FBlockAvail

Basis datatype

Range of
values

Code

Description

Enum

0x00...0x01

0x00

Incomplete: all other cases (Not all FBlocks reported by

the property ImplFBlocklIDs of the available devices are

currently registered in the CentralRegistry or the state of
DeviceAvail is still Incomplete.)

0x01

Complete: DeviceAvail is Complete and all FBlocks
reported by ImplFBlockIDs are registered in the
CentralRegistry.

Specification Document
Page 148

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification

Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.4 NetworkSlave

All devices that do not contain the NetworkMaster FBlock are called NetworkSlaves. A NetworkSlave
must keep the NetworkMaster informed about its current FBlock configuration.

In particular, the NetworkSlave is responsible for ensuring that FBlocklD.Status messages, which
register or unregister FBlocks, are successfully transmitted to the node containing the NetworkMaster.

3.1.3.4.1 Decentral Registry
Every device that controls other devices should build a Decentral Registry in which it registers its

communication partners. The device that contains the NetworkMaster—and therefore implements the
Central Registry—does not necessarily build a Decentral Registry.

A Decentral Registry contains the functional addresses and the respective logical node address:

Functional Address Device Containing the FBlock
(FBlockID.InstID) (Logical Node Address = DevicelD)
AudioAmplifier.1 0x0105

AudioAmplifier.2 0x0103

AM/FMTuner.1 0x0107

AudioDiskPlayer.1 0x0107

Table 3-11: Example of a Decentral Registry

3.1.3.4.1.1 Building a Decentral Registry

The information stored in the Decentral Registry is gained from the Central Registry. The Decentral
Registries are only re-built on demand, that is, not directly following a transition to System State OK.

3.1.3.4.1.2 Updating the Decentral Registry

The FBlock entries stored in the Decentral Registry must match the entries of the respective FBlock in
the Central Registry. When the NetworkMaster informs of updates to the Central Registry, the
Decentral Registry must be updated accordingly for the registered FBlocks.

3.1.3.4.1.3 Deleting the Decentral Registry
The Decentral Registry must be cleared when the device enters or assumes state NotOK.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 149

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.4.2 Specific Startup Behavior

Following the Init Ready event, the NetworkSlave initializes its logical node address and services
requests from the NetworkMaster.

3.1.3.4.2.1 Behavior when a Valid Logical Node Address is not Available at System Startup

If the NetworkSlave does not have valid’ logical node address available at System Startup, it must set
its logical node address to the value of an un-initialized logical node address (section 3.2.2.1) and
services requests from the NetworkMaster until the NetworkMaster sets the System State.

3.1.3.4.2.2 Behavior when a Valid Logical Node Address is Available at System Startup

If the NetworkSlave has a valid' logical node address stored from the previous system run, it uses that
logical node address and services requests from the NetworkMaster until the NetworkMaster sets the
System State.

3.1.3.4.2.3 Deriving the Logical Node Address of the NetworkMaster

A NetworkSlave must derive the logical node address of the NetworkMaster from the following events
(i.e., from the Source Address of the following messages):

a) NetBlock.FBlockIDs.Get, if the System State is NotOK.
b) NetworkMaster.Configuration.Status(OK, NewExt, or Invalid)

If the address that is derived from the Configuration.Status message differs from the address derived
from FBlocklDs.Get, the address that depends on Configuration.Status must be used.

A NetworkSlave resets the NetworkMaster address (to OxFFFF) on the following events:
a) each transition to state NetinterfacePowerOff.
b) each transition to System State NotOK.
c) reception of NetBlock.ShutDown.Start (Execute).

' A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.2.2.1.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 150

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.4.3 Normal Operation of the NetworkSlave

3.1.3.4.3.1 Behavior in System State OK
A NetworkSlave may communicate freely while the System State is OK.

3.1.3.4.3.2 Behavior in System State NotOK

While the System State is NotOK, a NetworkSlave must not initiate any communication except for
special applications that do not rely on a valid Central Registry, such as optional features that can be
done on a per-device, position-dependent basis.

A NetworkSlave must not send a NetBlock.FBlockIDs.Status(FBlockIDList) message in System State
NotOK without being requested explicitly by the NetworkMaster.

3.1.3.4.3.3 Responding to Configuration Requests by the NetworkMaster

The NetworkSlave responds to requests for FBlock configuration from the NetworkMaster at all times,
regardless of the current System State. The response must be sent before the expiration of tanswer-

The NetworkSlave must report all FBlocks that are currently active from a network point of view. The
FBlocks 0x00 (Network Service), 0x01 (NetBlock), and 0xOF (Enhanced Testability) are neither listed
in NetBlock.FBlockIDs.Status messages nor in the Central Registry. In general, it is not recommended
to include FBlocks that have their InstiDs coupled with the current node position in the
NetBlock.FBlocklDs.Status list or the Central Registry.

If the NetworkSlave does not have any active FBlocks, it must respond with an empty FBlockIDList.

3.1.3.4.3.4 Reporting Configuration Changes to the NetworkMaster

When the FBlock configuration of a NetworkSlave changes, it must report this change to the
NetworkMaster; however, it must not do so if the current System State is NotOK (section 3.1.3.4.3.2).

3.1.3.4.3.5 Failure of an FBlock in a NetworkSlave
This behavior is described in section 3.1.5.4.

3.1.3.4.3.6 Failure of a NetworkSlave Device
This behavior is described in section 3.1.5.4.

3.1.3.4.3.7 Unknown System State

If the NetworkSlave does not know the current System State, it must assume that the System State is
NotOK. For determining of System State, refer to section 3.1.3.4.3.8.

Note: The device also has to assume state NotOK when the Netinterface enters normal operation.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 151

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3.1.3.4.3.8 Determining the System State

The current System State must be determined from the Configuration.Status message, which is
broadcast by the NetworkMaster, using the blocking broadcast address. The Configuration.Status
(NotOK) implies the system status being NotOK. All other Configuration.Status messages imply the
System State is OK, for example,

¢ Configuration.Status(OK)
e Configuration.Status(NewExt)
e Configuration.Status(Invalid)

e Configuration.Status(NewExt, <empty>)

Init Ready

Diagnosis Ready Configuration.Status(OK)

Configuration.Status(NewExt
Configuration.Status(Invalid)

Configuration.Status(NewExt)

Configuration.Status(NotOK)

Configuration.Status(NotOK)

ShutDown.Start(Execute)

U Configuration.Status(Invalid)

Figure 3-15: NetworkSlave determines the System State in Netinterface Normal Operation

3.1.3.4.3.9 Finding Communication Partners

The Central Registry must be used if the application of a device seeks a logical node address. Note
that this must be done only if the information is not already available in a Decentral Registry (section
3.1.3.4.1).

3.1.3.4.3.10 Reaction to Configuration.Status(OK) when in System State NotOK
When the NetworkMaster sets the System State to OK the NetworkSlave:

1. Uses its current Decentral Registry or rebuilds a Decentral Registry when necessary.
2. (Re-) initializes the application.

The System State is set to OK. For additional information, refer to section 3.1.3.2.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 152

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.4.3.11 Reaction to Configuration.Status(OK) when in System State OK
If a device receives Configuration.Status(OK) in state OK, it ignores the message.

3.1.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK

The NetworkMaster sends this message to reset all NetworkSlaves from a network point of view. All
NetworkSlaves must:

1. Clear any Decentral Registry.
2. Derive and set the new logical node address (section 3.2.2).

The System State remains in NotOK. For additional information, refer to section 3.1.3.2.

3.1.3.4.3.13 Reaction to Configuration.Status(NotOK) when in System State OK

When the NetworkMaster sets the System State to NotOK, the NetworkSlave must perform the actions
that are described in section 3.1.3.2.2; it services requests from the NetworkMaster while waiting for
the System State to be set to OK. For additional information, refer to section 3.1.3.2.

3.1.3.4.3.14 Reaction to Configuration.Status(NewExt)

One or more FBlocks have entered the system and the Central Registry has been updated with the
FBlocks supplied in the message. These FBlocks should be added to the Decentral Registry, if they
are used by the device.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.1.3.2.

3.1.3.4.3.15 Reaction to Configuration.Status(Invalid)

One or more FBlocks have left the system and the FBlocks supplied in the message have been
removed from the Central Registry. These FBlocks have to be removed from the Decentral Registry if
entered.

If a device receives a Configuration.Status(Invalid) with (part of) its own FBlockID(s) and InstID (“own
configuration invalid”), it has to reinitialize all applications and send an empty FBlockID list to the
NetworkMaster.

The following actions are taken before reinitialization:
— a sink device secures its output and sets the Mute property to “On”
— a source device de-allocates the bandwidth
— packet data connections are closed

— all notifications are cleared

If afterwards the system remains in System State OK, the NetworkSlave registers its FBlocks, which
prompts the NetworkMaster to send Configuration.Status(NewExt) to the blocking broadcast address.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 153

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

“Own configuration invalid” handling (optional)

During System State OK, when the NetworkMaster removes FBlocks of a NetworkSlave device from
the Central Registry, it sends Configuration.Status(Invalid) containing the de-registered FBlocks to the
NetworkSlave. The NetworkSlave identifies its own FBlocks and as a result the NetworkSlave sends
OwnConfiglnvalid.StartResultAck(..., State=active, DevicelD) to the NetworkMaster; this starts the
“‘own configuration invalid” handling. The NetworkSlave then sends an FBlocklDs.Status with an
empty list.

The NetworkSlave cleans up streaming connections and packet data connections, clears the
Notification Matrix, and reinitializes its FBlocks.

The NetworkSlave ignores all own FBlocks in Configuration.Status(Invalid) or
Configuration.Status(NewExt) messages from the NetworkMaster until the “own configuration invalid”
handling has completed. During the “own configuration invalid” handling, the NetworkSlave answers
FBlocklDs.Get requests with an FBlocklDs.Status message that contains an empty list.

The end of the “own configuration invalid” state is signaled either by a transition to state NetInterface
Off, Configuration.Status(NotOK), or OwnConfiglnvalid.ResultAck(State=finished).

3.1.3.4.4 Seeking Communication Partner

To seek all instances of a specific FBlock, the seeking Controller sends the following command to the
NetworkMaster (NWM):

Controller -> NWM : NetworkMaster.CentralRegistry.Get (FBlockID)

The NetworkMaster contains the Central Registry, which represents an image of the physical and
logical system configuration. It answers with a list of all matching entries of the Central Registry with
logical node address and functional address”:

NWM -> Controller : NetworkMaster.CentralRegistry.Status (
RxTxLog,FBlocklD, InstlID,
RxTxLog,FBlocklID, InstID,...)

Optionally, the InstID can also be specified to search for a certain FBlock:

Controller -> NWM : NetworkMaster.CentralRegistry.Get (FBlocklID, InstiID)

If the respective FBlocklD/InstID combination does not exist, the NetworkMaster replies with
ErrorCode 0x07 “Parameter not available”. In case the FBlockID does not exist, in Errorinfo, it returns
0x01 and the FBIlockID. If the FBlockID exists but the requested InstID does not, it returns 0x02 and
the InstID.

Note: Any parameter (FBlockID or InstID) that is not provided when using CentralRegistry.Get, is
assigned the wildcard value OxFF. Thus, for example, CentralRegistry.Get without parameters is
identical to CentralRegistry.Get (OXFF, OXFF).

' The NetworkMaster answers to requests even if the requesting device is not contained in the Central
Registry.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 154

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

The following table describes the response of the NetworkMaster to all FBlockID/InstID combinations.

InstID | 0x00 0x01...0xFE OXFF
FBlockID
0x00 These FBlockID/InstID combinations are not allowed. The NetworkMaster will respond with
ErrorCode 0x06 (parameter out of range).
0x01...0xFE | If InstID 0x00 of the If it exists, the specific All existing InstIDs of the
requested FBlock exists, it FBlockID.InstID combination | requested FBlock will be
will be reported. Otherwise, will be returned. reported.

one existing InstID of that
FBlock will be reported.
However, while the system
remains in System State OK
and the InstID is still
present, the same InstID
must be reported in
subsequent calls with
identical parameters.

OxFF These FBlockID/InstID combinations are not allowed. The entire Central Registry
The NetworkMaster will respond with ErrorCode 0x06 | is returned.

(parameter out of range).

FBlockID OxFF requires InstID OxFF.

Table 3-12: FBlockID, InstID combinations for querying the Central Registry

3.1.3.4.5 Requesting FBlock Information from a Device

To obtain information about the FBlocks contained in a device, every NetBlock has the property
FBlocklIDs (0x000). It will be requested in the following way:

NetworkMaster -> ??? : NetBlock.FBlocklIDs.Get |

The NetworkSlave answers with a list of the contained FBlockIDs. The FBlock that most characterizes
the device (e.g., Tuner in a radio device) is listed first. The NetBlock and FBlock EnhancedTestability
are not listed, as they are mandatory FBlocks in every device:

??? -> Controller : NetBlock.FBlocklIDs.Status (FBlocklID1, InstiID1,
FBlocklID2, InstlID2...
FBlockIDN, InstIDN)

NetBlock.FBlockIDs
| FBlockID 1] FBlockID 2] FBlockID 3| ... FBlockID N

Figure 3-16: Reading the FBlocks of a device from NetBlock

Note: “Controller” refers to the NetworkMaster in this case. The more generic term “Controller” is used
because the NetworkSlave cannot verify in all cases that the sender is the NetworkMaster.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 155

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.3.4.6 Requesting Functions from an FBlock

In an adaptable system it may happen that a Controller does not know exactly which functions are
available in an FBlock (e.g., simple or high-end audio amplifier). Therefore, every FBlock that is listed
in the Central Registry has the function FktIDs (0x000)". It is read as follows:

Controller -> ??? : FBlocklID.InstID.FktlIDs.Get

Within an FBlock, FktlIDs between 0x000 and OxFFF (4096 different FktlDs) can be available. The
FktIDs are assigned as described in 2.2.1 on page 40. This raises the problem of a compact response,
if the functions contained in an FBlock are requested. It is solved by a mechanism derived from the
Run Length Encoding (RLE). A bit field is built where the first bit is set to 1 if FktID 0x000 is available;
the second bit is set to 1 if FktID 0x001 is available, and so on. Such a bit field may look like:

FktID 000 001 002 003 004 005 006 .. 021 022 023 024 .. AO0 AO1 AO2 AO3 .. FFF
Bitfegd 14 414 14 0 O 1 1 O O O 1 1 O O 1 1 0O O 0 ©

The answer lists only the positions (FktlDs) where the bit state changes, beginning with an initial bit
state of 1.

For the example shown above, the result would be:

??? -> Controller : FBlocklID.InstID.FktlDs.Status (002 004 006 022
024 AOO A02 0)

The last 0 represents a stuffing nibble.

NetBlock.FBlockIDs
FBlockID 1| FBlockID 2| FBlockID 3‘ ‘ FBlockIlD N

FBlockID1.FktIDs
[FktD 1 [FktiD 2 [FktID 3 | ... [FktID N |

Figure 3-17: Requesting the functions contained in an Application FBlock

3.1.3.4.7 Extended FBlock ldentification

To distinguish between the functionality of similar FBlocks with the same FBlockID, the property
FBlockinfo has to be implemented by each FBlock.

The function FBlockinfo provides information about the FBlock name, the name of the instance, the
corresponding MOST Specification version, and the version of the FBlock itself. All this information is
provided in text form.

The name of the instance is a string, which is assigned by the System Integrator to allow a further
differentiation of the application, for example, “DISP_L” for a left display or “DISP_R” for a right
display.

Additionally, FBlockinfo can provide maturity information for each function that is implemented by the
FBlock. For those FBlocks that do not appear in the Central Registry, maturity status is usually
reported as “Unknown”.

' The function FktIDs (0x000) is optional for FBlocks that are not listed in the Central Registry (e.g.,
FBlockID 0x00, NetBlock, and EnhancedTestability).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 156

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.4 Diagnosis

3.1.4.1 Ring Break Diagnosis

3.1.4.1.1 Functional Description
Ring break diagnosis (RBD) can be regarded as a process with 3 phases:

e Phase 1: Activation

An external trigger is applied to the device to start the ring break diagnosis. The trigger event
is system specific (e.g., switch-to-power detection or electrical wake-up line). The timing
constraint tpiag st Specifies the maximum delay between occurrence of the trigger and
entering phase 2.

e Phase 2: Diagnosis

The actual diagnosis takes place during this phase. Each device stores its diagnosis result
when this phase is finished.

e Phase 3: Delivery of result

During this phase the diagnosis result from phase 2 is delivered to a dedicated application.
This phase is optional.

Phase 2, the actual diagnosis phase, is divided into three time slots. The relation between these slots
and the timers used in the following descriptions is shown in this diagram:

RBD phases - Phase 1 ‘ Phase 2 ‘ Phase 3 -

T2 T3

Time Slots T1

tDiagﬁMasterfTZ ‘ tDiagiMaste:rfTC«l

‘ tDiagiMasterfﬂ

tDianglave

Timers

tDiag_slave_T1

tDiag_SignaI ‘

Figure 3-18: Ring break diagnosis phases and time slots

The precondition for a valid ring break diagnosis result is the existence of exactly one designated
TimingMaster in the system.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 157

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3.1.4.1.1.1 Behavior of a TimingSlave device

If a device sees a signal within tpiag signai @and Stable Lock within T1, no ring break exists between this
and the preceding device. Therefore, it waits for the end of the RBD (ipiag siave). If the input signal
disappears during this time, the output is switched off for trestart before it can follow the incoming signal
again. If the device sees the System Lock Flag, no ring break was detected and the device switches to
Netinterface Normal Operation mode.

If the device sees no signal within tpiag signai, it @assumes a ring break to be in front of it and switches to
TimingMaster mode. This state is left only if a signal is detected or tpiag_siave is finished. If a signal is
detected, another TimingMaster is in the ring and the device switches to TimingSlave mode.

When the device sees a signal, but cannot detect a Stable Lock within T1, it assumes excessive
attenuation in the previous network section. Therefore it switches to TimingMaster mode and stays
there until tpiag_siave is finished.

State Description

RBD_S_Start In this state, the node is waiting for signal at input or timeout(tpiag_signar)-
The state switches to RBD_S_Slave as soon as a signal at input occurs.
If timeout(tpiag signar), the State switches to RBD_S_NoSig.

RBD_S_Slave In this state, the node received a signal at input and it is waiting for a Stable Lock or
time0ut(tD\ag_Slave_ﬂ)-

The state switches to RBD_S_NetOff1, if no signal at input occurs.

If timeout(tpiag_siave T1) @and no StableLockOccurrence, the state switches to
RBD_S_Sig.

If timeout(tpiag_siave T1) and StableLockOccurrence, the state switches to
RBD_S Lock.

RBD_S_Lock In this state, the node had a Stable Lock and is waiting for timeout(tpiag_siave) OF the
System Lock Flag (closed ring).

The state switches to RBD_S_NetOff2, if no signal at input or timeout(tpiag_siave)-

RBD_S_Sig In this state, the node never had a Stable Lock.

The state switches to RBD_S_NetOff2, if timeout(tpiag_siave)-
RBD_S_NoSig In this state, the node never received a signal at input.

The state switches to RBD_S_NetOff2, if timeout(tpiag_siave) OF Signal at input.
RBD_S_NetOff1 In this state, the node is waiting for signal at input or timeout(tpiag_siave T1)-

If timeout(tpiag_siave 1), timeout(trestart) @and no StableLockOccurrence, the state
switches to RBD_S_Sig.

If timeout(trestart) @nd signal at input, the state switches to RBD_S_Slave.

If timeout(tpiag siave 1), timeout(trestart) @and StableLockOccurrence, the state switches
to RBD_S_NetOff2.

RBD_S_NetOff2 In this state, the node is waiting for the end of RBD or signal at input.
If timeout(trestart) @nd signal at input, the state switches to RBD_S_Lock.
RBD_S_NetOff3 If the ring could not be closed because of a ring break, devices shall not be

restarted by incoming modulated signal until tpiag restart has passed.

Table 3-13: Ring break diagnosis states - TimingSlave

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 158

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

A: - Start Timer(tpiag_slave)

- Start Timer(toiag_sive. 1) TimingSlave

- Start Timer(tpiag_signal)

- Configure as TimingSlave

- Switch off signal at output

- StableLockOccurrence = FALSE

- DiagResult initialized with DiagnosisFailed

C: Signal at input

RBD_S_Start A: Configure as TimingSlave

RBD_S_Slave

C: No Signal at input
A: - Switch off signal at output
- Start Timer (tRestart)

C: Timeout(tpiag_signal)
A: - Configure as TimingMaster
- SystemLockFlag = FALSE

C: NOT StableLockOccurrence AND

Timeout(tpiag_slave_T1)
A: - Configure as TimingMaster
- SystemLockFlag = FALSE

C: Signal at input AND
Timeout(trestart) AND
NOT Timeout(tpiag_siave_T1)
A: Configure as TimingSlave

RBD_S_

C: NOT StableLockOccurrence AND NetOff1
TimeOUt(tD\agislaveiﬂ) AND
Timeout(trestart)

A: - Configure as TimingMaster
- SystemLockFlag = FALSE

C: StableLockOccurrence AND
Timeout(tpiag_slave_T1) AND
Timeout(trestart)

RBD_S_Sig RBD_S_Lock

C: Signal at input OR

TimEOUt(tDiagislave)
A: - Switch off signal at output

- Start Timer (tRestart)

- DiagResult = PosDetected (0) (only if
timeout of tpiag_siave OCCUrred)

- Start Timer (trestart)
- DiagResult = PosOWeakSig
(will not be over-written)

C: Signal at input AND
Timeout(trestart) AND
NOT Timeout(tpiag_slave)

A: Configure as TimingSlave C: SystemLockFlag

A: DiagResult = NoError

NetOff2

C: No Signal at input OR

Timeout(tpiag_slave)
A: - Switch off signal at output

C: Timeout(trestart) AND - Start Timer (tRestart)

Timeout(tpiag_slave)
A: Start Timer(tpiag_Restart)

RBD_S_
NetOff3

C: Timeout(tpiag_Restart)

Diagnosis
Error
Shutdown

Diagnosis

1. DiagResult is set to PositionDetected Ready

any time Stable Lock is detected.

Figure 3-19: Ring break diagnosis — state diagram TimingSlave

C: StableLockOccurrence AND
Timeout(tpiag_slave_T1)

C: Stable Lock AND NOT StableLockOccurrence
A: StableLockOccurrence = TRUE

C: SystemLockFlag AND
StableLockOccurrence
A: DiagResult = NoError

Specification Document © Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

Page 159

MOST® MOST

Specification CODPERATION

3.1.4.1.1.2 Behavior of TimingMaster device

A TimingMaster device outputs a signal instantly when the RBD is started. If it detects a signal and a
Stable Lock during T1, it determines whether the ring is closed. If the ring is closed, no ring break is
detected, so the device sets the System Lock Flag and switches to Netinterface Normal Operation
mode.

If the device does not detect a signal within T1, it assumes a ring break to be in front of it and finishes
the RBD.

When the device sees a signal but no Stable Lock at the end of T1, it switches to TimingSlave mode.
If it sees Stable Lock within T2, another TimingMaster is active and the device stays in TimingSlave
mode during T3. But if it sees no Stable Lock, it assumes excessive attenuation in the previous
network section and switches back to TimingMaster mode during T3.

State Description

RBD_M_Start In this state, the node is waiting for a Stable Lock or timeout(tpiag master T1)-

If timeout(tpiag master T1) @and signal at input, the state switches to RBD_M_Slave.

If timeout(tpiag master T1) @nd no signal at input, the state switches to RBD_M_NetOff2.
RBD_M_Slave In this state, the node received a signal at input and it is waiting for a Stable Lock or
timeout(tD‘ag_Masw_Tz).

The state switches to RBD_M_NetOff1, if no signal at input.

If timeout(tpiag master T2) @nd no StableLockOccurrence, the state switches to
RBD_M_Sig.

If timeout(tpiag master T2) @nd StableLockOccurrence, the state switches to
RBD_M_Lock.

RBD_M_Lock In this state, the node had a Stable Lock and is waiting for timeout(toiag_master 3) OF
the System Lock Flag (ring closed).

The state switches to RBD_M_NetOff2, if no signal at input or timeout(tpiag master T3)-

RBD_M_Sig In this state, the node never had a Stable Lock.
The state switches to RBD_M_NetOff2, if timeout(tpiag master 73)-
RBD_M_NetOff1 In this state, the node is waiting for signal at input or timeout(tpiag master T2)-

If timeout(tpiag master T2), timeout(trestart) and no StableLockOccurrence, the state
switches to RBD_M_Sig.

If timeout(trestart) @nd signal at input, the state switches to RBD_M_Slave.

If timeout(tpiag master T2), timeout(trestart) and StableLockOccurrence, the state
switches to RBD_M_NetOff2.

RBD_M_NetOff2 In this state, the node is waiting for the end of RBD or signal at input.
If timeout(trestart) and signal at input, the state switches to RBD_M_Lock.
RBD_M_NetOff3 If the ring could not be closed because of a ring break, devices shall not be

restarted by incoming modulated signal until tpiag restart has passed.

Table 3-14: Ring break diagnosis states - TimingMaster

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 160

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

C: Stable Lock AND NOT
StableLockOccurrence
A: StableLockOccurrence = TRUE

RBD_M_Start

TimingMaster

A: - Start Timer (tpiag_Master_T1)
- Configure as TimingMaster
- SystemLockFlag = FALSE

- DiagResult initialized with DiagnosisFailed
- StableLockOccurrence = FALSE

C: NOTStableLockOccurrence AND

A: - Configure as TimingMaster

C: Stable Lock AND NOT StableLockOccurrence
A: StableLockOccurrence = TRUE

C: Signal at input AND
Timeom(tD\agiMasleLTﬂ) /

A: - Configure as TimingSlave

- StableLockOccurrence = FALSE

- Start Timer(tpiag_Master_T2)

RBD_M_Slave

C: No signal at input
A: - Switch off signal at output
- Start Timer(trestart)

Timeout(tpiag_Master_T2)
C: Timeout(trestart) AND

Signal at input AND
NOT Timeout(tpiag_Master_T2)
A: Configure as TimingSlave

- Start Timer(tpiag_Master_T3)

C: No signal at input AND
Timeou’(tDiagiMasleLﬂ)

A: - Switch off signal at output
- Start Timer (trestart)
- DiagResult = PosDetected

C: Signal at input AND
StableLockOccurrence AND
Ring is closed

A: SystemLockFlag = TRUE
DiagResult = NoError

(will

RBD_M_
NetOff2

C: Timeout(trestart) AND

Timeout(tpiag_Master_T3))
A: Start Timer(tpjag_restart)

RBD_M_

NetOff3

C: Timeout(tpiag_restart)

Diagnosis DI?E%?OOI,SIS
Ready Shutdown

C: Timeout(tpiag_Master -
A: - Switch off signal at output

- Start timer (tRestart)

- DiagResult = PosOWeakSig

NetOff1

C: Timeout(tpiag_Master_T2) AND
Timeout(trestart) AND
NOT StableLockOccurrence
A: - Start Timer(tDiagiMasteLTS)
- Configure as TimingMaster

©) C: Timeout(tpiag_master_T2) AND
Timeout(trestart) AND
StableLockOccurrence

A: - Configure as TimingSlave

- Start Timer(tpiag_Master_T3)

RBD_M_Sig

3)

not be over-written)

C: Signal at input AND
Timeout(trestart) AND

A: Configure as TimingSlave

C: No signal at input OR

Timeout(tpiag_Master_T3)
A: - Switch off signal at output

- Start Timer (tRestart)

((No signal at input AND Timeout(tpiag_Master_T1)) OR

1. DiagResult is set to PositionDetected
any time Stable Lock is detected.

2. If Timing Master node is configured as
Slave and SystemLockFlag is TRUE

then DiagResult is set to DiagnosisFailed.
It will not be over-written anymore.

NOT Timeout(tpiag_Master_T3)

C: StableLockOccurrence AND
Timeout(tpiag_Master_T2)
A: - Start Timer(tpjag_Master_T3)

RBD_M_Lock

Figure 3-20: Ring break diagnosis — state diagram TimingMaster

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev. 3.0 E2 07/2010

Page 161

MOST® MOST

Specification COOPERATION

3.1.4.1.2 Ring Break Diagnosis Result

Each device stores the relative ring position which is seen during Stable Lock and reports it as
diagnosis result when a ring break is detected. The table lists the possible results of ring break
diagnosis and the corresponding events.

Diagnosis Result | Diagnosis Info Description Event
No error - No error detected. Diagnosis Ready
Transition to NetInterface Normal Operation.

Ring Break Relative position. Ring break detected. The result indicates the relative Diagnosis Error

(Position detected) position of ring break. Shutdown

Weak Signal - Activity is present, but Stable Lock could not be Diagnosis Error

(Excessive established. Position 0 is assumed because there is no Shutdown

attenuation at input) valid relative node position available.

Diagnosis failed - The ring break diagnosis is inconclusive. Diagnosis Error
Shutdown

Table 3-15: Ring break diagnosis results

When Netinterface state Diagnosis Result is used (see 3.1.2.2 Netinterface), the device in
TimingMaster mode (first node downstream the faulty network section) switches on the signal again
and broadcasts the message NetBlock.RBDResult.Status() within RBD phase 3. The message
contains the status of the test (Activity/NoActivity) and the diagnostic identifier of the device (DiagID).

The content of the DiagID is defined by the System Integrator; its length has to be chosen so that the
message can be sent as an unsegmented control message.

3.1.4.2 Detection of Sudden Signal Off and Critical Unlock

When a Sudden Signal Off (SSO) or Critical Unlock (CU) occurs in Normal Operation mode, the
device behind the SSO or CU switches to TimingMaster mode without generating a Critical Unlock.
Within tspupown, it sets the Shutdown Flag in the administrative area of the MOST frames, which
notifies all other devices about the shutdown. It delays switching off the signal at the output for
tsso_shutpown t0 ensure that the following devices can detect the Shutdown Flag. The detection of the
Shutdown Flag has to be secured.

The detecting device stores the cause of the fault (SSO or CU); all other devices have noticed the
Shutdown Flag and consequently store “No fault saved”. All causes of faults must be stored by the
application so that the information is still available after a reset. The initial value is “No result
available”.

The designated TimingMaster cannot detect the Shutdown Flag which was set by the detecting device
that temporarily operates in TimingMaster mode. Therefore, the designated TimingMaster will also
detect an SSO or a CU fault and store it. This has to be considered when the stored faults are
evaluated after the next start of the system.

A TimingSlave device which has detected an SSO or a CU will not close the bypass after switching off
the signal. If there is any activity at the input of the device, it must not restart as long as the Shutdown
Flag is detected in the incoming signal, in order to prevent that the network is restarted before the
shutdown is complete.

Also, the PowerMaster has to set the Shutdown Flag when it performs the normal shutdown
procedure.

This detection applies only to Netinterface State Normal Operation. In any other state, the signal is
switched off, without propagating the Shutdown Flag, and without saving any shutdown reason.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 162

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

The following flow chart shows this behavior:

PowerMaster Signal Off or Caused by U or Emergency
initiates Shutdown Critical Unlock Over-Temperature Shutdown
PowerMaster sends
NetBlock.ShutDown. Shutdown
Start(Execute) " Flag present ?
A v
Wait for Configure as
tshutbownwait TimingMaster
A v
Set the Set the
Shutdown Flag Shutdown Flag
Y
Any Error Cause was n SSO Error Any L
stored already ? Signal Off ? stored already ? stored already ?
yes TI) yes no no
¢ yes i
Save Save Error Save Error Save yes
No Fault Saved Sudden Signal Off Critical Unlock No Fault Saved
N Wait for b 4 n Cause was
tsso_shutbown C Signal Off ?
yes
(e
PowerMaster All nodes
\ (initiates Normal Shutdown)) \ (including PowerMaster) /
Figure 3-21: Shutdown causes in state Netinterface Normal Operation
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 163

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.4.3 Shutdown Result Analysis

After the restart of the network, a central component may query all nodes for stored faults. This query
takes place when the System Configuration State is OK, i.e., after the NetworkMaster has sent the
Configuration.Status(OK) message. This unique Controller sends the following single cast message to
all devices:

NetBlock.ShutDownReason.Get()

The devices will answer with the corresponding Status message or with error “FktID not available” if
the application is not available yet. When it has gathered the information from all devices, it sends

NetBlock.ShutDownReason.Set(0x00)

to all nodes. Only now all devices delete the stored shutdown reason. This ensures that in the case of
a reappearing fault the result of the analysis is not corrupted.

In cases where the TimingMaster detects an error, the unique Controller must ignore the shutdown
reason in the TimingMaster if another device also reports the fault.

This NetBlock function is mandatory for all devices.

3.1.4.4 Coding Error Counter

For diagnostic purposes the Network Service of each MOST node must provide a function to
determine the occurrence of coding errors and to read out this information from an application. Coding
errors are violations of the coding scheme.

The coding error counter counts corrupted frames depending on the operating mode. The
implementation must prevent a wrap-around of the counter.

Retimed Bypass Mode

If the device is in Retimed Bypass Mode, which is a special test mode used for physical layer testing,
the counter counts all corrupted frames independent of the Netinterface state. The Retimed Bypass
Mode is activated by the FBlock EnhancedTestability API.

Normal Operation Mode

In Normal Operation mode, coding errors must not be counted during start-up or shutdown, that is,
before reaching Configuration.Status(OK) and after ShutDown.Start(Execute).

Additionally, coding errors must not be counted when more serious error events are detected, such as
an unlock, a Critical Unlock, or a Sudden Signal Off. The counter is reset on transition to state
NetInterface Normal Operation and whenever the coding error counter is read.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 164

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.5 Error Management

In the network, the following errors may occur on a high level:

e Failure of a NetworkSlave Device: Error that leads to either a reset of the whole device or
reset of the failing application.

e Critical Voltage: The Netinterface works normally, the device can communicate. On a
recovery from this state, the network does not need to be initialized again.

e Over-Temperature: Depending on the temperature, four different alert levels are defined.

Additionally, errors may occur on a lower level:

e Fatal Error: Error that leads to the interruption of the ring, to the breakdown of the network, or
that means the network cannot be initialized (low voltage, ring break, defective Physical
Interface unit).

e Unlock: The PLL of the MOST Network Interface Controller is no longer locked. A ring break
is not necessarily the inevitable conclusion of this error.

e Network Change Event: One of the nodes in the network has activated or deactivated its
bypass, which means it “disappears” or “appears” as a new node.

e Low Voltage: The voltage of one or more devices is too low to maintain operation of the
NetInterface (see 3.1.5.5 Undervoltage Management).

For the handling of these errors, there are the following general rules:

e Local Handling of Errors: Every device is responsible to handle every recognized error
locally. Only the NetworkMaster handles errors for the entire network.

e No Error Reporting: For keeping error management simple, robust, and not error-prone, the
devices do not report these errors.

e Securing Streaming Signals: Streaming sinks supervise the validity of their output
(see 3.2.8.2.6 Supervising Streaming Connections).

The streaming connections on the Network are not removed, except in case of a fatal error or
a Network Change Event, which leads to the NetworkMaster sending out
Configuration.Status(NotOK).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 165

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.5.1 Fatal Error

A “fatal error” is a kind of error that prevents the modulated signal from being handed on in the ring.
There are four possible reasons:

e A device has no or insufficient voltage.
e A modulated signal receiver is defective.

e A modulated signal transmitter is defective.

e The modulated signal connection between transmitter and receiver is interrupted.

3.1.5.1.1 Handling of Modulated Signal Off

If a device detected the presence of the Shutdown Flag and recognizes at its input that the modulated
signal was switched off, it switches off its own output within tspupewn- IN case there is the need to wake
the network again, it has to wait for trestart.

If the modulated signal is switched off without a ShutDown.Start(Execute), there may be two causes
(see 3.1.4.2 Detection of Sudden Signal Off and Critical Unlock):

e Fatal error

e A device runs error handling (e.g., Critical Unlock). In such a case, the PowerMaster switches
on the modulated signal again after trestart has expired, if the vehicle’s status requires it. It
wakes the network in the normal way and by that a re-initialization is done.

In case the presence of the Shutdown Flag is not detected, the device has to perform the shutdown
procedure as described in section 3.1.4.2 (Figure 3-21).

If the modulated signal is switched off, in some cases it might be switched on again after a short time.
If the application performs a shutdown immediately, some devices might need a long time to return to
normal operation. Therefore, the application has to be prepared for Shutdown, but has to stay active
for tpwrswitchofelay- If the modulated signal reappears within tpyrswichorpelay, the system is re-initialized
like when waking up after sleep mode. The only difference is that—within the devices—power supply,
micro controller, and operating system need not be re-initialized.

3.1.5.1.2 Waking

If waking the network fails due to a fatal error and “modulated signal on” does not propagate through
the entire ring, the Network Service changes to state NetInterface Off after tconfg.

The node waits for trestat @and then tries again to wake the network (1St retry is mandatory). Two
additional retries are allowed (a total of three retries).

Independently, the PowerMaster is allowed to continue waking up the network as long as the condition
to wake the network is fulfilled.

3.1.5.1.3 Operation

If there is a fatal error during normal operation, “modulated signal off” propagates through the entire
ring. This is handled as described above. In case the power status of the vehicle requires it, the
PowerMaster tries to wake the network after tresiat. SO the handling of a fatal error during waking
needs to be performed (see above).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 166

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.5.2 Unlock
An unlock occurs when a Slave device cannot lock onto the modulated signal of the MOST Network.

Causes for this may be that two TimingMasters in one ring are working against each other or if a
TimingMaster does not receive a comprehensible signal.

Another cause can be that the modulated signal at a node’s input is too weak or a node opens or
closes its bypass. Every node downstream from the location that caused the unlock, up to the
TimingMaster, recognizes the unlock. The nodes downstream of the TimingMaster up to the location
that caused the unlock do not recognize the unlock. On an unlock, data errors occur. Based on its
securing mechanism, the Control Channel is relatively insensitive to short unlocks.

If an unlock occurs, all synchronous data sinks (e.g., amplifiers) must secure their output signals; the
Mute property remains unchanged

The Network Service checks the length of an unlock or the occurrence of a series of unlocks. If the
length of a single unlock exceeds the time tynoc, an Error Shutdown event (Critical Unlock) is
generated.

In case of a series of unlocks, the time of the different unlocks are accumulated. If this accumulated
time is greater than tynock (@ single unlock which causes a Critical Unlock), an Error Shutdown event is
generated. The accumulated time is reset whenever a Stable Lock is reached, that is, if there is a lock
that lasts at least t_ oc.

The following example will clarify the meaning. (The timer values used can be found in section 3.2.9
on page 197).

77 Unlock [] Lock [Critical Unlock | | Stable Lock

Stable Lock

Stable Lock

[Lock [T Lock [-] Lock | Stable Lock

Stable Lock

Lock | Ty

® © 66 6

Stable Lock

Lock | Stable Lock | Lock | Stable Lock

Figure 3-22: Examples of the behavior when unlocks occur.

1. The first example shows an unlock that persists longer than ty,o«- This results in a Critical
Unlock (Error Shutdown event).

2. A series of short unlocks with an accumulated time less than ty.o« Will not lead to a Critical
Unlock.

Two unlocks with an accumulated time that exceeds tyn 0. This leads to a Critical Unlock.

The unlocks are almost as long as tyneck- The example shows that the system can withstand a
series of long unlocks, provided that a lock time of at least t .. is interspersed.

In addition, the change in number of MOST devices is checked. If this number indicates a Network
Change Event, the application will be informed.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 167

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.5.3 Network Change Event

A Network Change Event (NCE) is defined as a detected change of the Maximum Position Information
transmitted cyclically on the Network.

If a device opens or closes its bypass, that is, enters or leaves the Network, the Maximum Position
Information changes (except for the case when one device enters and another device leaves the
network in a very short time interval1).

Disturbances of the Maximum Position Information can occur, for example, because of an unlock.
An NCE is recognized by the Network Service in every device.

If an additional node joins the network, the new node must be integrated on system level. Therefore,
SystemCommunicationlnit must run (refer to section 3.1.3.1.1.2). In order to achieve that, the
NetworkMaster checks configuration again and broadcasts Configuration.Status.

If a node leaves the network, any sink that was connected to that node must secure its output signal
immediately. The Mute property is set to “On”. Furthermore, every node must be able to handle the
case where a communication partner is missing and must act accordingly in a safe way. The
NetworkMaster checks configuration again and broadcasts Configuration.Status.

3.1.5.4 Failure of a NetworkSlave Device
The failure of a NetworkSlave device can be divided into two scenarios:

1. A Network Interface Controller failure, which leads to a reset of the whole device; that is,
Network Interface Controller, application etc. (bottom-up reset).

2. An Application failure. The Network Interface Controller is still OK, hence only the affected
applications need to be restarted.

3.1.5.4.1 Failure of the Network Interface Controller

If a device experiences an internal failure of the Network Interface Controller the whole device must be
re-initialized.
Note that the device must not communicate until it receives a Configuration.Status message.

3.1.5.4.2 Failure of an Application

Every application must be able to handle the case where one of its communication partners does not
respond and safely terminate the parts of the program that depend on this communication.

By implementing a watchdog in each device, a long “hanging” of an application should be avoided.

It may happen that single processes in a device are hanging (but not the entire device, as in section
3.1.5.4.1, 'Failure of the Network Interface Controller’), and that those processes need to be restarted.
In case this failure stops an entire, or even several FBlocks, the device has to un-register those
FBlocks in the Central Registry. This is done through a notification of the new status of FBlockIDs sent
to the NetworkMaster (NWM):

Device -> NWM: NetBlock.RxTxLog.FBlocklIDs.Status (FBlockIDList)

'typically up to 24 ms

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 168

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

This states that only those FBlocks contained in FBlockIDList are available. The NetworkMaster
updates the Central Registry and broadcasts immediately after the reception of such an
un-registration:

NWM -> All: NetworkMaster.1l._Configuration.Status (Control=Invalid,
DeltaFBlockIDList)

Control Unsigned Byte 0: NotOK
1: OK

2: Invalid
3

4

: Reserved
- NewExt

DeltaFBlockIDList List of FBlockID.InstlID

A detailed description of the handling of “Control = Invalid” and “Control = NewExt” is to be found in
sections 3.1.3.3.6 and 3.1.3.4.3.

DeltaFBlockIDList is the list of those FBlocks that are invalid. Therefore, all applications have the
required information and can terminate functions depending on the invalid FBlocks.

When the failed process is ready (after being killed and re-initialized), the depending FBlocks are

registered again:
Device -> NWM: NetBlock.RxTxLog.-FBlocklIDs.Status (FBlockIDList)

However, the device must not attempt to register its FBlocks again before having successfully
transmitted its deregistration message to the node containing the NetworkMaster.

Immediately upon reception of the registration message, the NetworkMaster registers these FBlocks in
the Central Registry and broadcasts:

NWM -> All: NetworkMaster.1l._Configuration.Status (Control=NewExt,
DeltaFBlocklIDList)

Here, DeltaFBlockIDList is the list of the new FBlocks.

The NetworkMaster has to process FBlocklDs.Status messages in the order they are received.

Note: In case a device that starts up fast has single FBlocks starting up relatively slow, the same
mechanism of supplementary registration can be used. However, the status message may not be sent

before the NetworkMaster has asked the device.

For details of the Central Registry update behavior, please refer to sections 3.1.3.3.6.1 and
3.1.3.3.6.2.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 169

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3.1.5.5 Undervoltage Management

Undervoltage conditions do not inevitably occur in every device at the same time and in the same
severity. There are two limits regarding the supply voltage of a device:

Critical voltage Uciitical:

First, there is the limit at which the application might no longer work safely but where communication is
still possible. In that case, a source must route zeros and a sink must secure its output signals. The
Mute property remains unchanged. In case of a recovery, the output signals can be restored
immediately.

The System Integrator may determine additional measures.

Low voltage Uy

Second, there is a device specific limit, where even the Netinterface no longer works reliably, so even
communication cannot be maintained.

If ULw is reached, the device switches off the modulated signal and switches to DevicePowerOff
Mode. The device stays in DevicePowerOff mode, even if the supply voltage recovers. It is awakened
either by “modulated signal on” at its input, or by the demand for communication from its own
application. It changes to mode DeviceNormalOperation via the standard initialization process.

U<Ucritical

Device

NormalOperation
U>Uccritical

Device StandBy

NetInterface Normal
Operation

Netlnterface Normal
Operation

U>Ucritical

DevicePowerOff

((Modulated signal On at receiver)
(Sleep Mode)

or (Application Request))
& (U>U*

Netinterface Off (no own initiative)

Figure 3-23: Behavior of a device depending on supply voltage1

1
Notes:
1. Iltis up to the System Integrator to decide whether an application is powered or not.
2. U and Uciica are defined by the System Integrator and have corresponding hysteresis values.
3. U*is either U ow Or Ucriica Under consideration of the corresponding hysteresis value.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 170

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.1.5.6 Over-Temperature Management

Some devices could experience malfunctions or permanent damage when exposed to temperature
conditions above their operating limits. Even though it should be the design goal of every system that
such condition is never reached during normal operation, it is still necessary to define the system’s
behavior for this worst case.

This section defines the behavior of the PowerMaster, which must be able to react to over-
temperature conditions of its Slaves. It also applies to every Slave device that can monitor its own
temperature and decide when to take appropriate action. Such a Slave has to implement the
mandatory procedures as described below and may, in addition, support any combination of optional
over-temperature measures.

After a system shutdown that was caused by over-temperature, the temperature should sink to a level
that guarantees a reasonable amount of operation time when the system is back up again, that is, it is
not very useful to have a system that restarts and remains in operational state for just a minute.

Different strategies are presented for the restart of the system after an over-temperature shutdown;
they work independent of each other and can even be mixed within one system, if desired.

3.1.5.6.1 Levels of Temperature Alert

A

9

Critical /—\
wgshutdown \ / \
Feton /) S 4

‘9App0ff /

/ -

App. ON

l9AppOn

(2)Send Status & (3)Send Status
App OFF for Shutdown ~ "Vake-Up Wake-Up
Figure 3-24: Alert levels

Four different temperature alert levels can be identified. From least severe to most severe, the levels
are:

1. Limited application functionality level’
2. Individual application shutdown level (3,01)
3. Temperature shutdown level (%, o)
4

Critical temperature level (Scrmca|)

Figure 3-24 shows three of the four different temperature alert levels.

' Not shown in the figure.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 171

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Note that all temperature levels (those for the alerts, as well as those for restart) are device-specific
and are handled on a device-internal basis.

No central component in the MOST network supervises the temperature of a device and decides for
the device when it has to shut down; this is completely at the device’s discretion.

3.1.5.6.2 Mandatory Over-temperature Behavior

After the system is shut down, it has to stay switched off long enough for the device to cool down.
This means that after an over-temperatuqe shutdown, the PowerMaster must not restart the system
until tWaitAfterOvertempShutDown time has passed .

3.1.5.6.2.1 Mandatory Slave Behavior

Temperature shutdown level
If the temperature exceeds %, joun» the device must request a temperature shutdown from the

PowerMaster. This is done by broadcasting NetBlock.ShutDown.Result with parameter 0x03
(Temperature Shutdown).

Critical temperature level
If the critical temperature (3qiicar)
is in critical condition, by simply switching the modulated signal off.

is reached, an immediate shutdown is initiated by the device, which

Restart

If during a restart attempt the device finds that it is still above the restart temperature threshold, it
broadcasts NetBlock.ShutDown.Result(0x03) again immediately after the NetOn state is reached.
After successful transmission, the device switches off the modulated signal.

3.1.5.6.2.2 Mandatory PowerMaster Behavior

When the PowerMaster receives NetBlock.ShutDown.Result(0x03) from a Slave device, the|
PowerMaster recognizes that the Slave device is experiencing an over-temperature situation.

If modulated signal is switched off by the device with the over-temperature condition because it has

reached ... » the PowerMaster shall avoid an immediate restart of the network. The PowerMaster

is considered to be in “over-temperature-mode”, a state that is maintained beyond the shutdown of the
system.

Restart

A minimum time between restart attempts of the system shall be guaranteed so the device has a
chance to cool down. A failing attempt to restart the network lasts no longer than approx. 150ms, so if
the minimum interval between such attempts (twaitafierovertempshutbown) iS, for example, one minute, the
short phase of operation under the persisting over-temperature condition can be considered
insignificant.

The PowerMaster has to support one of the following restart triggers:

a) The PowerMaster decides, after a while, to attempt a restart. It wakes up the MOST system.

b) The PowerMaster is triggered to restart the ring upon user request.

' As described later, the system may be restarted by the overheated device before
twaitatterovertempshutbown €Xpires if the device has the capability to monitor its own temperature during the
cooling phase.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 172

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

If the PowerMaster receives NetBlock.Shutdown.Result(0x03) after system wake-up, it shuts down the |
system again (without the standard procedure).

If at restart the NetworkMaster reaches System State OK, the over-temperature condition of the
system is over.

3.1.5.6.3 Optional Over-Temperature Behavior

3.1.5.6.3.1 Optional Slave Behavior

Limited application functionality level

Above a certain temperature, an application may decide to limit its functionality in order to reduce
power dissipation and, hence, the warming up of the device. This could be done “silently” by the
application or with an appropriate notification of the application’s Controller. An example is volume
limitation in order to reduce the power stage’s power dissipation.

Individual application shutdown level

If, for example, a telephone unit becomes warmer than its maximum operating temperature (which is
still below the maximum operating temperature for the Physical Interface unit or other components
needed for MOST functionality), the device could decide to shut down this specific application. The
FBlock is removed from the Central Registry after sending an updated NetBlock.FBlocklDs.Status
message to the NetworkMaster.

Restart
If the device is able to supervise its own cooling phase, it may wake up the ring when it has cooled
down.

3.1.5.6.3.2 Optional PowerMaster Behavior

After receiving NetBlock.Shutdown.Result with parameter 0x03 (Temperature Shutdown) from the
Slave that experiences the over-temperature condition, the PowerMaster may execute the standard
shutdown procedure as described under section 3.1.2.3.2.

Note: This entails that the normal shutdown procedure may not finish due to another device constantly
sending NetBlock.Shutdown.Result(Suspend), eventually forcing the device with the over-temperature
condition into the critical temperature level.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 173

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.2 Network Layer Protocol Specification

The Network Layer protocol is the set of rules that governs the format and meaning of the information
exchange between the Network Layers in various devices. The Network Layer uses the protocol to
implement the Network Layer services definitions.

The protocol machine defines the various states of an Network Layer and the valid transitions between
the states. It may be considered as a finite state machine. The protocol machine exchanges
information with other protocol machines.

3.2.1 Support at System Startup

The MOST Network Interface Controller provides mechanisms for system startup. All components of
the system get a unique number (physical position value), with numbering starting at the TimingMaster
at 0x00, and then incremented by one. These numbers are used for node position addressing.
Furthermore, every device receives the information about the total number of devices in the ring. The
MOST Network Interface Controller also provides a wake-up mechanism.

3.2.2 Addressing

MOST addresses are divided into two categories: 16 bit and 48 bit addresses.

FUNCTIONS
FktID OPType Sender Receiver Explanation
NodePosition Get Controller NetBlock Requesting node position address
Address Status NetBlock Controller Answer
NodeAddress Get Controller NetBlock Requesting logical node address
Status NetBlock Controller Answer
GroupAddress Get Controller NetBlock Requesting group address
Status NetBlock Controller Answer
Set Controller NetBlock Setting group address
FBlockIDs Get NetworkMaster NetBlock Requesting list of functional addresses
(FBlockID.InstID combinations)
SetGet | NetworkMaster NetBlock Seting a new InstID for an FBlock
Status NetBlock Controller List of FBlockID.InstID combinations
implemented by the node
EUI48 Get Controller NetBlock Requesting MAC address
Status NetBlock Controller Answer

Table 3-16: Functions in NetBlock that handle addresses

3.2.2.1 16 Bit Addressing

Node Position Address

A node position address is unique by definition but node position addressing is not used under normal
operation conditions. It is used only for administrative tasks, for example, by the NetworkMaster during
initialization.

A node position address can be determined using the NodePositionAddress function in the
NetBlock. It consists of an offset plus the physical position value:

RxTxPos = 0x0400 + Pos

Pos = 0x00 for TimingMaster
Pos = 0x01 for first device in ring...

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 174

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Logical Node Address

Logical node addressing is used by all nodes to address a single node. Logical node addresses can
be dynamic or static.

The logical node address can be requested from the function NodeAddress in the NetBlock.

Dynamic logical node address

A logical node address must be unique even if there are multiple devices of the same type. Therefore,
it is derived from the unique node position address. During initialization of the network, the logical
node address is calculated by each device as follows:

RxTxLog = 0x0100 + Pos

The device containing the TimingMaster is located at physical position 0; it is assigned with the logical
node address 0x0100. A device at position five in the ring will have address 0x0105.

The dynamic logical node address is recalculated on each transition to Netinterface Normal Operation. |

Static logical node address

One approach for assigning a logical node address in the static address range is to assign certain
address ranges with respect to the functionality of devices. This means, for example, that the first
video display module in a network gets address 0x0200, the second 0x0201, etc., while the first active
amplifier gets address 0x0188.

Group Address

The group address can be requested from function GroupAddress in the NetBlock and can be
modified using this function if required. The default procedure for deriving a group address is to take
the FBlockID of the FBlock that is most characteristic for the device. The high byte of the group
address is always fixed to 0x03:

GroupAddress = 0x0300 + FBlockID

The FBlockID that is reported first in case of a request for the FBlockIDs is typically the most
descriptive for the device.

Groups can be built dynamically by modifying group addresses. |
Group addressing is typically used for controlling several devices of the same type (e.g., active
speakers). The grouping of devices must be established during the definition of the system.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 175

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

Broadcast Address
Broadcast addressing requires a great deal of system resources and, therefore, should be used for
administrative tasks only.

A single transfer or segmented message that is sent to the blocking broadcast address
(0x03C8) is received by all nodes in the ring. Until the last node in the ring has acknowledged
a broadcast message, communication via the Control Channel is suppressed for other
messages. This mechanism guarantees that all devices receive important broadcast
messages.

The removal of the block is initiated by the sender of the blocked broadcast message. On data
link layer, this is done by transmitting a free-up message. The free-up message is sent to
address 0x0000. It is processed in the Network Interface Controller and is never handed over
to the Application Layer.

An unblocking broadcast message (either single transfer or segmented transfer to address
0x03FF) does not block the transmission of other control messages. This kind of transmission
can be used for uncritical data transmission, which might not necessarily be received by all
devices.

16 bit address mapping
The different ways of 16 bit addressing are mapped into the address area of a MOST Network
Interface Controller:

Address range Mode

0x0000

Internal Communication. This address can also be used for administrative communication between
Network Interface Controllers on Data Link Layer. Messages transmitted over the MOST network
using 0x0000 as target address are not handed over to the Application Layer.

0x0001...0x000F Internal Communication

0x0010...0x00FF Static address range

0x0100...0x013F Dynamic calculated (0x0100+POS) address range
0x0140...0x02FF Static address range

0x0300...0x03FF Reserved for group/ broadcast

0x0400...0x043F Node position (0x0400 + POS) address range.
0x0440...0x04FF Reserved

0x0500...0xOFEF Static address range

0x0FFO Optional debug address

0xOFF1...0xOFFD Reserved

OxOFFE Init address of Network Service
OxOFFF Init address of Network Interface Controller
0x1000...0xFFFE Reserved for future use
OxFFFF Un-initialized logical node address
Table 3-17: Addressing modes vs. address range
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 176

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.2.2 48 Bit Addressing

Ethernet MAC Address
The permanent unique address is an EUI-48, conforming to the IEEE Standard. The EUI-48 can be
used as Ethernet compatible MAC address. Each MAC address is unique and has a length of 48 bits.

It is in the responsibility of each manufacturer to acquire its own OUI resp. block to build EUI-48 and
MAC addresses .

48 bit addressing supports the Ethernet-typical address comparison modes:
e Unicast (Perfect Filtering, 48 bit match)
e Multicast (Hash Filtering)
e Broadcast (OxFFFF FFFF FFFF)

e Promiscuous (unfiltered)

It is not required that each device supports all 48 bit comparison modes.
The selected mode is set at the MOST Network Interface Controller.

3.2.3 Low-Level Retries

In case the sending of a Control Message is not successful, the MOST Network Interface Controller
can re-send the message automatically. The MOST Network Interface Controller may allow specifying
the number of retries and the delay between the retries. Typically, these values should not be
changed; however, they can be modified to fine tune the system.

While low-level-retries are performed, it is guaranteed that groupcast and broadcast messages are

only received once in every node.
However, it is possible that the same groupcast or broadcast message may be received more than
once caused by retransmissions on higher levels.

' See IEEE 802.3—Carrier sense multiple access with collision detection (CSMA/CD) access method and
physical layer specifications.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 177

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.4 Handling Overload in a Message Receiver

The MOST Network Interface Controller informs the sender's Network Service by a NAK error
message indicating that the receiving node has rejected a telegram although the low-level retries were
used. This is an indicator for a momentary overload or a defect. The Network Service passes the NAK
error message through to the application, which has to decide what needs to be done (retry, reject,

postpone).

If that telegram belongs to a connection where data is sent continuously from a sender to a receiver,
an optional mechanism can be implemented which adapts the telegram transfer rate to the speed of
the message receiver. A simple mechanism may look like this:

Adapting transfer rate
in connections

A

Sending a telegram

Telegram
rejected?

Retry telegram?

No
Y

Postpone
message

Last Telegram Yes
processed?

A \— Reject entire message

Figure 3-25: Possible mechanism to adapt transfer rates to the speed of a message receiver

It is assumed here that errors due to incorrect address or CRC errors are handled “on top” of that
mechanism. “Message” refers to the entire amount of data to be sent. A telegram is that portion of
data which can be transported on the Control Channel. It transports a part of the entire message.
Rejecting a telegram means that the target node could not process it due to an occupied receive
buffer. In that case, the MOST Network Interface Controller has already run its low-level retries. Now
the application has three selections:

1. The telegram can be sent again, thus having additional low-level retries available.
2. The entire message can be rejected, for example, because it is no longer relevant.

3. The entire message can be postponed, that is, sent later.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 178

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

3.2.5 MOST Message Services

3.2.5.1 Control Message Service

Via the MOST Network Interface Controller, MOST telegrams can be sent and received. MOST
telegrams consist of a sender or receiver address respectively (RxTxAdr), and a maximum number of

Lemsmax data bytes .

Data area of MOST Network Interface Controller

16 bits 16 bits 8 bits 8 bits 8 bits 8 bits
Destination Address Source Address Data 0 Data 1 Data 2 Data
LCMSMax '1

The Network Service provides a mechanism which is called Control Message Service (CMS).
It handles the setting and reading of the registers of the MOST Network Interface Controller.

! Lcmsmax IS speed grade dependent. In MOST150 systems, for example, Lomsmax 1S 51.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 179

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.5.2 Application Message Service (AMS)

3.2.5.2.1 AMS Protocol Description

MOST Network Service provides two different types of transmissions via the Control Channel. These
are mandatory for each device:

Control Data

Application Message Service
(Single + Segmented)

Control Message Service

Network Service

Figure 3-26: Network Service: Services for Control Channel

e Single transfer: Data packets that do not exceed Lamsmax = Lomsmax — 6 bytes (of the Lomsmax
available CMS data bytes, a total of 6 bytes is reserved for Message ID, TellD and TelLen) are
transmitted in a single transfer.

e Segmented transfer: Commands and status messages with a length greater than Lamsmax
bytes are transported by multiple telegrams. These segmented transfers have a maximum
length of 65,535 bytes.

As already described in section 2.2.1 on page 40, messages of the following type must be transmitted:

DevicelD.FBlockID.InstID._FktID.OPType (Parameter)

The Application Message Service (AMS) is based on the Control Message Service (CMS). MOST
telegrams transport application messages. Each telegram is divided as outlined in the following
diagrams.

Please note that the destination address is not forwarded to higher layers. The information that is
passed on, only indicates whether a message was received by single cast or multi cast.

The Message ID is not entirely transparent to the Application Message Service: AMS will set the last 4
bits of the Message ID to OxF in a case of a Segmentation Error.

ByteNo. =~ O 1 2 3 4 5 6 7 8 9 10 . V-

Bits : 16 i 16 32 ‘ 41 12
I Destination : Source Message ID P4 Tel| Te Payload

Name : Address || Address 9 ID Len (max. size Laysmax)
______1 Data0 : Data1 { .. iDatan-1
) Fields relevant for AMS T AMs protocol fields

Figure 3-27: Single transfer (n bytes payload)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 180

MOST Specification
Rev. 3.0 E2 07/2010

MOST® MOST

Specification CODPERATION

Segmented Transfer

The first segment of a segmented transfer has TellD 1; then 0 or more TellD 2 segments follow.
The final segment has TellD 3. Compared to single transfer, the maximum payload is reduced by one
byte that is used by the message counter (MsgCnt).

For segments with TellD 3, the available payload must not be entirely unused, that is, TelLen must be
greater than 0.

ByteNo. O | 1 2 | 3 4 | 5 | 6 | 7 8 | 9 10 | . | . | n+0
Bits : 16 i 16 32 41 12 8
I Destination ! Source Tel Tel Payload
Name : Address : Address Message ID ID Len MsgCnt. (max. size Laygmax-1)
I_______I Data0 | .. iDatan-1

A
v
A
4

Fields relevant for AMS AMS protocol fields

Figure 3-28: One telegram (n bytes payload) of a segmented transfer

Note: The receiver has to accept telegrams with TellD 1 or 2 that do not use the entire available
payload.

Figure 3-29 is an example of a segmented transfer in a MOST150 system where the entire available
payload is used in the first telegram (TellD=1, MsgCnt=0x00) and the second telegram (TellD=2,
MsgCnt=0x01). For MOST150, the maximum available payload (Lavsmax) is 45; with one byte of the
payload being used by the message counter, 44 data bytes are available.

First Telegram Second Telegram

Destination Address Destination Address
Source Address | | T/ || Teen | 1 MSSCAt| | pog || Datat | - | Data43 Source Address | | 75 || T6" | [| MOS0t | batao || Datat | - [Datass
Message ID Message ID

Figure 3-29: Segmented transfer example with entire available payload used

o . 7H o8 L9 o0 l54 o] . T s 9 I

Figure 3-30 depicts a MOST150 segmented transfer where the available payload for the first and
second telegram is not used entirely. Of the available 44 data bytes for the first telegram only 2 are
used. The second telegram only uses 18 data bytes where 44 would be available.

First Telegram Second Telegram
,oI LT 8)9 10 12 %01 P71 9 i 10 29
Destination Address Destination Address
Source Address Tg:ID Te\:I;en M&gocom Data 0 Data 1 Source Address TeZIID Teélaen Mg g(§31nl Data 0 Data 1 Data 18
Message ID Message ID X

Figure 3-30: Segmented transfer example with available payload not entirely used

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 181

MOST Specification
Rev. 3.0 E2 07/2010

MOST®

Specification

MOST

COOPERATION

Unless size-prefixed segmented transfer is used (see below), the length of the application message is
not transmitted directly. It has no meaning on telegram level, since several telegrams may be required
to transport one message. Nevertheless, length is transmitted indirectly via TelLen and MsgCnt and
must be restored on the receiver’s side.

MsgCnt will start at 0x00 for the first telegram and increase by 1 with each following telegram. When
OxFF is reached, counting restarts at 0x00. This is repeated until the entire message is sent.

Individual telegrams of a segmented message must not be more than twaitrornextsegment @part; otherwise,
an error is reported (ErrorCode 0x0C, Errorinfo 0x05).

Messages from one node to the same address (RxTxAdr.FBlocklID.InstID.FktID.OPType) must not be
interleaved. This means that during an ongoing segmented transfer any attempt by the sending node
to transmit a message with an identical signature will result in an error (ErrorCode 0x0C, Errorinfo
0x07).

For the complete list of segmentation errors, see Table 2-5: ErrorCodes and additional information
(part 1).

Size-Prefixed Segmented Transfer

In its first segment (identified by TellD 4), the size-prefixed segmented message contains no payload
apart from the message size (total payload) in bytes. This allows the receiver to allocate the exact
amount of buffer space before the first payload chunk arrives.

The remaining available bytes of the first telegram are reserved for future use.

The remainder of the message is transmitted in the manner of a regular segmented transfer: A TellD 1
segment is followed by 0 or more TellD 2 segments. A TellD 3 segment completes the message.

If a device receives an application message with TellD 4 that has an invalid length (i.e., TelLen differs
from 2), the devices behaves as if it had not received the message at all; that is, no allocation of buffer
space is triggered and no error message is sent to the originator.

MOST nodes must not send size-prefixed segmented messages with message size 0 < MsgSize <
Lamsmax- If, for example, in case of an error of the sender, a device receives an application message
with TellD 4 that has an implausible value in the message size field (0 < MsgSize < Lausmax), the
message is ignored; no error message is sent to the originator of the message with the unexpected
MsgSize.

It is recommended that within size-prefixed segmented messages the segments with TellD 1 or 2 use
the entire available payload, that is, TelLen is Lavsmax-

Byte No. 0 1 2 3 4 5 6 7 8 | 9 10 11
Bits : 16| 16 32 41 12 16
N |
I Destination Source Tel Tel Msg.
1
Name I Address || Address Message 1D ID Len Size
! | (max. 65,535)
| [
) Fields relevant for AMS s AMS protocol fields g

Figure 3-31: First telegram of a size-prefixed segmented message

Specification Document
Page 182

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

TellD, TelLen, and Data

The telegram length (TelLen) is not an upper bound for the data length instead it is mandatory that the
TelLen is the exact length of the valid data.

TellD: Identification of kind of telegram
Meaning TellD Data 0 =
MsgCnt
Single Transfer 0 Data 0
1% telegram segmented transfer 1 0x00
2" telegram segmented transfer 2 0x01
2
2 OxFF
2 0x00
2
(n-1)"telegram segmented transfer 2 0x(n-1)
Last telegram segmented transfer 3 0xn
Size-prefixed segmented message 4 Msg. Size

Table 3-18: Use of the TellD field

If a device receives an application message that contains a TellD outside the valid range (i.e., TellD
greater than 4), the device ignores the message; no error message is sent to the originator of the
invalid message.

TelLen: 0...Lamsmax; the number of data bytes that are valid in the telegram.
Data O-Data Laysmax -1: Data bytes
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 183

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.6 Handling Packet Data

The data field of the Packet Data Channel is significantly longer than that of the Control Channel.
Additionally, a transport protection must be implemented on a higher level.

Note: The Packet Data Channel can also be used for the transmission of control data.

3.2.6.1 MOST Network Service

For the transport of packet data, The Network Service has a mechanism, called the Packet Data
Transmission Service.

Streaming Data

Control Data . .
Allocation Service Packet Data

isochronous
Message Transfer

(Single + Segmented)
synchronous

DiscreteFrame
Isochronous
A/ Packetized
Isochronous
QoS IP

Packet Data Transmission

Control Message Service .
Service

Network Service

Figure 3-32: Network Service—services for the Packet Data Channel

3.2.6.1.1 Use Cases and Data Formats

The Packet Data Channel provides the following use cases
e MOST High (16 bit addressing)
e Ethernet over MOST (48 bit addressing)

3.2.6.1.1.1 MOST High

For connections, that is, the transmission of data streams or the transmission of larger data packets, a
higher transport protocol, the MOST High Protocol can be used, which is derived from the well-known
Transport Control Protocol (TCP). It uses some of the mechanisms defined by TCP but can only be
used for communication within the MOST network. MOST High Protocol transports data and could be
used for transporting data coming from the external world (GSM) that is secured by the “real” TCP.

Data Area MOST Network Interface Controller = max. 1524 bytes (16 bit addressing)

16 bits 16 bits 8 bits 8 bits | 12 bits | 4 bits 4 bits [12 bits |[8 bits 8 bits 8 bits

Destination Source FBlock Inst. Fkt OP Tel Tel Data 6 | Data7 Data

Address Address ID ID ID Type ID Len 1523
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 184

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

TellD:

TelLen:

Data X:

Identification of telegram type

Meaning TellD
MOST High Protocol 8
User Data
MOST High Protocol 9
Control Data

up to 1518
Specifies the length of the data field, that is, the number of bytes after TelLen

Data bytes

3.2.6.1.1.2 Ethernet over MOST

Data Area MOST Network Interface Controller = max. 1522 bytes (48 bit addressing)

48 bits 48 bits 8 bits 8 bits 8 bits 32 bits
Destination Source Address || Data 0 | Data 1 Data Packet
Address 1505 Data
Channel
CRC

For the frame structure, refer to IEEE 802.3.

3.2.7 Handling Streaming Data

3.2.7.1 MOST Network Service API

The MOST Network Interface Controller provides mechanisms for administrating Streaming
connections In addition, the Network Service provides an API to simplify the use of those

mechanisms.

Application Message Service
(Single + Segmented)

Control Message Service

Control Data

synchronous

DiscreteFrame
Isochronous
A/V Packetized

Streaming Data

Allocation Service

isochronous

Isochronous

QoS IP

Network Service

Figure 3-33: Network Service for streaming data

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 185

MOST® MOST

Specification COOPERATION

On the network, streaming data and packet data can be transported within a MOST frame.
Definition:

e A streaming connection is characterized by a connection label and the required
bandwidth.

Bandwidth is allocated implicitly by creating a socket where the size of the socket denotes the amount
of bandwidth. By simply destroying the socket, the allocated bandwidth is de-allocated.

This approach relies on a connection label (16-bit word) combined with bandwidth information (also
16-bit word), instead of a long list of single byte channels.

Furthermore, the routing and the low-level allocation are entirely encapsulated by the Network
Interface Controller and of no influence to the application.

3.2.7.2 FBlock Functions

On the application level, different basic functions in sources and sinks are realized, which serve the
administration of streaming connections. They themselves access the routines of the Network Service.
The FBlock functions can be categorized into three categories:

e Functions that represent the whole device and are located in NetBlock.
e Functions that provide information about both sources and sinks within an FBlock.

e Functions that deal specifically with only sources or sinks within an FBlock.

3.2.7.2.1 General Source/ Sink Information
An FBlock containing a source or sink provides the following function:

StreamDatalnfo
Function StreamDatalnfo can be used to get information on how many connections the FBlock may
serve as source or as sink. A request is sent:

Controller -> Slave: FBlockID.InstID.StreamDatalnfo.Get

The answer contains a list of the source and sink numbers in this FBlock:

Slave -> Controller: FBlocklD. InstlD.StreamDatalnfo.Status (SourceNrList,
SinkNrList)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 186

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.7.2.1.1 Streaming Source
Some of the functions that a streaming source provides to the network are shown below.

e Sourcelnfo
Property Sourcelnfo contains detailed information about the kind of streaming source data that
the source can handle. The source information is specific for each source number.

On a request with the SourceNTr:

Controller -> Slave: FBlocklID. InstlID.Sourcelnfo.Get (SourceNr)

The following is received:

Slave -> Controller: FBlockID.InstlD.Sourcelnfo.Status (SourceNr, BlockWidth,
ConnectionLabel, [SourceDescription])

SourceDescription determines the kind of data that is sent by the source.
Information about streaming data types can be found in the corresponding Stream
Transmission Specification.

e SourceName
Property SourceName holds the name of the streaming source.
It is requested with the SourceNr as parameter:

Controller -> Slave: FBlockID. InstlD.SourceName.Get (SourceNr)

The answer is a string containing the name:

Slave -> Controller: FBlocklD. InstlD.SourceName.Status (SourceNr, SourceName)

e SourceActivity'
Some streaming source applications require either to start or to stop transmission of streaming
data controlled by superior layers. In general, there are specific functions that need to be
called for performing the starting or stopping. It is easier for the Controller if this specific
information is not needed. Therefore, for every streaming source data stream, the method
SourceActivity is defined.

Controller -> Slave: FBlockID. InstlD.SourceActivity.StartResultAck
(SenderHandle, SourceNr, Activity)

Through parameter Activity = [On/Off/Pause], streaming data transfer can be started, stopped,
or paused.

After completion of the respective action, the following reply will be generated:

Slave -> Controller: FBlockID.InstlID.SourceActivity.ResultAck
(SenderHandle, SourceNr, Activity)

Routing and low-level allocation are entirely encapsulated by the Network Interface Controller and of
no influence to the application. The approach for building streaming connections is called “Allocation
approach”.

' SourceActivity is optional.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 187

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

Allocate
To make the source first allocate bandwidth and then build a connection, method Allocate is
used.

Controller -> Slave: FBlockID.InstID.Allocate.StartResultAck
(SenderHandle, SourceNr)

On success, the bandwidth and connection label the source now occupies are reported.

Slave -> Controller: FBlockID.InstID.Allocate.ResultAck
(SenderHandle, SourceNr,
BlockWidth, ConnectionlLabel)

If the allocation was not successful due to a lack of available bandwidth, an error is generated
with the ErrorCode “Function specific’ and as Errorinfo the SourceNr and the required
bandwidth. An allocation must never be done partially. Unless the bandwidth can be allocated
completely, no allocation is done.

The resulting error will be:

Slave -> Controller: FBlockID.InstID.Allocate.ErrorAck
(SenderHandle, "Function Specific",
SourceNr, BlockWidth)

DeAllocate
DeAllocate is used by a Controller wishing to cancel that which was done by Allocate before.
This means that the allocated bandwidth will be deallocated and that the source no longer is
connected.

Controller -> Slave: FBlockID.InstlD.DeAllocate.StartResultAck
(SenderHandle, SourceNr)

On success, the connection is no longer occupied and the source is disconnected.

Slave -> Controller: FBlockID.InstlD.DeAllocate.ResultAck
(SenderHandle, SourceNr)

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 188

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.7.2.1.2 Streaming Sink

An FBlock that is used as a sink for streaming data supports functions similar to those for a source.
Error handling is also done in an analogous way.

Some of the functions that a streaming sink provides to the network:

e Sinkinfo
Property Sinkinfo contains detailed information about the kind of streaming sink data that the
sink can handle. The sink information is specific for each sink number.
On a request with the SinkNr:

Controller -> Slave: FBlockID.InstID.SinkInfo.Get (SinkNr)

The following is received:

Slave -> Controller: FBlocklID. InstlID.SinkInfo.Status (SinkNr, BlockWidth,
ConnectionLabel, [SinkDescription])

SinkDescription determines the kind of data that is received by the sink.
Information about streaming data types can be found in the corresponding Stream
Transmission Specification.

e SinkName
Property SinkName holds the name of the streaming sink.
It is requested with the SinkNr as parameter:

Controller -> Slave: FBlockID.InstID.SinkName.Get (SinkNr)

The answer is a string containing the name:

Slave -> Controller: FBlockID. InstID.SinkName.Status (SinkNr, SinkName)

e Connect
A Controller uses Connect to connect the sink to the specified connection.

Controller -> Slave: FBlockID. InstlD.Connect.StartResultAck

(SenderHandle, SinkNr,
BlockWidth, ConnectionLabel)

The sink returns as result:

Slave -> Controller: FBlocklID. InstID.Connect.ResultAck (SenderHandle, SinkNr)

e DisConnect
Method DisConnect is used to disconnect a sink from the connection it is currently using.

Controller -> Slave: FBlockID.InstID.DisConnect.StartResultAck
(SenderHandle, SinkNr)

After the method has finished, the following is reported:

Slave -> Controller: FBlockID.InstID.DisConnect.ResultAck
(SenderHandle, SinkNr)

e Mute
The output of streaming data from a sink can be stopped by using the property Mute.

Controller -> Slave: FBlocklID. InstID.Mute.SetGet (SinkNr, Status)

Status is On or Off to turn mute on or off.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 189

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.7.2.1.3 Handling of Double Commands

Normally a repeated streaming control command (this means: Allocate / DeAllocate / Connect /
DisConnect) should not occur. This handling should be done by the Connection Manager. But in an
error case, the behavior of the device is defined in the following way:

Source

methods

Allocate

If there is an Allocate.StartResultAck command with a source number of a currently allocated
source, a normal result message with the connection label that is already assigned is sent
back to the caller.

DeAllocate

If there is a DeAllocate.StartResultAck command with a source number of a currently not
allocated source, a normal result message with the source number is sent back to the caller.

Sink methods

Connect

If there is a Connect.StartResultAck command with a sink number of a currently connected
sink and the same connection label that it is connected to, a normal result message will be
sent. If an already connected sink is to be connected to a connection with a different label, the
device will first disconnect the old connection and then establish the new one. Following this, it
sends out a result message.

DisConnect

If there is a DisConnect.StartResultAck command with a sink number of a currently not
connected sink, a normal result message with the disconnected sink number is sent back to
the caller.

3.2.7.2.2 Compensating Network Delay

The effective network delay is negligible (delay has to be smaller than 1 ys per node). No network
delay compensation is required.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 190

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.8 Connections

3.2.8.1 Bandwidth Management

In a MOST Network the overall available bandwidth can be divided between streaming data and
packet data in a flexible way by setting the Boundary Descriptor. The Boundary Descriptor can be
modified by using the mechanism provided by the MOST Network Service.

The value of the Boundary Descriptor depends on the requirements of the system and can be
changed dynamically. Supervision and changing of the bandwidth or position of the Boundary is done
in the TimingMaster. The TimingMaster is responsible for forwarding the information about the
Boundary’s position to all nodes in the network. This task is handled automatically on the MOST
Network Interface Controller level.

Since the Boundary can be changed dynamically during runtime, the system can be adopted to the
needs which occur in temporary or persistent situations (e.g., data download, transfer of big amounts
of data like MP3, or navigation maps). In both situations a change sequence shall be performed
without loss of the bus signal.

In order to adapt to the new situation, all devices must implement appropriate mechanisms. Therefore,
they may have to notify themselves to the property Boundary of the TimingMaster device.

Adjusting sequence:
For managing the Boundary, the ConnectionMaster provides the method MoveBoundary.

Controller -> ConnectionMaster:
ConnectionMaster.1.MoveBoundary.StartResultAck
(SenderHandle, BoundaryDescriptor)

With the aid of this method, any initiator can request an adjustment of the Boundary. After the
ConnectionMaster has received such a request, it locks itself and rejects all subsequent connection
requests.

Additionally, it may inform initiators of rejected connection requests about the reason of the
unavailability. The ConnectionMaster forwards the request for shifting the Boundary to the
TimingMaster. This is achieved by setting the property Boundary with OPType SetGet in the device
containing the TimingMaster, that is, NetBlock with InstID 0. The TimingMaster internally sets the
Boundary to the requested value and re-initializes the low-level allocation mechanisms in all devices in
the network. If the function Boundary.SetGet returns, the ConnectionMaster forwards the result to the
initiator by the respective Result or Error message, unlocks itself, and accepts subsequent connection
requests.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 191

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.8.2 Streaming Connections

3.2.8.2.1 Connection Manager

Streaming connections are managed by a Connection Manager. All requests for establishing
connections must be directed to this Connection Manager, which can be implemented by any device
in the MOST network.

The Connection Manager is mandatory in every MOST system and represents the functions defined in
FBlock ConnectionMaster (0x03); however, it is not required that the Connection Manager implements
that FBlock interface and is accessible by means of FBlockID 0x03.

If the Connection Manager does provide the FBlockID 0x03 interface, that FBlock must be included in
the Central Registry.

For building a point-to-point connection, FBlock ConnectionMaster provides the method
BuildConnection.

Controller -> CManager: ConnectionMaster.1l._BuildConnection.StartResultAck
(SenderHandle, Source, Sink)

Source in the method above refers to any source:

Source = FBlocklID.InstID.SourceNr.

Sink refers to any sink:

Sink = FBlockID.InstID.SinkNr.

CManager is the DevicelD of the Connection Manager.

After a successful connection is built, the ConnectionMaster returns:

CManager -> Controller: ConnectionMaster.l1l_BuildConnection.ResultAck
(SenderHandle, Source, Sink)

Error handling:
If the connection fails, the ConnectionMaster answers with OPType “ErrorAck” (0x9) and the
ErrorCode “ProcessingError” (0x42), and returns the parameters Source and Sink.

CManager -> Controller: ConnectionMaster.l1l.BuildConnection.ErrorAck
(SenderHandle, "ProcessingError', Source, Sink)

Removing a connection is done in an analogous way, by using the method RemoveConnection.

The ConnectionMaster generates an array of all existing connections including sources and sinks,
where it adds more information. This array is accessible in function ConnectionTable.

Controller -> CManager: ConnectionMaster.l_ConnectionTable.Get

CManager -> Controller: ConnectionMaster.1l.ConnectionTable.Status
(Source, Sink, BlockWidth, ConnectionLabel,
Source, Sink, BlockWidth, ConnectionLabel,
Source, Sink, BlockWidth, ConnectionLabel, ...)

The parameters are the same as those described above. ConnectionTable cannot be set directly.
Building and removing connections is done only with methods BuildConnection and
RemoveConnection.

After switching off the network, the contents of ConnectionTable are deleted, leaving no streaming
connections in the system. They must be rebuilt by new requests of the initiator(s).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 192

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

The ConnectionTable is deleted also when Configuration.Status(NotOK) is received by the Connection
Manager since all connections are removed in this case. See section 3.1.3.2 for more information.

FUNCTIONS
FktID OPType Sender Receiver Explanation
BuildConnection StartResultAck | Controller Connection Request for building connection
Manager
ResultAck Connection Controller Answer with result
Manager
ConnectionTable Get Controller Connection | Request of that property, where the
Manager Connection Manager stores all active point-to-
point connections
Status Connection Controller Answer
Manager
RemoveConnection StartResultAck | Controller Connection Request for removing connection
Manager
ResultAck Connection Controller Answer with result
Manager

Table 3-19: Functions in ConnectionMaster in conjunction with the administration of streaming connections

Deadlock prevention:

In order to prevent potential deadlocks in the connection building process, tcm peadiockprev IS USEd.
tem peadiockprev 1S Started as the Connection Manager makes a request to a source/sink FBlock. If the
timer expires, the action will be regarded as failed.

This timer should not be used as a maximum time for the source/sink to carry out their respective
operations since this must be done much faster; it is merely used to prevent deadlocks and should
only be effective in the special cases where a source/sink device has malfunctioned after receiving the
command from the Connection Manager.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 193

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.8.2.2 Establishing Streaming Connections

When building a streaming connection, the Connection Manager uses method Allocate in the Source
FBlock to connect it to the network. After a positive answer from the source, the Connection Manager
uses the method Connect in the Sink FBlock to connect it to the connection used by the source. This
mechanism is explained in the following figure and the text below.

Initiator
1 8
Source 2 Connection 55— 6 Sink
Device 4—»p Manager «—7 Device

Figure 3-34: Building a streaming connection step by step

Explanation of Figure 3-34:

1) Method BuildConnection is started by an initiator, for building a connection between a source and
a sink. The source must allocate its own bandwidth.

2) Connection Manager sends a command to the source device to connect its streaming output. The
source must support the Allocate method.

3) The source tries to allocate bandwidth. The following results are possible:

e Enough free bandwidth. Reply to Connection Manager (4) as Allocate.ResultAck with
parameters SenderHandle, SourceNr, BlockWidth, and ConnectionLabel.

e Not enough bandwidth. Reply to Connection Manager (4) as Allocate.ErrorAck with
parameters SenderHandle, SourceNr, and BlockWidth.

4) The result is sent to the Connection Manager.

5) If the result is ok, the Connection Manager starts method Connect of the sink, communicating
parameters SenderHandle, ConnectionLabel, and BlockWidth. The sink has then all the
information needed of the source.

6) The Sink connects.
7) The result is sent to the Connection Manager as Connect.ResultAck.

8) The Connection Manager reports the result of establishing the connection to the initiator by using
BuildConnection.ResultAck. If the building of the connection was successful, the Connection
Manager internally stores the connection data. This way, if another sink is connected to this
source, only the allocation data needs to be sent to the new sink.
In case of a failure, BuildConnection.ErrorAck is sent and all changes to the network are undone.
That means that if an error occurred in the Connect process, the source is disconnected and the
bandwidth is freed again.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 194

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.8.2.3 Removing Streaming Connections

The initiator terminates a connection previously built by the Connection Manager. The Connection
Manager commands the sink to disconnect from the connection that it is currently using.

After a positive answer, and if the connection is not in use by another sink, the Connection Manager
disconnects the source, using Deallocate.

After that, the Connection Manger reports the result of the termination to the initiator.

Initiator
1 8
Source +——5— Connection 22— Sink
Device 7—» Manager «——4 Device

Figure 3-35: Step by step removal of a streaming connection

Explanation of Figure 3-35:

Method RemoveConnection is started by an initiator, for removing a connection between a
source and a sink.

2) The Connection Manager starts method DisConnect in the sink FBlock, this makes the sink
disconnect from the previously used connection.

3) The sink disconnects.

4) The sink reports the result to the Connection Manager by DisConnect.ResultAck.

5) If no other sink uses the connection, the bandwidth in use will be freed. Otherwise continue at
step 8.

6) The source deallocates and disconnects upon reception of DeAllocate.

The source has to deallocate the used bandwidth. Upon trying to do this, the following result is
expected:
e Successful de-allocation. Positive answer by DeAllocate.ResultAck (7).

7) The result is sent to the Connection Manager as DeAllocate.ResultAck.

8) If the Connection Manager has received a positive answer from the source, the connection is
removed from its internal connection table. The Connection Manager sends an answer,
RemoveConnection.ResultAck, to the Initiator. The message contains the status of the
requested termination of the connection.

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 195

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

3.2.8.2.4 Establishing DiscreteFrame Isochronous Streaming Connections

DiscreteFrame Isochronous streaming connections (containing data and additional timebase
information in parallel) can be established by the use of AllocateExt and ConnectExt. Those are
identical to Allocate and Connect apart from one additional parameter: ClkSrcLabel, which is the
connection label of the clock source.

3.2.8.2.5 Removing DiscreteFrame Isochronous Streaming Connections

Termination of connections is performed by the use of DeAllocate and DisConnect. However, the
ConnectionMaster must not terminate the clock connection before the last data connection was
terminated.

3.2.8.2.6 Supervising Streaming Connections

The availability of a connection is continuously verified by the Data Link Layer. A source malfunction
leads to automatic de-allocation of allocated bandwidth.

Every streaming sink is responsible for supervising the validity of its output. If the bandwidth is de-
allocated, the sink has to secure its streaming output signals and set the Mute property to on.

If the sink application is able to verify the validity of the received streaming data and the data is
rendered invalid, it has to secure its streaming output signals.

When securing streaming outputs, sinks for synchronous streaming data, for example, set the output
volume to zero or display a test screen.

Additional error handling can be performed by the Connection Manager (e.g., cleaning up of
spontaneously vanished connections).

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 196

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

3.2.9 Timing Definitions

T= Timer. If expired, the implementation has to invoke the procedure as defined in the

respective section of the specification (e.g., error handling).

C= Timing constraint. The implementation has to fulfill this timing requirement in order to

be compliant to this specification.

Whenever a timing definition contains the character

defined”.

instead of a value, that particular value is “not

Name

| Min Value |Typ Value | Max Value | Unit |Type | Definition

Initialization

tConfig

2000

2000

2500

ms

Time that may pass after
initialization of the MOST
Network Interface Controller in
a device until transition to
NetOn state.

tWakeUp

25

ms

Maximum time between start of
activity at the Rx input of the
device and start of activity at
the device’s Tx output.

(63 @ twakeup) * twaitNodes + tLock <
tConﬁq

tWaitNodes

100

ms

Time that may pass between
start of activity at the Rx input
of a device and the deactivation
of its bypass. This timer is valid
only when starting up the
network.

tWaitBeforeScan

System
Integrator
specific

ms

Time between an Init Ready
event and start of a new scan
by the NetworkMaster.

tWaitBefore Rescan

System
Integrator
specific

ms

Time between broadcast of
Configuration.Status(NotOK)
and start of a new scan by the
NetworkMaster.

tDeIanyg Request1

500

500

700

ms

Time after which the
NetworkMaster starts to query
nodes again that did not answer
within tWaitForAnswer-

This time is used after each of
the first 20 system scans since
the network entered the Normal
Operation state.

tDeIanyg Request2

10

10

11

Same ?S tDelanygRequesth but from
the 21° attempt on.

Table 3-20: Timing definitions — Initialization

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 197

MOST®

Specification

MOST

COOPERATION

Name

| Min Value |Typ Value | Max Value | Unit |Type | Definition

Shutdown

tshutbown

2
(per node)

(per
node)’

ms

Time between a shutdown
event (i.e., stop of activity at the
device’s Rx input during normal
operation or ring break
diagnostics mode or start of
activity at the input when in
Slave wake-up mode) and the
stop of activity at the device’s
Tx output. This constraint
applies also as maximum
response time between
detection of a shutdown event,
and the setting of the Shutdown
Flag, in case the Shutdown
Flag is not already present.

tsso_shutdown

100

100

110

ms

Time between setting the
Shutdown Flag and switching
off the signal at the output.

tWaitSu:spend

2000

System
Integrator
specific

ms

Time the PowerMaster waits for
a ShutDown.Result(Suspend)
message after broadcast of
ShutDown.Start(Query).

tshutbownwait

15

Time the PowerMaster waits
between broadcasting
ShutDown.Start(Execute) and
setting the Shutdown Flag.

tRetryShutDown

9.5

10

10.5

Time the PowerMaster waits
between
ShutDown.Start(Query)
broadcasts.

tRestart

300

300

310

ms

Time after switching off the
signal until the device is
allowed to switch on the signal
again.

tpwrswitchofDelay

device
specific

Time between switching off the
Tx output and changing to state
DevicePowerOff.

tSIaveShutdown

16

System
Integrator
specific

Time a Slave device shall wait
after ShutDown.Start(Execute).
If the modulated signal was not
switched off within tsiaveshutdowns
a Slave device may switch off
the modulated signal.

' The system integrator has to ensure that the accumulated shutdown delay (tshupown Of all devices) is

below trestart-

Specification Document

Page 198

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

®
MOST® MOST
Specification = GOOPERATION
Name Min Value | Typ Value | Max Value | Unit | Type | Definition
twaitafierovertempshut | System - System S T Time the PowerMaster waits
Down Integrator Integrator after an overtemperature
specific specific shutdown before it may restart
the network.

Table 3-21: Timing definitions — Shutdown

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 199

MOST® MOST

Specification COOPERATION
Name | Min Value |Typ Value | Max Value | Unit |Type | Definition

General

tLock 90 100 110 ms |T Time a device has to see

uninterrupted lock of the
incoming signal before
declaring Stable Lock.

tuniock 60 70 100 ms |T Accumulated time of unlocks
that lead to the detection of a
Critical Unlock.

twaitAfterNCE 200 200 System ms |T Time between an NCE and the
Integrator start of the network re-scan by
specific the NetworkMaster.

teypass 50 70 100 ms |T Time the bypass of a device

must stay closed after being
closed. This timer is not
required when starting up the
network. It is only required
when a node drops out of the
network.

tBypass < twaitNodes

- - 50 ms |C Time during which a
NetworkSlave must respond to
a query by the NetworkMaster
when the system is in state
NotOK.

tAnswer

twaitForAnswer 100 200 700 ms |T Time a NetworkMaster waits for
an answer from a queried
Slave.

- - 200 ms |C Time between complete
reception of a query to a
property and the start of the
response message.

tProper‘[y

tWaitForpmpmy1 250 300 400 ms |T Time a Shadow waits for the
reception of a query to a
property. The maximum value is
a default value and may be
adjusted by individual FBlock

specifications.
tpmcessingpefaumz System 100 150 ms |T Time a device waits before
Integrator sending the first Processing
specific message.

See also section 2.2.3.5.4.

! The maximum value is dependent on the retry settings.
| 2The System Integrator may change the default timeout value individually for every function.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 200

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Name

Min Value

Typ Value

Max Value

Unit

Type

Definition

1
tF’rocessingDefauItZ

100

100

ms

Time a device waits between
sending subsequent Processing
messages.

See also section 2.2.3.5.4.

1
tWaitForProce:ssing'I

200

200

250

ms

Time a Shadow waits for the
reception of the first Processing
message. The timeout value
has to be matched to
tF’rocessingDefauIHa for examp|e= by
setting it to a value 100 ms
greater than tprocessingbefautt1-

1
tWaitForProcessingZ

200

200

ms

Time a Shadow waits for the
reception of the following
Processing messages. The
timeout value has to be
matched to tProcessingDefauItZy for
example, by setting it to a value
100 ms greater than

tProcessin_qDefauIt2-

tCM_DeadIockF’rev

System
Integrator
specific

1000

ms

Timer to prevent deadlocks in
the connection building
process.

tWaitForNextSeg ment

4975

5000

10015

ms

If the next segment of a
segmented message does not
arrive before this timer elapses,
garbage collection is initiated.

tBoundaryChange

100

500

5000

ms

Delay between sending the
Boundary change notification
and start of performing the
actual change.

Table 3-22:

Timing definitions — General

| ' The System Integrator may change the default timeout value individually for every function.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 201

MOST® MOST

Specification CODPERATION

Name | Min Value |Typ Value | Max Value | Unit |Type | Definition

Ring Break Diagnosis

tbiag_signal 1190 1200 1210 ms |T Time a TimingSlave node waits
for activity at its Rx input before
switching to ring break
TimingMaster mode.

tDia_q Signal > tDiaq Start

tpiag_Master T1 2990 3000 3010 ms |T Time the TimingMaster waits
for a Stable Lock before
switching to Slave mode or
initiating a Diagnosis Error
Shutdown.

tbiag_Master T2 490 500 510 ms (T Time the TimingMaster stays in
Slave mode checking for Stable
Lock.

tbiag_Master T3 1490 1500 1510 ms |T Time to update the node
positions relative to the ring
break.

tDia_q Master T3 = tDiaq Start T tLock

tpiag_Siave T1 2990 3000 3010 ms |T Time the TimingSlave stays in
slave mode checking for Stable
Lock.

tDiaq Slave T1 =tDiaq Master T1

tbiag_siave 4990 5000 5010 ms |T Duration of the ring break
diagnosis in case of a ring
break.

tbiag_siave 1S Calculated as
tDiag_Master_T1 + tDiag_Master_TZ +
tDia_q Master T3-

tbiag_start - - 1000 ms |C Max. time between the
diagnosis trigger and the actual
start of the diagnosis.

tDiag_Start + tDiag_SignaI <
tDiag_Ma'ster_T1 - 2*tRestart

tDiaq Start < tDiaq Master T1 — tLock

tbiag_Restart 990 1000 1010 ms |T This is the time a device has to
wait after an unsuccessful
diagnosis (ring broken) until it
can be restarted by network
activity.

tDia_q Restart > tDiaq Start ~ tRestart

Table 3-23: Timing definitions — Ring Break Diagnosis

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 202

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

3.2.10 MOST Network Interface Controller and its Internal Services

The MOST Network Interface Controller operates the MOST bus and transmits different types of data.
On top of those, higher layers are defined. The following sections give an overview of the features of
the MOST Network Interface Controller that are available for the use in higher layers.

3.2.10.1 Bypass

If the bypass is closed, all signals received at the input of the MOST Network Interface Controller are
forwarded to the output of the MOST Network Interface Controller. In this state, the respective device
is “invisible” to the network. The device will be considered for the automatic counting of bus
components only after opening the bypass, which gives access to the bus.

While the MOST Network Interface Controller is reset, the bypass is closed.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 203

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

4 Appendix A: Optional OPTypes

To make a function accessible from outside, the FBlock provides a function interface (FI), which
represents the interface between the function in an FBlock and its usage in another FBlock.
Function interfaces are used for debugging and testing.

Controller Function Block

Fl - | Function

Figure A-4-1: Communication with a function via its function interface (Fl)

4.1 Introduction to Function Interfaces

A function interface (FI) represents the interface between a function in an FBlock and its use in
another FBlock.

To communicate with a function, a Controller or an HMI needs information about the available
parameters, their limits, and the allowed operations (=FI).

In general, this information is available in the control device and is encoded in the control program.
The FI was passed on, for example, like a device specification. To simplify the exchange of Fls,
especially between different manufacturers, a formal description may be used that can be exchanged
between the developers of Slaves and Controllers, like the well-known header files in the C
programming language.

The contents of the Fls are usually known during implementation of a device (well known functions). It
is also possible that Fls are transported on the bus during runtime, making it possible to dynamically
reconfigure an HMI.

Example:
Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Set(27)====) Temp : 27
Max : 80

Figure A-4-2: Example of a function interface (FI)

In this example, the Fl contains information about the data type of the function and about minimum
and maximum value. In real implementations, an Fl contains more information.

During operation, it is possible that an FI changes dynamically. In that case, all the FBlocks that have
subscribed to notification will get the new interface description through the notification mechanism. For
more information about notification, please refer to section 2.2.5 on page 111.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 204

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

4.2 Transmitting the Function Interface

4.2.1.1 Principle

In principle, function interfaces can be transmitted to a Controller or an HMI.

NetBlock.FBlockIDs

FBlockiD 1]

FBlockiD 2| FBlockiD3| ..[FBlockiD N

FBlockID1.FktIDs

FktID 1 H FktID 2 H FktID 3 ‘ ‘ FktiD N

FktID1.Interface

‘ Type H Min H Max ‘ ‘ Unit

Figure A-4-3: Requesting the function interface of a function

The flow for determining all function interfaces of an FBlock looks like:

Controller -> Slave : FBlockID1.FktID1.Getlnterface
Slave -> Controller : FBlockID1.FktlID1l.Interface ([Interface Description])
Controller -> Slave : FBlockID1.FktID2.Getlnterface
Slave -> Controller : FBlockID1.FktID2.Interface ([Interface Description])

(-Zc-)ﬁtroller -> Slave : FBlockID1.FktIDN.GetlInterface
Slave -> Controller : FBlockID1.FktIDN.Interface ([Interface Description])

The parameter list “Interface Description” contains information about a function interface.

4.2.1.2 Realization of the Ability to Extract the Function Interface

In the FBlock Specifications, every interface of classified functions may be described. Thus, a
classified definition of application messages, as well as a uniform description is possible, which can be
based onto a few classes, described in the section 2.2 4.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 205

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

5 Appendix B: Network Initialization (informative)

This Appendix contains some behavioral examples regarding Network Management. Requirements
regarding Network Management behavior of the NetworkMaster and the NetworkSlaves can be found
in section 3.1.2 and MOST Dynamic Specification.

5.1 NetworkMaster Section

This section contains scenarios of the behavior of the NetworkMaster during network initialization.

5.1.1 Flow of System Initialization Process by the NetworkMaster

The flow in Figure A-5-1 shows how the NetworkMaster initializes the system. Refer also to Figure
A-5-2 for a flow of how the NetworkMaster performs the configuration requests from the
NetworkSlaves during the system configuration.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 206

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION
C Init Ready Event)

A
Derive logical node address; NetworkChange Event
set address in MOST occurred
Network Interface Controller ¢
Delay (twaitatterNce)
-
Delete Central Registry
A
A
Broadcast:
ConfigurationStatus(NotOK) Chec_k)
Y System Configuration.
Check all nodes first, then

missing nodes only

Derive logical node address
from position, store it, and
write it to the MOST Network
Interface Controller

A

Del ay (tDeIanygRequesH)
or

Delay (tDe|anygRequest2)
4

yes

Configuration
NotOK?

New information
received?

Broadcast:
1st round:
Configuration.Status(OK)

Otherwise:

Configuration.Status(NewExt/
Invalid,FBlockIDList)

no

All nodes answered
request?

Normal Operation
(Application)

Figure A-5-1: Flow of initialization on the application level in a NetworkMaster

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 207

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Figure A-5-2: Flow in NetworkMaster during requesting system configuration

Checking System
Configuration

already requested since
nitReady or NotOK?

Request FBlockIDs

Set Timer
(tWaitForAnswer)

) 4

Answer?

Un-initialized
NodeAddress?

no

NodeAddress
available in existing
registry?

yes
NodeAddress
duplicate?

NodeAddress
and FBlock
mismatch?

Enter in new Central

-

-y————————————————————————

no

Timeout?

tWaliForAnsWer

yes

Registry

/

In case a node
caused NotOK the
third time, ignore
node until next
startup or next
network change
event.

A

Broadcast
Configuration.Status
(NotOK)

A J

Node = Node + 1

no

All nodes

requested?

yes
ew informatio
received?

no

Broadcast
Configuration.Status
(OK/NewEXxt/Invalid)

Specification Document

Page 208

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

5.2 NetworkSlave Section

The flow in Figure A-5-3 shows how a NetworkSlave behaves during System Startup and when
receiving Configuration.Status messages.

Figure A-5-3: Flow of initialization on the application level in a NetworkSlave

Init Ready

Derive logical node
address; set address
in the MOST
Network Interface
Controller

Configuration
Status received?

Configuration Status]

received

Configuration
Status NotOK?

Derive logical node
address

v

Clear De-central
Registry

v

Set logical node

address in MOST

Network Interface
Controller

SystemCommunicationlnit:
Init Notification...

Normal operation
(Application)

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 209

MOST® MOST

Specification COOPERATION

6 Appendix C: Typical Data Rates of Current
Implementations (informative)

Speed Grade MOST150

At a system sample frequency of 48.0 kHz, the Control Channel gross data rate is 1,536 kBit/s. A
control message requires at least 6 frames. This results in up to 8,000 messages per second for
control messaging.

In case all messages have the maximum size of payload (TelLen equals 45), 18 frames are required
and the result is 2,666 messages per second. 8,000 Control Messages per second is the best case, if
none of the messages transport additional payload (TelLen is 0).

When subtracting the data used for control and data securing, the net data rate (user data plus
addressing) corresponds to up to 53 bytes (45 bytes payload, 6 bytes Message ID, TellD, TelLen, and
2 bytes target address) per message:

Max: 1,130 kBit/s, in case of TelLen 45 (maximum payload, 2,666 messages)
Min: 512 kBit/s, in case of TelLen 0 (minimum payload, 8,000 messages)

A MOST device cannot use the overall available control message bandwidth of the MOST network,
typically caused by limitations by the 10 interface, the device driver, and the network stack.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 210

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

7 Appendix D: Frame Structure and Boundary
(informative)

Since the MOST system is fully synchronous, with all devices connected to the bus being
synchronized, no memory buffering is needed (unlike isochronous or asynchronous devices).

The sample frequency in a MOST system can be either 44.1 kHz or 48 kHz; however, it is
recommended to use 48 kHz.

7.1 Frames

The MOST frame structure is designed to allow for easy re-synchronization, as well as clock and data
recovery, while guaranteeing data quality and integrity. Built-in structures provide the basis for simple
network management on the lowest layers to avoid overhead.

For synchronization, two different bus node types are required. A TimingMaster that generates the
frames and Slave devices that synchronize to the Master clock on the bus.

MOST150

Due to the fact that MOST150 is designed for high bandwidth, one MOST150 frame consists of 3072
bits (384 bytes). The first 12 bytes are used for administrative purposes. In this area, 4 bytes are used
for control data. Therefore, a MOST Control Message gets multiplexed into 4 bytes/frame pieces. The
Control Message length can vary depending on the specifics of the particular Control Message. This
results in better utilization of the bandwidth regarding Control Messages. The next 372 bytes are used
for packet data and streaming data transfer.

This diagram represents a MOST150 frame.

|
|
|
i Dynamic Boundary
|

e »

packet and streaming data
(Number of bytes depends on virtual Boundary settings)

MOST Frame
384 Bytes

) 4

A

Administrative and 4 bytes Control Data

Figure A-7-1: MOST150 frame

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 211

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Byte Number

Task

0-11

Administrative, includes
° Preamble

° System Lock Flag

° Shutdown Flag

° Boundary Descriptor
° 4 control data bytes

12 - 383

372 data bytes

Table A-7-1: Structure of the MOST150 frame

Specification Document

Page 212

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

7.1.1 Preamble

The preambles are used internally to synchronize the MOST core and its internal functions to the bit
stream.

For synchronization to a frame, two different mechanisms are used for TimingSlave and TimingMaster
nodes. For a TimingSlave node, the first reception of valid preambles after reset, power-up, or loss of
lock indicates that phase lock on the input bit stream has been accomplished.

This method ensures that the TimingSlave node is phase- and frequency-locked to the bit stream, and
hence to the TimingMaster node. In the TimingMaster node, the transmitted bit stream is synchronized
to an external timing source.

Once all the nodes in the network have locked to the TimingMaster's transmitted bit stream, the
received bit stream has the correct frequency but will be phase shifted with respect to the transmitted
bit stream. This phase shift is due to delays from each active node and additional accumulated delays
due to tolerances in the phase lock within the TimingSlave nodes. The TimingMaster node re-

synchronizes the received data by the use of a PLL to lock onto the incoming bit stream, thereby re-
synchronizing the incoming data to the proper bit alignment.

7.1.2 MOST System Control Bits

All other bits within the frame are for management purposes on the network level. The preamble
provides synchronization and clock regeneration.

7.2 Control Data Transport

Control Messages are based on a variable number of frames.

A control data message is up to 69 bytes long and has the following structure:

Area Size / bytes Task

Administration 12 Data Link Layer Overhead
(e.g., Arbitration, Length, Transmission Status)

Target address

Own address (Source address)

Control Channel CRC

ZIN NN

Data area
N =6 ... Lomsmax

Data

Table A-7-2: Control data in MOST150

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 213

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

7.3 Boundary Descriptor

MOST systems have access to a Dynamic Boundary. This means that the bandwidth which is
available for the streaming data transmission can be changed during runtime of the system, that is,
during Netlnterface state NetOn.

The initial value, which is used after each reset of the TimingMaster, is set in the TimingMaster’s
configuration. A system might not have the need to change the Boundary dynamically, but the
Network Interface provides that possibility.

To change the Boundary during runtime the command NetBlock.Boundary.SetGet is sent to the
NetBlock with instance ID zero (i.e., NetBlock in TimingMaster). A Slave device does not provide this
property.

The only application that can allow or deny such a change is the application running on top of the
TimingMaster.

Bandwidth calculation:
The total source data bandwidth is the sum of bandwidth for streaming data and packet data:
The total source data bandwidth is 117 for MOST50 and 372 for MOST150.

Total source data bandwidth = Packet bandwidth + Streaming bandwidth

The bandwidth to be used for packet transmission in number of bytes per frame is calculated
according to following formula:

Packet bandwidth = maximum Packet bandwidth — (Boundary * 4)

The maximum Packet bandwidth is 116 for MOST50 and 372 for MOST150.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 214

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

Property NetBlock.Boundary is designed to control the available bandwidth for the packet transmission
channel (asynchronous data transmission). It is possible to use the total available bandwidth for
streaming data.

Available bandwidth
NetBlock. (in number of bytes per frame)
Boundary
Streaming data Packet data
0 0 372
1 4 368
2 8 364
3 12 360
4 16 356
5 20 352
6 24 348
7 28 344
8 32 340
9 36 336
10 40 332
11 44 328
12 48 324
13 52 320
14 56 316
15 60 312
16 64 308
17 68 304
91 364 8
92 368 4
93 372 0

Table A-7-3: NetBlock.Boundary influence in a MOST150 system

Available bandwidth
NetBlock. (in number of bytes per frame)
Boundary
Streaming data Packet data
0 1 116
1 5 112
2 9 108
3 13 104
4 17 100
5 21 96
27 109 8
28 113 4
29 117 0

Table A-7-4: NetBlock.Boundary influence in a MOST50 system

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 215

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

8 Addendum A — MOST50 Adaption

This chapter is an addendum to the MOST Specification. It describes which requirements of the MOST
Specification Rev. 3.0 E2 have to be modified to obtain compatibility of the MOST Specification and
the MOST50 ePhy physical layer.

Note: To motivate the changes, in some cases a comparison to MOST Specification Rev. 2.5 is given.

8.1 Adaptations

The following sections provide detailed descriptions of the required adaptations to the MOST
Specification Rev. 3.0 E2.

8.1.1 Application Message Service (AMS)
Related section: 3.2.5.2

8.1.1.1 Protocol Field “TelLen”

Compared to MOST Specification Rev. 2.5, the field TelLen in the AMS protocol field was increased
from 4 bits to 12 bits to allow a higher application message segment size.

Available Network Interface Controllers for MOST50 use a 4 bit TelLen field on network layer.
Therefore, a dependency on the used Data Link Layer is introduced:

@MOST50: size of TelLen = 4 bits
@MOST150+": size of TelLen = 12 bits

8.1.1.2 Max. Size of an Application Message Segment

In the case of MOST messages that consist of a single segment, the payload can be up to 45 bytes.
For segmented messages, each segment can transport up to 44 bytes.

The maximum payload size of an application message segment is dependent on the used Data Link
Layer:

@MOST50: Single segment transfer: up to 12 bytes
Multi segment transfer: up to 11 bytes

For MOST50, Lomsmax iS 17. Lamsmax = Lemsmax - D (0f the Leusmax @vailable CMS data bytes, a total of 5
bytes is reserved for Message ID, TellD, and TelLen).

Note: For MOST50, the actual maximum payload size for groupcast or broadcast messages might be
limited to 11 bytes (on transmitter side), dependent on the used Network Interface Controller.

@MOST150+: Single segment transfer: up to 45 bytes
Multi segment transfer: up to 44 bytes

' MOST150 and higher speed grades.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 216

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

8.1.1.3 Protocol Field “TellD”

Compared to MOST Specification Rev. 2.5, an additional identifier (0x04) has been added to the field
TellD in the AMS protocol. Sending TellD 0x04 is optional; however, the receiver must be able to
process such messages.

For MOST50, the receiver may ignore TellD 0x04; it must not react with a segmentation error.

8.1.2 Isochronous Data

Related section: 3.1.1.6

The availability of Isochronous Channels in a MOST50 network is optional.

8.1.3 Packet Data (16 bit addressing)

Related sections: 3.1.1.7 and 3.2.6.1.1.1
The data area size for packet data (using 16 bit addressing) was increased to 1524.

For MOST50, the data area size for packet data remains 1014. For MOST50, the maximum number of
low-level retries and the time between low-level retries are fixed.

8.1.4 Tunneling Ethernet Packets

Related sections: 3.2.2.2 and 3.2.6.1.1.2

The need for the MAMAC protocol was substituted by the new 48 bit addressing mode of the Packet
Data Channel.

MOST50 systems do not provide the 48 bit addressing mode for the Packet Data Channel; for
MOST50 systems only the 16 bit addressing mode exists.

For MOST50, the MAMAC protocol may be used.
In this case, the TellDs OxA and OxB (according to the MAMAC specification) have to be supported.

MAMAC must not be used, if the new 48bit addressing mode is available.

8.1.5 Slave Wake-Up
Related section: 3.1.2.2.2
The system can be woken by a TimingSlave device.

For MOST50, slave wake-up via MOST signal is not supported. Slave wake-up is only supported
through a separate electrical wake-up line.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 217

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

8.1.6 NetlInterface Init

Related to the entire MOST Specification, in particular to section 3.1.2.2.2

One cause for the event Init Error Shut Down is the switching off of the modulated signal in state
Netinterfacelnit.

In MOST50 systems, switching the modulated signal off is no immediate reason for an Init Error
Shutdown. Therefore, Figure 3-6 is replaced by the following diagram.

Note: In state NetInterfacelnit, the TimingMaster is allowed to set the System Lock Flag immediately
on lock (i.e., it does not have to wait for stable lock).

Woken Slave Device

The Start Up Event

will be generated at
Start Up the input of the

physical interface.

MOST Network
Interface Controller
will be configured
as Slave

v
Set NodeAddress in
MOST Network
Interface Controller

to OXOFFE
Start timer tconfg StableLockOccurrence
Clear indicates that StableLock
StableLockOccurrence occurred at least once.
-
/
yes
Timeout?

no

StableLockOccurrence is
set when Stable Lock is
detected.

The ring is closed

as soon as the

System Lock Flag

is detected.

no

StableLockOccurrence
and ring closed?

yes
v
) Init Error
Inlt Ready @

Figure 8-1: Behavior of a woken Slave device in state NetInterfacelnit

8.1.7 Bypass

Related section: 3.2.10.1

In MOST50 systems, during reset of the MOST Network Interface Controller, the output is disabled.
During this time all devices located downstream detect unlocks.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 218

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

8.1.8 NetInterface Normal Operation

Related to the entire MOST Specification, in particular to section 3.1.2.2.3

The MOST Specification distinguishes between Error Shutdown and Normal Shutdown. Switching the
modulated signal off in state Netinterface Normal Operation results in an Error Shutdown.

In MOST50, every occurrence of an Error Shutdown event is treated as Normal Shutdown.

In MOST50 systems, switching the modulated signal off is no immediate reason for an Error
Shutdown. Therefore, Figure 3-7 is replaced by the following diagram.

Every device

Init Ready

Report to application:
Init Ready Event

Off Request?

no

Change in
number of MOST
Devices?

Report to application:
NetworkChangeEvent

Report to application:
Unlock Event

Report to application:
Lock Event

Report to application:
Net Off Event

v

Initialization of the next upper
layer e.g. setting address,
verifying system configuration,
etc.

Off Request is the request (by a
higher layer) to switch off the
modulated signal

Error Shut
Down

Normal Shut
Down

)

Figure 8-2: Behavior in state NetInterface Normal Operation

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 219

MOST® MOST

Specification COOPERATION

8.1.9 Ring Break Diagnosis
Related section: 3.1.4.1
The ring break diagnosis (RBD) feature is mandatory for all devices.

For MOST50, RBD is optional. If RBD is used, it must be implemented according to the description in
section 8.1.9.1; RBD according to section 3.1.4.1 is not supported for MOST50.

The state Netinterface Diagnosis Result does not exist in MOST50 systems;

8.1.9.1 NetiInterface Ring Break Diagnosis

A simple recognition of a fatal error is possible in any state. Ring break diagnosis serves the purpose
of localizing a fatal error in the network.

The ring break diagnosis process can be started by various triggers, which must be chosen and
implemented by the System Integrator. One possible way is to start the ring break diagnosis by
disconnecting the System from the power source for a short time. In this case, ring break diagnosis is
entered when signal SwitchToPower of the SwitchToPowerDetector indicates that the device was
connected to power first time (e.g., after reconnection of the car’s battery). After triggering ring break
diagnosis all devices must start the diagnosis within tpiag_start-

In state NetInterfaceRingBreakDiagnosis, a relative node position is determined in every device. This
information can be used in case of a fatal error (ring break or defective device) to localize the error.

If there is no fatal error, the NetInterface changes to state Netinterface Normal Operation.
In case of a Diagnosis Error Shut Down event, the position determined in each device describes the

position relative to the device that was configured as TimingMaster at the end of ring break diagnosis
(since there was no modulated signal at its input).

Tx

rel. Pos.: 1
rel. Pos.: 2

rel. Pos.: 0 rel. Pos.: 3

Figure 8-3: Localizing a fatal error with the help of ring break diagnosis.

Event Transition to Cause
Diagnosis Ready NetInterface Normal Operation No fatal error.
Diagnosis Error Shut Down | NetInterface Power Off Fatal error (Ring break or defective device)

Table 8-1: Events in state Netinterface Ring Break Diagnosis

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 220

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

Table 8-2 lists the possible results of ring break diagnosis and the corresponding events.

Diagnosis Result | Diagnosis Info Description Event
No error - No error detected. Diagnosis Ready
Transition to NetInterface Normal Operation.
Ring Break Relative position. Ring break detected. The result indicates the relative Diagnosis Error
(Position detected) position of ring break. Shutdown
Diagnosis failed - The ring break diagnosis is inconclusive. Diagnosis Error
Shutdown

Table 8-2: Ring break diagnosis results

During ring break diagnosis, a TimingSlave device waits for a modulated signal at its input. If there is
no signal after tpiag signai, it configures itself as TimingMaster. If it recognizes a modulated signal at its
input it switches back to slave mode. On a fatal error, the application stores the diagnosis result.

As soon as a device, which does not contain the designated TimingMaster, recognizes modulated
signal at its input, it is configured as Slave. If no lock errors occur for a time t . (stable lock), the
relative ring position is determined.

After recognition of a stable lock and detection of a closed ring, a TimingMaster device generates a
Diagnosis Ready event and changes immediately to state Netinterface Normal Operation. The Timing-
Master sets the System Lock Flag in the administrative area of the MOST frame. The System Lock
Flag can be read by the TimingSlave devices.

If the ring could be closed (i.e., the System Lock Flag was set), every NetInterface switches to state
Netinterface Normal Operation. The application will get notified about that by the Diagnosis Ready
event. After that, all high level initializations must be performed (building of the Central Registry,
address initialization, notification...).

If the ring could not be closed because of a ring break, devices shall not be restarted by incoming
modulated signal until tpjag restart has passed.
The following flow charts show the behavior in the state NetinterfaceRingBreakDiagnosis.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 221

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Diagnosis
Start

A
MOST Network
Interface Controller
will be configured as
master
(Modulated signal at
output)

A

Clear System Lock
Flag

A
Start Timer

(tDiagiMaster)

Device with TimingMaster

Modulated
signal at input?

Timeout
(tDiag_Master)

Lock stable

Set System Lock

Diagnosis
ready

Modulated
signal at input?

yes

no

MOST Network
Interface Controller

Flag will be configured as
Slave
¢ Time tDiagiMa.s;ter is
Start Timer already expired
(tDifference)

-> tDifference =

tDiag_slave - tDiag_Master

Diag_M2

Figure 8-4: Behavior during ring break diagnosis in a TimingMaster (part 1)

Specification Document

Page 222

MOST Specification
Rev.3.0E2 07/2010

© Copyright 1999 - 2010 MOST Cooperation

MOST®

Specification

MOST

COOPERATION

Diagnosis
Start

4

Start Timer
(tDiag_SIave)

4

Start Timer
(tDiag_SignaI)

Device with Timing Slave

Modulated
signal at input?

MOST Network
Interface Controller
will be configured as
Slave

Diag_M1

Figure 8-5: Behavior during ring break diagnosis in a Slave (part 1)

Timeout
(tDiag_SignaI)

A

MOST Network
Interface Controller
will be configured as
master (Modulated
signal at output)

A

Clear System Lock
Flag

Modulated
signal at input?

Timeout
(tDiag_SIave)

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 223

MOST® MOST

Specification

COOPERATION

Every Device

Timeout
(tDiag_SIave) or
(tDifference)
respectively

Modulated
signal at input?

Lock stable
and
System Lock flag
set?

Diagnosis
ready

Figure 8-6: Behavior during ring break diagnosis in a TimingMaster and Slave (part 2)

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 224

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Every Device

Start Timer
(tRestarl)

v

Switch off Modulated
signal at output

Timeout
(tRestart)

Timeout
(tDiagislave): (tDiagiMaster)
or (tDifference)
respectively

yes

A
Start Timer

(tDiag_Restart)

Modulated
signal at input?

MOST Network
Interface Controller
will be configured as
Slave

Timeout
(tDiagiRestan)

Diagnosis
Error Shut Down

Figure 8-7: Behavior during ring break diagnosis in a TimingMaster and Slave (part 3)

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 225

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Name

| Min Value | Typ Value |Max Value | Unit | Type | Definition

Ring Break Diagnosis

tDiag_SignaI

1190

1200

1210

ms

Time a TimingSlave waits for
activity at its Rx input before
switching to ring break master
mode.

tDiag_Master

2990

3000

3010

ms

Time the TimingMaster stays
in TimingMaster mode. After
this time, it may switch to
TimingSlave mode.

tDi51978I51vta

4990

5000

5010

ms

Time a TimingSlave stays in
ring break slave mode before
generating the result of the
diagnosis. In addition,
tDiagiSIave 2 tDiagiMa::‘.ter + 2s must
be true.

tDiag_Start

1000

ms

After triggering ring break
diagnosis, the diagnosis has to
be started within tpiag start.

tDiag_Restart

990

1000

1010

ms

This is the time a device has to
wait after an unsuccessful
diagnosis (ring broken) until it
can be restarted by network
activity.

Table 8-3: Ring break diagnosis timing definitions

Specification Document

Page 226

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

8.1.10 Shutdown and Initialization Timing Definitions

Name | Min Value | Typ Value |Max Value | Unit | Type | Definition

Shutdown

tshutbown - 2 6 ms |C Time between a shutdown
(per node) | (per condition and the stop of

node)’ activity at the device’s Tx
output.
Initialization
tWakeUp2 - 20 30 ms |C Maximum time between start of

activity at the Rx input of the
device and start of activity at
the device’s Tx output.

(N ° tWakeUp) + tiock < tConfig
where N is the number of
TimingSlaves.

General

teypass 1 - 5 ms |T When a node drops out of the
network, the Network Interface
Controller must stay in reset for
this period of time. The lower
boundary is the minimum time
to detect a network change
event. The upper boundary is
the maximum time that does
not cause a critical unlock

(tBypass_max < tUnlock_min)-

Table 8-4: General timing definitions

" The System Integrator has to ensure that the accumulated shutdown delay (tshupown Of all devices) is
below trestart-

2 The System Integrator has to ensure that the startup of the system becomes effective quicker than
tconfig. The timing constraint tyaeup May be relaxed if the number of nodes is limited in the system.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 227

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

8.1.11 Sudden Signal Off and Critical Unlock Detection

Related section: 3.1.4.2

The SSO and CU detection feature, as well as the NetBlock property NetBlock.ShutDownReason is
mandatory for all devices.

This feature is speed grade dependent and not applicable for MOST50 systems.
In MOST50, there is no Shutdown Flag that would have to be set by the PowerMaster during normal

shutdown.

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 228

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

O List of Figures

Figure 1-1: MOST dOCUMENE STFUCIUNEcoueiiiiiiieiee e s 30
Figure 2-1: Model 0f @ MOST AEVICEooiiiiiiiieiiiiii ettt e e naeee s 34
Figure 2-2: Structure of an FBlock consisting of functions classifiable as methods, properties, and
LY 5T £ 36
Figure 2-3: Setting a property (temperature setting of a heating) ..., 37
Figure 2-4: Reading a property (temperature setting of a heating)cccoeceiiiii i, 37
Figure 2-5: Status report of property temperature Setting...........occcvviiiiiiii i 37
Figure 2-6: Virtual communication between two devices on the Application Layer and real
communication OVEr the NEIWOTKooi i e e 40
Figure 2-7: CDC device with CD Player FBlock and its functions...........cccccccoevciiiiiiiiic e 41
Figure 2-8: Communication between two devices via the different layers............cccccoiiiii. 42
Figure 2-9: Example Of @ SIaVe AEVICE........couiiiiiiiii e 43
Figure 2-10: Virtual illustration of the controlled properties in the control device.............ccccooeiinienn. 44
Figure 2-11: Unambiguous assignment between function and variableccccccoiiiinieeee 45
Figure 2-12: Controlling MUIIPIE dEVICEScoiiiiiiiieiie e 46
Figure 2-13: Controlling two identical deVICeS..........coooiiiiiiiii e 47
Figure 2-14: Routing answers in case of multiple tasks (in one Controller) using one function 48
Figure 2-15: Seeking the logical address of a communication partner............ccccocccvieviiievnciiee e, 51
Figure 2-16: Processing of messages including error check on different layers..........ccccccvvvviiinen.n. 62
Figure 2-17: Flow for handling communication of methods (Slave’s side).........ccccceeeiiiiiiiiiieeeee e 63
Figure 2-18: Flow for handling communication of methods (Controller's side)............ccceccuiivereeeeiiinns 64
Figure 2-19: Sequences when using Start with and without errorccoocc i, 65
Figure 2-20: Meaning of position x in a record (above) and of position y in a record with an Array
(=1 0 T 88
Figure 2-21: Position x in case of an Array of basic type (left), y in case of an Array of Record (right).89
Figure 3-1: Application and Network Service of a MOST deViCecoiiiiiiiiiiiiiiiiieeeeieeee e 115
Figure 3-2: MOST data transport MeChaniSMSooouiiiiiiiiie e 116
Figure 3-3: Overview of the states in NetInterface............ooooii i 121
Figure 3-4: Behavior of a TimingMaster device in state NetInterface Init.............ccocceeviiini e, 124
Figure 3-5: Behavior of a waking TimingSlave device in state Netinterface Init............cccccooeceeenn 125
Figure 3-6: Behavior of a woken TimingSlave device in state Netinterface Init................cccccccooil 126
Figure 3-7: Behavior in state Netinterface Normal Operation.............ccccoeeiiiiiiiiiiiie e, 128
Figure 3-8: Localizing a fatal error with the help of ring break diagnosis.ccccccoveiiiiiiein e, 129
Figure 3-9: Example (2 devices) for waking of the MOST network via a modulated signal on the
=Y A1)5 SRR 130
Figure 3-10: Switching off MOST network by starting method ShutDown in every NetBlock............. 132
Figure 3-11: Prevention of switching off MOST network via ShutDown.Result (Suspend) 132
Figure 3-12: States of the network and the Central Registry in Netinterface Normal Operation......... 137
Figure 3-13: NetworkMaster behavior in case of an address conflictcccccoviiiiiiii 142
Figure 3-14: InstID conflict reSOIULIONccoiiiiiiiiiiee et 144
Figure 3-15: NetworkSlave determines the System State in Netinterface Normal Operation 152
Figure 3-16: Reading the FBlocks of a device from NetBIOCK...........c.cccviieiiiiiiiiiiee e 155
Figure 3-17: Requesting the functions contained in an application FBIocKcc.cccooveiiiiiiieeeennn, 156
Figure 3-18: Ring break diagnosis phases and time SIOtSccccciiiiiiiiii i 157
Figure 3-19: Ring break diagnosis — state diagram TimingSlave.............ccccoecciiiiiie e, 159
Figure 3-20: Ring break diagnosis — state diagram TimingMastercccocovoiiiiiiiii 161
Figure 3-21: Shutdown causes in state NetInterface Normal Operation...........cccoccociiiiiiiiiiie e, 163
Figure 3-22: Examples of the behavior when unlocks OCCUT.............cooiiiiiii e 167
Figure 3-23: Behavior of a device depending on supply voltage ... 170
FIGUIE 3-24: AlEIT IEVEIS ...ttt e e e e e e e e e 171
Figure 3-25: Possible mechanism to adapt transfer rates to the speed of a message receiver-......... 178
Figure 3-26: Network Service: Services for Control Channel............cccoccviieiiiiiiiieciee e 180
Figure 3-27: Single transfer (n bytes payload)cooiiiiiiiiiii e 180
Figure 3-28: One telegram (n bytes payload) of a segmented transfercccccccceeeiiiiciiiieeeee e, 181
Figure 3-29: Segmented transfer example with entire available payload usedcccocceeveeeen. 181
Figure 3-30: Segmented transfer example with available payload not entirely used......................... 181
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 229
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
Figure 3-31: First telegram of a size-prefixed segmented message..........coceeiiiiiieiiiiiiee e 182
Figure 3-32: Network Service—services for the Packet Data Channelccccociiiiiii e, 184
Figure 3-33: Network Service for streaming data..........ccccceeviiiiiiiiiiie e 185
Figure 3-34: Building a streaming connection step by Stepcooiiiiiiiiiii e 194
Figure 3-35: Step by step removal of a streaming conNNECtioN.............cccoveiiiiiie e 195
Figure A-4-1: Communication with a function via its function interface (FI).........cccccccooiiiiiiininnnninn, 204
Figure A-4-2: Example of a function interface (F1)cccriiiiii i 204
Figure A-4-3: Requesting the function interface of a function..............ccccco i, 205
Figure A-5-1: Flow of initialization on the application level in a NetworkMasterccccoccoeeeene 207
Figure A-5-2: Flow in NetworkMaster during requesting system configuration..............ccccccoeiiieenn 208
Figure A-5-3: Flow of initialization on the application level in a NetworkSlaveccccccooiiiennie 209
Figure A-7-1: MOST T80 framI@eeiieiieiee et e e e e 211
Figure 8-1: Behavior of a woken Slave device in state NetInterfacelnit......................... 218
Figure 8-2: Behavior in state Netinterface Normal Operation...........ccccccoveviiiiiiiicee e 219
Figure 8-3: Localizing a fatal error with the help of ring break diagnosis.ccccccceeviiiieiicne e, 220
Figure 8-4: Behavior during ring break diagnosis in a TimingMaster (part 1)cccccceecviveeeieeennnee 222
Figure 8-5: Behavior during ring break diagnosis in a Slave (part 1).........cccccccvvieeieeeieiicciiieeeee e 223
Figure 8-6: Behavior during ring break diagnosis in a TimingMaster and Slave (part 2).................... 224
Figure 8-7: Behavior during ring break diagnosis in a TimingMaster and Slave (part 3).................... 225
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 230

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION

10 List of Tables

Table 2-1: FBIOCKIDS (DAt 1) ..ottt ettt ettt e e e rat et e e s sabe e e e s anbeeeeanbeeeeeanee 52
Table 2-2: FBIOCKIDS (DAt 2)eiiiiiiiiee ettt ettt e ettt e e e rabe e e e s sab e e e e e smbeeeeanbeeeeeanee 53
Table 2-3: Responsibilities for FBIockID and FKEID ranges............cooiiiiieiiiiiiei i 56
Table 2-4: OPTypes for properties and Methodseeiiiiiii i 57
Table 2-5: ErrorCodes and additional information (Part 1) ... 58
Table 2-6: ErrorCodes and additional information (Part 2)...........cceeviiiieiiiiiii e 59
Table 2-7: The different modes of the bit field Channel TYPecooviiiiiiiiiii e 77
Table 2-8: Parameters for Interface descriptions: Class, OPTypes, and Namecccccccceevicieeeenns 78
Table 2-9: Classes of functions with a single parameter............ccccvveeiiii i 79
Table 2-10: AVAilable UNIESocuiii et 82
Table 2-11: Classes of functions with multiple parameters. ..., 86
Table 2-12: Classes of functions for a method. ... 109
Table 2-13: Notification Matrix (x = notification activated)cccooiiii e, 111
Table 2-14: Parameter CONrol....... ... et e e e e e e e neeee e e e e e annes 112
Table 2-15: Messages with different Control values and the resulting entries in the Notification Matrix112
Table 3-1: Structure of packet data (16 bit @ddressing)cooiviiiiiiiiiiii e 119
Table 3-2: Structure of packet data (48 bit addressing)ccoeviviiiiiiiiie e 119
Table 3-3: Events in state NetInterface Off ... 122
Table 3-4: Events in state NetInterface INit............cooo i 122
Table 3-5: Events in state Netinterface Normal Operationcccooveiiiiiiiiiin e 127
Table 3-6: Events in state NetInterface Ring Break Diagnosiscccevveeiiiiiiiiiieiie e 129
Table 3-7: Events in state NetInterface Diagnosis ResuUlt.............ccceeeiiieiiiiiiiiiee e 129
Table 3-8: Events in System State NotOK (refer to Figure 3-12).......cceooiiiiiiiiiiiiieeeee e, 138
Table 3-9: Events in System State OK (refer to Figure 3-12)oooiiiiiiii e, 138
Table 3-10: Example of a Central REGISIIYoouiiiiiiiiie e 140
Table 3-11: Example of a Decentral REgIStrY.........cooiiiiiiiiiiei e 149
Table 3-12: FBlocklID, InstID combinations for querying the Central Registry..........cccccciiiiiiiiinneen. 155
Table 3-13: Ring break diagnosis states - TIMINGSIaVe.............cciiiiiiiiii e 158
Table 3-14: Ring break diagnosis states - TimingMaster............ccuuiiii e 160
Table 3-15: Ring break diagnosis reSUISeeiiiiiiiiie e e 162
Table 3-16: Functions in NetBlock that handle addresses............ccovviiiiiiniciiiic e 174
Table 3-17: Addressing modes vs. address range............uueiieieeiiiiciiiieeie e e e ea e e e 176
Table 3-18: Use of the TellD field........oouiiiiiiie e 183
Table 3-19: Functions in ConnectionMaster in conjunction with the administration of streaming

o] o 1= Tox 1o o 1= PSR 193
Table 3-20: Timing definitions — Initialization...............cooii e 197
Table 3-21: Timing definitions — ShUtdOWN.............ooiiiiii e 199
Table 3-22: Timing definitions — GENEral..........c...oiiiiiiiii e 201
Table 3-23: Timing definitions — Ring Break DiagnosiS...........oocuuiiiiiiiiiiiiiieieee e 202
Table A-7-1: Structure of the MOST 150 framecocuiiiiiiiiee e e 212
Table A-7-2: Control data in MOST150.........coiiiiiiiieiiie et e e e s e e e s aeees 213
Table A-7-3: NetBlock.Boundary influence in @ MOST150 System.........ccoccuiiiiiiiieeiiiiiiee e, 215
Table A-7-4: NetBlock.Boundary influence in @ MOST50 SYSteM.........ccoveiiiiiiiiiiiiiiiee e 215
Table 8-1: Events in state NetInterface Ring Break Diagnosisccceeveeiiiiciiiiieiie e 220
Table 8-2: Ring break diagnosSis FESUILSuviiiiiiie e e e e e e 221
Table 8-3: Ring break diagnosis timing definitioNs............occeiiiiiii e, 226
Table 8-4: General timing definitioNS..........cueiiii s 227
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 231
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

INDEX

1
LT =19V [=TT [T T PP SUPTRE 119, 176
4
A8 Bit AQAIESSINGeeieiiiiiee ettt e et ettt e e e e e e ettt eee e e e e e e be et eaee e e e ntaeteeaeee e e nanaeetaeeearbaeeeaeeaeaannbaaeaaaeaeaan 119, 177
A
A/V Packetized ISOCNIONOUS............cuuueeiieeieeeeee e 118, See Streaming data: Isochronous data
Y o T o SRS 67
N o T 7 o O PSR UTR 67
4 SRS 33
Address
Internal Node CommuNICatioN AAIESSuiiiiiiiiiiiieeie ettt e e e e ettt e e e e e et eeeaesntbeeeeaaeeeannes 39
Address
MOST AQAIESS TYPES ...ieeiieiiee e e eeeet e e e e e e ettt e e e e e e et e et eeee e e s ataeaeeeaeessansssaaeeaeeesaasssseeaeaaeeasssseeaaeesaansssneeeaeeean 39
Address
NOAE POSItION AGAIESS ... ettt e e e ettt e e e e e e bttt e e e e e e e e nnb e e e e e e anntaeeeeeeeeeaannnnneeeaaaean 39
Address
LOGICAI NOGE AQAIESS ...ttt ettt s b e e et e e et e e e sk b et e e st e e e e e e s bne e e easne e e e nanees 39
Address
(€10 oI No [| (=TT PP SO PP PPPTPRP 39
Address
BroadCast AQAIESSooiiiiiiiii ettt e ettt e e e oo et e e e e e e ettt e et e e e e e e e e e e e e e s 39
Address
[(= g o Y O Lo YT TR 39
FaXe (o[(=Tt o o T PSP P PP PP UPPPPPPRRPT 39
o o= L (= T RSO UPPRR 188
1 SR See Application Message Service
Application
T (F=1 7<= L[] o PP OPPPPPPPPOE 136
Y o] o] o= 11 o] o T =y o T PSSR 60
Y o] o] o= 11 o] g T == 111 - SRR 168
APPICAtIoN LaYEr PrOtOCOLeeiiiiiiiiiet etttk e et e e s e e st e e e e sn e e e s eaneeeeaneeeeaans 40
APPHCALION LAYET SEIVICE ...ttt ettt e e e et e e e bt e e s b e e et et e e e st et e s eaneeeeanreeenans 32
FNo] o] oz= Y (o] g Y oY= To L PP PR OUPRR 40
APPLICAtION MESSAGE SEIVICE.....coutiiiiiiiit ettt ettt e e et e e ettt e s ab e e e e aa b e snte e e s eabeeeeanbeeeeaae 180
LAMSmax ... 180
= D a T T g I =Y oo 1 o PSSP 180
ST 0 =T 0 (=T I I =T 11 = S 180
11T | L= I =TT (= SR 180
LIS LSRR 181
APPIICALION FANGE ettt e e e e e et e e e e e e s et e e e e e e s e e tara e e e e e e s aareneaeeeaaaanres See FktID:Ranges
F g o] 1= 1 [) o [PPSR 117
F N - | PSP PPPPRRROOY 86, 89
[N 011w (o] o SR 9
ST Yo (g To T 1= 44 T=T o £SO 91
F = 1Y A"ATH LT (o PSP PERPPE 96, 98
AFTAYWINAOWDEI ...ttt oottt e e e oottt e e e e e e et aeeteeae e e e e naseeeeaaaeansbeeeaaaeaeaansnnseaaaeaeaannes 98
AFTAYWINAOWINS ...ttt e e oottt e e e e e e ate ittt eae e e e e anaeeeeeaaeeaaamnseeeeeaeansbeeeaeaeaeaansnnseaaaeaeaannns 98
Creat@AITAYWINAOW ...ttt ettt e oot e e e b bt e e e s et e e ea b et e e e bt e e eaabe e e e sabeeeeatreeenan 96
DESITOYATTAYWWINAOW ...ttt ettt ettt e a et e e et e e e bttt e e eab et e e et e e s be e e e sk be e e e aate e e e nanees 96
[To)Y N = NV AT LT oo (o PP UTPEP 96, 99
F U Lo [[o I AN aaT o] 1) 1= gl = =1 o Yo PP 52
AUdIO DiSK Player FBIOCKttt e e e e e ettt e e e e e e e s et e ee s e nnnt e e e e e e e e e nneneeeaeaean 52
T Lo Lo T IS e =11 o1 SRR 52
Y0 Lo [o R =Ty (=Y g =] o T PSSR 52
Audio Tape RECOTAET FBIOCK.ottt e e e e e s e et e e e e sane e e e anreeenans 52
AUXITIAPYINPUL FBIOCK ...t a bttt e et e st e e et e e e s bb e e e e aabe e e e nanees 52
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 232
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
AuXiliaryINPULOULPUL FBIOCKcooiiii ettt et e e et e 52
AUXITIATYOULIPUL FBIOCK ...ttt b et ea bt e e st e e e bb e e e e et e e e nnees 52
B
L2 T AT/ o SR 186
Bandwidth CalCUIALIONe ettt e e e e ettt e e e e e e e s e ntee e e e e e enaeeeeeaaeeeannneeeaaaaean 214
Streaming VS. PACKE! ..o 191
o R (o D= = T I o 1= PR See Data Types
BasiC PriNCIPIES Of IMOST ...ttt e e e e e e et e e e e e e e e s atbaeeeeaeeesasaaeseeaeeesssbaeeeeeseesassbnneeeaeseannes 32
= 1 1= OSSR 70
ST e T=] SO TTRROPR 79, 85
BIOCKING Bro@dCast........cooiuiiiiiiiiie ettt See Broadcast Address
2 oot QA T | o PR 187
[ToTo] 1= o T USRS OUPRPRT 70
[T o] | =Y o RO USSP OOUPRUPPPIN 79, 84
12 ToT0] oo F=1 o PP OO PPPP 214
2 ToT0 g Te F=T VA B I=E Yol] o) (o] PRSP PRP PRSIt 27,191, 214
ST oY= To [or=Ts] 7AYo [0 [{1 39, 176
= [oTed (1 aTo =T 0 = To (o= 1] PP RRR 176
UNDIOCKING BrOAACASE..........eeiiiitiiee etttk e et s enn et e e s e e et e e s et e e e e e e e 176
21011 o [@7'] ol =11 o] o ISR SRR 192
Y o= E1= S OSSPSR 203
C

(0221 -1 oo R U PRSP 67
(07T o =TI =T | SR 27, 140, 154, 168
AppPearing FBIOCKS IN OK....... ittt e e st e e ettt e e e s e e s enneeeesaeeeeeansee e nseeeeanneeeeanseeeeanns 146
(7] 01 (=101 <SSR 140
Disappearing FBIOCKS IN OK........oiiiiiiiieie ettt ettt s et e e et e e eate e e s s e e e e anneeenaes 145
NON-responding DEVICES iN OK ...ttt eb et e e aa b et e s ebe e e sabeeeeabneeenan 146
PUIDOSE ..ttt ettt a et oo e bt ookt oea et e e oAb et e e hE et e e et e e ek bt e e e be e e e b e e e e e e e e e 140
ReSPONAING TO REQUESESeeeiiiieiieiee ettt e e e e et e e e e e e e st eeeeeeeessaeeeaeesansnsseeaaeeean 140
T oo 1 7] o] 11 42 PRSPPI 140
System Scan WithOUt ChangEs.......c.ooi it e e e s e e s et e e e sne e e e eete e e enneeeeanneeenn 146
L1 0T F= (PPt 145
L7 T SRR See Function Class
(0= EE 71T IS 1= o PR P RSP 76
L3 1Y SO See Control Message Service
(07 Te [TaTe I =Xy (o] g OTeT0] o] (=1 SRRSO 164
(70T 13T TN =Xy o R 164
(0707201410311 (T o T SRR 40
(7] g1 0= il o111 Y/ RPN 29
(7] 01 4 1= o2 QPRSPPI 189
[070] a0 1=Te1 1[0 g TN F=1 7= R 27, 186
(070110 1eTe1 (0] g11Y, F=T] () SRR 27,192
[CE o] [o o [Q oy =1Y/= o1 (1] PP OPSRTPR 193
MOVEBOUNGAIYeeiiiiieeietee ettt e e ettt e e e e e ettt eee e e saaaeaeeeaeeeeasasbeeeeaaeeaannsbaeeeeeansssseeaaeeesasnssnneaaeean 191
(070] aTaTCTor 1T 11V E= 153 (=Y gl =1 o o1 TR 52
(7] TaT=Tor 1T T =1 o - 192
(070141 ¢= 11 1= So R TSURRRR 79, 85
(0] a1 1 o]l =11 SRR 213
(070101 (g0 I @] gP=T o1 = TR 32, 33
(0] a1 1o @] F= 1o o T I 0 3 { O RPN 33
(070101 (o) I D71 = TR 27,117
[07e] 1 1o I =1 c= I = 10] oo PRSPPI 213
CONLrOl MESSAJE SEIVICEeeiiiiiiiieiiiie et e et e e et e e et e e et e e e amae e e e e seeeesamseeeeanseeeeeanteesneeeeeanneeeeanseeeennnees 179
S 179
Maximum Telegram LEeNGLN ... ettt e ettt e e e e e e e sttt e e e e e e e nnbeeae e e e nnnreeeaaaean 179
(7] 0110} 1= S RPN 35
(70 To] o {19 E=1 iTe] o I = g T 1SS See FktID:Ranges
(011=T=Y LY = 1Y AAT g Lo (o APPSR 96
(07) o= T 0 1] (o o2 PR 162
(07 1 Toz= TN o] | =T = R 170

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 233

MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
L S See Critical Unlock
D
[L= B IR g = = TP PSPPTN 196
Data Transport MECNANISIMS. ittt e e ettt e e e e e e e aeeeeeea e e e e e aneeeeeaaeeaaannteeaeeaaansneneaaaeaaaannns 116
(D= T Y o 1= T OO P PP PRSP OPPPPOPI 69

2 T=T o TSP O URSPPRR 70
[ToT o] =T T o ISR 70
(O TS oo RS =TT SRR 76
= 01 o I PO U SPPT SO 72
S g3 S 4= oo O 76
ST T0 a1 To = Y (OSSR 72
ST (o 1= I o) o o SRR 72
SHIGNEA WOKA.... ettt ettt e et e ookt e ettt e s s et e e s b et e e aan e et e e st e et b e e e naan e e e e nane e e e e nreeenan 72
T (Y= 1o o PSPPSR 74
(1 0 o TSP SO PP PP PUPUPRP 73
UNSIGNEA By ...ttt sttt et ettt st et e nnnnnnnnnnrnnn 72
L 1= o 0 1= 1o g T PPt 72
L8] ES]To T T=To R4 o] o TP 72
[o= (U PRTPTN 188
DebUGMESSAGES FBIOCK.........coi ettt e e oo ettt e e e e e e e n et et e e e e e e aanbeeeaaaeaaansbnneaaaeaeaannns 52
DeCENTral REGISIIY ...ttt e ettt e e e e e et be et e e e e e e e e e nnsaeeee e e anebeeeeeae e e e nnnnneeean 27,149
21071 T [1a Yo RSO R O PR PPRPRR 149
(D=1 =Y (1T T O PP PO P P OPPPPPPRPN 149
L8]0 T E= 110 o O PP PO OPUPPPPRP 149
[T =T33 1= o | OSSR 67
== PO PRPPN 213
[=Y) =T =1 o T q 1] S 169
DeSIrOYAITAYWINAOW ...ttt e e oo ettt et e e e e e e aa bt e et e e e e e e e atbeeeeeeeeemnteeeeeeeeeaannsneneeaaeeeaannns 96
[LY o7 YRR 27, 34
[T | 5 SRR 50
= 10 o2 1T o I SRR 60
S 107 (o[17Y o SO UPPPRRO 133
[V o= | I PP PP TOPPPPPPPPR 27
(DY o=y N (o4 g T= 1 (@] o 1T =1 i o] o N U OUOPPURPRRRIOt 120
[ToT= 01T 3 O 120
[T ToT S =T o o | S 120
[E=To | a0 L] - J PSP PUPPPRNE 157, See Ring Break Diagnosis
Diagnosis ErrOr SNUIAOWNuiiiiiii ettt et e s bt e et e e nab et e e abaeeenaa 129
[BIE= o aTo T 3 =T Lo O P PO PP OPUPPPPRPN 129
DiagnosisS RESUIE REAAYciiiiiiiiiiiiiie ettt e e e e et e e e e e e e s sas b e e e e e eeeesssseeaaeeesasnraeeeaaeean 129
D] To | gl k] S] - | AT PP SPPRPP 122
[E=Te | Lo T SN =T Tod R UPRPRT 52
[1o o =Y o2 R 189
DiscreteFrame ISOChIONOUS.............oiiiiiiiiie e 118, See Streaming data: Isochronous data
DOCUMENT SEIUCIUIE ...ttt ettt e e e e e ettt et e e e e e s tbe et eeeeeeansbaeeeeeeaannsbeeeeeaeeeansbnseaaaeseannnes 30
DVD VidE0 PIAYEr FBIOCK.cci ittt ettt ettt e e st e e s bt bt e et e e e enee e e e nane e s 52
{03 =T 0 1o Y o = PPN 92
DYNAMIC BERAVION ... ettt st st s s et et s nnsnnnnnrnnnen 120
(DY o= o (o3 = o 18] g o F= T Y AU PEPPT 214
Dynamic FBIOCK ReGISIratiONS...........eiiiiiiiiii ettt e e e et e e e e e e e e e e e e e e nenneeeaeeeaanees 136
Dynamic 10giCal NOAE AAUIESS.......ccoiiiiiiiiii et e st e e e st e e e et e e e e nre e e e nanes 175
DynamicArray
[N\ 1071 (o] o SRRSO 94
E
L] Y] (4] T SRS 73
EnhancedTestability FBIOCK ... ettt e et e e e e s et e e e e e e e e e e nbbnneeeeeeeannns 52
= 3T 0T PPRRRT 72
=1 [0 g1 = L (o] o [UOPRR 79, 83
=t o N 58, 65, 66
Application Error
DEVICE MAIfUNCHION ..ottt e e e e e ettt e e e e e e s sttt e e e e e e s astaeeeeeeasnsaeeeaeeeeannnsbeeeaaeean 60
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 234
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
GENEIAl EXECULION EFTONttt ettt e e e e e ettt e e e e e e st b e et eeaeeesansbaseeeeaaannsbeeeeaeeeeannsaneeas 60
1Y L] (g Lo Te I Y o Yo (=Y E USSR 61
= 1= 10 T] (=Tl = 4 (o PSSO 60
SPECITIC EXECULION EITON .ottt e e e e e et e e e e e e s e s s e e e aaeeeannteaeeessnnsbaneeaaeeeannses 60
Temporarily Not AVailable EFTOr..... ... et e e e e et e e e e e e e e e e e e e anees 60
(=YY ot 1Y/ =11 1T o S 60
Fatal Error (NEIWOTK)cooii ettt e e et e e n e e neneeeean 165, 166
L1 gT1 (=T o] oL O PSP T PP PP RO PPRR 59
Managing Errors (NETWOTK)..........eei ittt ettt ettt e aa bt e eabe e e s sabe e e e abaeeenan 165
111 oY Y o Yo o (=Yo [PPSR 61
Network Change EVENnt (NEIWOIK)ooii ittt e e e e e e e e e e e st e e e e s enanraeeaaeeean 165
S T=Te aal=T ot F=Yilo] T = o) PSPPSRI 60
301 €= D = o) OO 59
UNIOCK (INEEWOTK) ...ttt ettt e e e et e e e e n e e e et e e e eneee e e emseeeeeneeeennseeeeenneeeeeanneeeean 165, 167
VOIAGE LOW (NEEWOIK) ...ttt ettt e et e s st e e s b et e e st e e e e e e s enn e e e e anrneeeaans 165
Error ChecCKing (FIOW CRArt)........cooiiiiiiiiiie ettt et e st b e e et e e nne e e e s naneee s 62
L e ST TV o o).V o 1N 127,131
L o] /o1 SRR S P UPRPRT 63
(0= o T PR 185
Ethernet Address CompPariSON MOGAESc.uuuiiiiiiei ittt e e e e e e e e e e e e e eeaeeseaeansaeeeeeesntaeeeeaeeesanees 177
EtNEINEt IMAC AQAIESS e e oot e e e e e et e e e e e et e e e e e e e ee e e e e e e eeeeaenaaaaaas 39, 177
(g T= =Y o Y=Y 1 1 S 185
BUI-A8 ... et e e e e e et e e e e e et e e e e e e aaaes 177, See Ethernet MAC Address
=T o PP PR 36, See Property
Diagnosis Error SNULAOWNcoo et e e e e et e e e e e e e et e e e e e e e s sseeeaaeesesanraeeaaeeaan 129
DiIagNOSIS REAMYeuiuiiiiiiiiitiiiiii et ettt et et e e et eeenneeenenennne 129
Diagnosis RESUIT REAAYoiiiiiiiiii ettt ettt e e e e e ettt e e e e e e saeeeeaeeeaannnneeeaeeeaan 129
[E= o T 1] 3] = o S 122
e o] S 1] (o [0 o USSR 127
T =Ty o g 1U] (o (o1 o USSP UPRPRE 122
TR = T=To | SO P PR SURPPPOPRRIOY 122, 127
N o] 40 g F= TS 1F) o 0111/ o PRSP 127
S = LU o SRR 122
LD o To =Y o | (OSSR 69
F
Fatal Error (NEIWOIK) ...ttt e e et e e e e s bt e e et e e nnne e e e nanneeean 165, 166
= o o S PPR 27,34, 35
[=1 To o1 1@ (1] Uo1 1o] o 1= 300 SRR 186
L =10 o7 Q] F= o (o) OSSR 27
(= oo 4|5 PSSP 35, 51
[O) =] Lo Yo {0 1S 51
L oYt Sq 1330 {0 o7 [o S UPE 155
=1 (o Tod | | o SRR 156
F1 See Function Interface

Finding CommUuNICAtION PArtNEIScooiiiiiiiiiiie ettt e et e et e e 136
FREID ettt ettt ettt e et e e e ettt e e ettt e e eat—eeeaatbeeeasteeeeaaeeeeatteeeaanteeaaaeeeatbeeeaanneeeeanraeeeataeeeanne 35, 55
RN S .ttt £ttt £t s ettt sttt s tnnnnnnnnnnnnnnnnn 55
L L3 0 T (T o SR 156
= T 1P PPRPRT 77
Floating Point REPreSEntationottt e e e e e et e e e e e e e e e anebeeeeeeeeeannes 69
[=1 .01 TP See MOST Frame
[T g Te3 (To] o FR RO 27, 36
T o T Lo Tor 0 g =101 =1 i o] o NSO UPURRT 67
[T aTer (1] T (I SO PRSP OTPRPOTI 35
U g Ted (o] o T =1 o T3 QPR See FBlock
LU g Tox (1] T @1 -1 oo S 67
LT g o (1 o O - L1 77
1 = TP T PP U PR PP PPPRR 89
21 SR 79, 85
2] To1 | =1 o RSO PRSPPI 79, 84
[070] 21 ¢= 11 1= SF O T 79, 85
DY NMAMUICATTAY ... ettt et et et et s s e s e e e nnnnnnnnnnnn 92
[a10 10011 = 1 (o o TR 79, 83

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 235

MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
LT oY1V 1Y (g oL TR 109
(1 O =0 g Tei o] T O F= 11T = TR 78
LONGATTAY ..ttt et 5ttt 55 ettt ettt s nnsnnnnnnnnnnnnnnn 95
Y= T o PP 103
VU 0] o= TN 79, 81
Properties with MUItiple PAramMELErs i i aanen e aaasnsaenseessesesesesssnsnnnnnns 86
Properties with SINGIe Parameter et e e e e et e e e e e e e e e an 79
[LYol o] o [P RRR 87
SEQUENCE MELNOM ...ttt et e e ettt sab et e e rb et e e aa bt e e ene e e e nnee s 110
LT[g Lot g o] o114 o S PP PRSPPI 108
1T (o o 79, 80
LI 79, 83
B I T [1= 1Y 1= T T ISP PPRPRTN 109
LTt =TT 1Yo B o] oY= o 2SR 86

[Sl8 T aTes(To] g g (=) = (o = TN 204, 205

[0 gTesTo] =T I fo [LY TR 43,139
DECENIrAl REGISIIY ..tttk e s bt e e eb e e e et e et e et e e 149
UNIQUENESS ...ttt ettt ettt oottt o4 a et e o4 b et e £ sttt e 4 1a b e e e o4kt ee £ sttt e e 1ab et e e e st et e e ee e e e st e e e e aabe e e e nane s 54

G

GENEIAl EXECULION EITONo 60

[66

(1= 1 19) (=T 7= o YRS 66

(1[0 | PO PTRPPOPPRR 27

(] o] oI Ve [[=TT USSP RUPR 39,175

H

HaNASTrEEe ProCESSOr FBIOCK s aa s sssassessssssssssssssssssssssssssnsssssssnsnsssnrnrnnnnnns 52

Headphon@AMPIIfIEr FBIOCK ..ottt e e e e e ettt e e e e e e e e et e e e e e e e easeeeeeeeesansbaneeaaeeeaaanes 52

L L TN See Human Machine Interface

o [T a P T Y =Tt [g LT g (=) = (o < PO 35

Human Maching INterface FBIOCK.............uuuiiieeeee ettt e e e e e e e e e e e e eaaaeeeeeeeeeeeen 52

|

IEEE 802.3 ... e See Ethernet over MOST, See Ethernet MAC Address

[g]]|l =1 (o Ted {1 0 E USRS 147

IMPIICIt NOIfICAtION.........eeeiiiie e e e e e e e e e e e e e e See Notification:Implicit

Lo (=10 0= o | PR 67

Lo LI =y o TR ATV o [0V o TN 122, 123

LT =TT | OO PRT PP 122

INIEREAAY EVENL ...t e e e oottt e e e e e et e e e e e e nntb et e e e e e e e annbeeeeaaeeeaan 27,127

LT {5 SRR 54
F ST (o 10 1T o | SR P R UUPUPRRPTE 54
ENNaNCedTEStaDIlILYcooieiiiei et 54
[L1 = (oY) TR 54
LY o741 F= 151 (= TR 54
LA o [oz= T o 1< TSP 55

[[a1 = g £= (oY UPRPPRPPRR 66

Internal Node CommUNICAtION AGAIESSuuuuurererriiiiiiiiiiiiieriierarerarararararar——————————————————————a—asassasssssssssssssnsnssrnsnsnrnnnes 39

LAY Z= ol d=To T ES] (=1 (o] o PR 143
DUPHICAE INSID ...ttt e et st e e et e e e e bt e e e s aan e e et e e e e sne e e e nane e e e e nnre e e e 143
DUPIICAtE NOUE AGAIESSeeiiiiieee ettt e ket e e et e e e b et e e st et e e sane e e e et e e aste e e e ssneeeeanbneeenans 143
EFTOIr RESPONSE ...ttt h e e oottt oo bttt e e a bt e e ettt e e e bb et e eb bt e e esbe e e e eab e e e e abbeeenaa 145
[[aNVZ= o I N[00 [N AV Lo [LY N 143
UN-INItialiZEA NOUGE AQAIESSvvvveriiiieiiiiiiiiiititit it tererererarararara—a———————————————ara—ararararararsssssssssssssssssssssssssnnsssnrnnnnnns 143

[YoTel a 0] aTeTU IS o =1 = RN 118

L

L AMISITIAX -+ e eeeeeeennstrreeeeeeeseeausseeeeeeeeeasastaeeeeaeeeaasbaneeeaeeesanbnreeeeaeesaannnreeeeaeeeannrrenes 180, See Application Message Service

LG 179, See Control Message Service

=T T o PRSPPI 68

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 236

MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
Lock
1] o) [T OO SUPPR ORI 122
(oo or= 1o [0 [=TT OPPPRPPRN 51
[IoTo o= 1 M (o o (= o) f= T D=1 (ot PP OPPPRPPTRN 34
(o o] o=] I N\ [oo [Ao [| (=TT SRR 39,175
[0 aTe 1N = Y ST PPRPRT 95
01T A o] =T 1= USSR URRRT 170
LOW=LEVEI REIMESot ettt e e e e ettt e e e e e e e e ea e e e e e e sessba s e eeeeeeesaaanseneeeennes 139, 177
M
=T o PP PPPPTN 103
[1=TS3S7= T [N [1Tz 1T) o R 111
Message Sink
L7 7=Y [Y- T RS 178
1= g T o PSSR 27, 36
1Y [T 1 Lo T Y o Yo (=Y RSO UPRPRT 61
1111 Lo T < USRS OTUPRPRT 48
MICrOPhONEINPUL FBIOCKciiiitiiieite ettt ettt et e e a et e e e ek e e et e e e enee e e s naneee s 52
[[Te [B1E= 1 (=To IS e g T= 1 I O) 3 PP UOPPRPPTOt 166
[Lo =1 0] g = 1 [o] o PRSPPI 2
MOST AJArESS TYPES ..eeeeieiieiiiiee ettt ettt et e et e e e bttt e e ea b e e e ettt e s an e e e e rabeeennteeeenanees See Addressing
Y @ S I I =04 RSO UUSTR 211
[(@ 1S I O SO P P ROPRPPRRPPR 211
== 001 o] L PSR SP PR 213
MMOST FTAMEWOTKciieieeeiiiet ettt e e e e ettt e e e e e e e taeeeeaeeeesntseeeeeae e e e nsaeseeeaaeeaannsseeeeeannsbeeeaeeeeeannsseneaaaeeeannnes 30
MOST High ProtOCOL.........eieieeeiie et ettt e e e e e et e e e e e s es st e e eeeeeeeaassseeeeaeaassaaeeaeeeesnsssnsaeaaeasanses 184
MOST Messages
SHUCTUIE ...ttt ettt ettt e e et e e ettt e e e n et e e e emneeeeamneeee e meeeeeemneeeeanseeeeeanseeemseeeeanneeeeeanseeeeannneeeaanreeenns 50
MOST Network INterface CONIOIETeeeeeeeeee et e e e e e e e e e e e e e as 34, 203
MOST NEIWOIK SEIVICEeeeeeeeeeiee ettt oottt e e e e e ookttt e e e e e e e e aaeeeeeeaae e e e nnsseeeaaeeaaaseeaaasaaansnnneaaaeaaannes 115
IMOST SUPEIVISOIS ...ttt ettt ettt e ket e e ettt et e e 1a bt e e ek bt e e 2 ae et e e s R et e e e s b e e e e an e e e aan e e e e ebreeennnneeenaneee 116
MOST SYSIEM SEIVICES ...ttt et e sttt e oo bt e e ek bt e e e e b bt e nab et e e aabb e e e enteeeennnees 115
[(@IS Y F=T o] o] ISP PT SRRSO 216
Application MeSSAge SEIMENT SIZEuuuuiiiiiiiiiii e easaeaeaenensasnsnsnneeeseeeeeeennennee 216
(0741 oz= I 0 T (o o2 RSP 228
T F=To | Lo]I PP 220
Diagnosis Error SHUE DOWNooiiiiieeiiie ettt e e et e e et e e et e e e snte e e e anneeeesneeeenseeeeeaneeeeeannees 220
DIAGNOSIS REAAY ...ceiiiiiiiieitii ettt e et e et e et e e e et e e 220
Event
Diagnosis Error SHUE DOWNoiiiiiiiiiieii ettt e et e e s et et e e e et e e e nanees 220
DI E=T gL T S (=Y Lo A PP PU PP PP 220
[N L2341 (=Y =TT |1 PR SPURS 218
Netinterface NOrmMal OPEIatioNciiiiiiiiiieie et e e e e e e e e et e e e e e e s snteeaaeesesanraeeaaeeaan 219
RING Break DIGQNOSISeeeieiiieeiiiii ittt ettt e e e e e et ettt e e e e e e e e ae e et e e e e e aaannsbeeeeeeeentseeeeeeeesaannneeeeaeaeaan 220
ST Lo o =T IR 1o o F= 1 SR 228
N1 (o] Ol o) 0 = TP ESRR 220
BBy DaSS -+ ex e et eeu e e s e e et oo e e et s e ea e eh e e e e e eE e eee e e£ e ee e e e eae e eRe e eRe e R oo Ee e Eeeaeeeeeeae e eae e eaeereeeeeeeeeeee e e e eaneeeeeene s 227
tDiag_Master .. 226
tDiag_Restart .. 226
tDiag_Signa| ... 226
tDiag_S|ave ... 226
Lo I | T E TP TP U PUPPUUPOPRTRN 226
=1 T o U PPRTRTN 216
BLLOGK ++ =+ xeeeemsteeeeamneeaesameeeeeamtaeeeaneeeeeanteeeean st eeeeaneeeeeeanteeeenteeeeanseeeeeanseeeeentteeeaanteeeeanneeeeesteeasaeeeanseeeeanreeeeaneeeeennes 221
SNULDOWN «+ =+ xeeeeamneraesneeeeeasteeeeaaueeeeaassaeeesmseeee e nseeeeamneeeeeasbeeeeansseeeanneeeeeenteeeeenEeeeeanneeeeensteeeeanteeanneeaeeanteeeeanseeeennnes 227
tWakeUp .. 227
Lo g LT Y4 = O TUSTOTPRROTI 95
MOVEATTAYWINAOW ...ttt e h et e ettt e o bttt e oo h bt e e e ea b et e e e abe e ek bt e e e ettt e e nnen e e e naneee s 96
MOVEBOUNAIYeeiiiiee ittt ettt e e e e ettt e e e e e e s tbeeeeeeeeesassaaeeeaeeesasssseeeeeasnnssaaeeaaeeesanssnnaeeaeeeaanes 191
MISGCNT <. 182, See Application Message Service
Multimedia Disk Player FBIOCK oottt ettt e e e e e e ettt e e e e e e e neeeaaaeeeansbnneaaaeeeaannes 52
U (RSO URERR 189
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 237
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
N
LI OSSR 33,178
I = o = TR PPRRRT 78
N[PO PP PSSP See Network Change Event
[N 1= 121 (oTod [ql =1 o o1 GRS UPRTR 52
NEBIOCK.BOUNGAIY ...ttt e e a bt e e ete e e e et e e et bt e e e anbee e e naneee 215
NetBIOCK.BOUNAAIY. SEIGEL ...ttt e et e et e e 214
LY (=] = o< TR 27,120, 121
[N L= L (=T =T =Y o T SR 122
LN L= 4L (=T 0 =TT O PR 122
[N L= (O g TS 2= 1 (= TP TP T TSRO 27,127
LI 1= 0T USSR URRR 115
T T (F=1 1 4= 11 [o USSP URPPRE 135
X1 e] o ol SO RUUPPROTI 131
LATE= LU T PP TP PP PPPR 130
NEtWOIrK Change EVENL........ooiiii ettt e e e e e et e e e e e e e aeeeeeeaeseaseseaaeseeantsasaeaeeesannses 168
Network Change EVENt (NEIWOTK)coiii ittt e e e e e et e e e e e e s aanbeeee e e snntaneeeaeeesanees 165
NEEWOIK DIAY ...ttt ettt e ettt et e e oo ettt e e e e e e s ha et e e e e e e e s naeeeee e e e nntaeeeeeeeeeansnneeeeaeaeaannns 190
NEtWOIK INItIAIIZALION et e ettt e e e e e et et e e st e e e e e e e e e annbnneeeaeeeaannes 206
Network Interface Controller.............c.ceviiiiiiiiiie e See MOST Network Interface Controller
Network Interface CONtroller FAIIUIEoo.eueeiiiiee ettt e e e e e te e e e e e entae e e e e e e s annees 168
NELWOTK LAYEI PrOTOCOIeiiiieieie ettt e et e e e bt e st e e et e e enne e e e nanees 174
NEEIWOTK LAYEE SEIVICEeeeiiiiiiie e ettt e e e ettt e e e e ettt e e e e s ettt e e e e e e e eaaaasaeeeaeeseasasseeeaaeessbsaeeaaseesnsssneneaaeeeanses 116
N L= Yo ¢ Y =T aE= To [=T g =T o | RO PPNt 135
NEEWOITK RESEL ...ttt e ettt e e e e e e e bttt e e e e e e e naaee e e e e s e neaeeeeeeeeeansnneeeaaeeeaannns 139
LN L= 0T QT TSR 120
LY 0T 4 1Y F= 1) (= TSRO 27,135, 139
Addressing during SYSEEIM SCAN........cciiiiiiiiiii et e s e e e st e s srre e e snreeeeas 141
APPEaring FBIOCKS IN OK ...ttt e bttt e s bt e e e et et et e e e s nab e e e e abneeenans 146
CeNETAI REGISIIY ...ttt e e et e et e oo e bt e e ettt e s abe e e b b et e e et bt e e e ane e e e nare e s 140
Central RegiStry UPAAtes.uiiiiiiiiiiiiiii ettt e e e e e et e e e e e e s st s aeeeaeasnsaeeeeeeseannsseeeas 145
Configuration Request during SYStEmM SCaNouiiiiiiiiiiiii e e e e 141
Disappearing FBIOCKS iN OK.........ooi it ettt e st e e st e e st e e e e ante e e e smneeeeanseeeenseeeeanneeeeanneeeeanns 145
Duplicate INStID ReGISTration ... et e e e et e e e e e e e e e eeeeeean 143
Duplicate SIave NOGE AQAIESSuuiiiiie it e et e e e e et e e e e e e e e st e e e e e e e e e snabeeeeeeeensraeeeaeeaan 143
[GNOIE SIAVES......oeeiiiiii ettt e oottt e ettt e e ea bt e e e b et e e e b et e e e bt e e e e b et e e b et e b e e e e nanees 142
INVAITIA REGISIIALIONeiiieeiee ittt e et e e e e e e s b e e e e ar e e e e e e e st e e e eenne e e e nnees 143
INValid SIAVE NOGE AQAIESS... ... et e e e ettt e e e e e e ettt e e e e e e e e santbeeeeaaeeesnsbaeeeaaeeeaansnneeeaaaeaan 143
[N PSSO P PR OPRPPRRPRR 146
= Yo 4 1Y, o] a1 (o] ¢ o TSP UPOPPEPP 136
NOdE AAAreSS AVAIIADIEoiiiiiie ettt e ettt e e e a et e e snbe e e e et e e nte e e e anneeeeanbeeeeann 141
Node AdAress NOt AVAIlADIE........... ... et e e e e e e e e e e e e e e s 141
Non Responding Slaves during SYSTEM SCaNc..oiiiiiiiii e ee et e e e e eaes 141
Non-responding DEVICES IN OK ittt e e e e ettt e e e e e e e s e be e e e e e e e e s nnbaeaeeeaannnneeaaaaean 146
Own configuration iNValid NANAIINGoooiiii et as 145
0TS (o) o 1 PR PTSPPRRP 146
Reporting System SCaN RESUILScooieiiiiiie et e et 143
Retries dUriNg SYSIEM SCAN ... e e e e e e e e e e e e e st e e e e e e e s aseeeaeesensnraeeeaeeaan 142
Setting System State NOTOKcooiiieiee e e e e e e st e e e e e e e seabreeeeaeeeansaeeeaeeeaannnsneeeas 139
Setting SyStEM STAte OKo e et e e et e e e et e e e e nee e e e ane e e e e aaeeeantteeeenneeeanneeeean 139
SIAVE EITOIN RESPONSE ...t ee ettt e e ettt e e e e e ettt e e e e e e e ettt b e e e eeeeeeaasbaeseeaeeesassseeeseeasssseeeeeesaannsnnneas 145
) Y (=] IR Tor= o TP U PRSP PP PP UP PRI 141
SYSLEM SCAN DUFGLION ...ttt e e e et et e s et e e s n e e e st e e e enneeeanneee s 143
System Scan WIthOUE Changes.........oouiiiiii ettt e e b e s 146
SyStem STArTUP BENAVIOToiiieiieee ettt e s e e nae e s 141
Un-Initialized SIave NOAE AArESSooiiiiiiiiiie ettt e e ettt e e st e e ettt eesanbeeesnneeeeanteeeeanns 143
NEtWOrKIMASTEE FBIOCK ...t e e e e et e e e e e sate e et e e e e aa st eneeeeeeannnn 52
LN L= Ao = 1= SO 149
Building Decentral REGISIIYoooi it e e e e e et e e e e e e e e sbe e e e e e e e e e nnnreeeaeeeean 149
DECENTIAl REGISIIY ..ottt oottt e oo ettt e e e e e e e et aeeeeeaa e e e e nsbeeeeasanntseeeeeaeeaaannnraeeaaaeean 149
Deleting Decentral REGISIIYeii ittt et et e st e et e s enr e e e s aare e e e e 149
Derive LOGICal NOGE AGAIESScoiiiiiiiiiiiieiit ettt et e e bt e e e bttt e s bt e e e aabb e e e ate e e s bbeeeeanbeeeeanes 150
Determining SYSTEM STAtEouuiii et 152
Finding CommuNICatioN PArtNErSooiiiiiiiiiiiiii e e e e e e st e e e e e e st ae e e s e nnraeeaaaeean 152
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 238
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
N o] g a =TI @] o= = o o O PO PPP PRSP PPPPRPN 151
OWn CoNfIGUIAtION INVAIIAoiiiiiiii ettt et s et e e st e e e et e e sane e e s nnneee s 154
Reaction to Configuration.Status(INValid)ooiiiiiiii e e e 153
Reaction to Configuration.STatUS(NEWEXL)ccciiiiiiiiiiiie e e e e e e e e eeeaeeean 153
Reaction to Configuration.Status(NotOK) in NOtOKcoiiiiiiiiiiieeiee e e e 153
Reaction to Configuration.Status(NOtOK) in OK ..o e e e e snee e enee e e e 153
Reaction to Configuration.Status(OK) in NOtOK ..ot 152
Reporting Configuration CRANGESc.ueiiiiiiiii e e e s e e e e 151
Responding to Configuration REQUESTESuiiiiiiii ettt e et 151
STAMTUD BENAVIOT ...ttt ettt et e e ettt e s s e e a et e e et bt e e nane e e e e s 150
Startup With Valid NOAE AQAIESSueiiiiiiie et e e e e e e e e e e s ae e e e e e e sssaeeeeeesaesnnsaeeeas 150
Startup Without Valid NOAE AQAIESSooiiiiiiiiiiiiie et e e e e e e e s e e e e e e s ee e e e e e s eennnaeeeas 150
3 G IS = L (=1 1 o (@ S 151
3 =T IR = (= | S 151
SyStEM STAte UNKNMOWN ...ttt e et e ettt s et e e s e e et e e enn e e e snneeean 151
Updating DeCeNtral REGISIIYeii ittt et e et e e e e e s b e e e e e e e 149

NEIWOIKSIAVE FAIIUIE ...ttt ettt e e e e e e ettt e e e e e e s e sbeaeeeeeaesntaeeeaaeeeaannsanseaaaeaaanees 168

NN Yo = SRR UPRPR 27

Node Address
T2 1 =T o) [USSR 141
I\ o QY= 11 = o) PRSP PEPR 141

I T L= 0 To 1= o T = Lo (o =Y 174

NOAE POSIHION AGAIESS ... ettt e e e e e e et e e e e e e e et et e e e e e e ee s st e eeeaeeeeeesssaaaaeeesessnnnnns 39,174

[N (o] g =TI @] o= = i oo N OO SO P P PTP ST POUPPP 127

[N Lol g aP=T IS o1 o o).V o RN 127,131

[[o] {1 {Te7= 1 (o] o [N 27, 36, 111
o) £ PSP 113
10T o)1]| PRSPPI 111
Reaction ON SYStEM EVENESooiiiiie et e et e e e st ee e e st e e e e snteeeeeaeeeennneeeeanteeeeanes 114

[N LoX U1 Toz= 1 ol a I\ = () TSP 27, 111

[N [o]u1{Ter=1 (o] g To] g I AN - TSSO UTUPERRT 91

NOtIfication ON DYNAMICAITAYS. ettt e e oottt e e e e e e s e aeeeeeaaeeaaasnseeeeeaaeeaanneseeeaaaeaaaansnneeeaaaaan 94

[IS (=] o R PEPRRN 69, 70, 81

N[0]| =14 4T 0= 14T o PR UTUPRPRT 73

N 10 03] o= PSRRI 79, 81

O

10 o] 1= o2 TS 55

(0] 07=T = 111 o IR 166

(O] oT=T =1 11o] o I Y o1 PP OSSP P PR OPPRRON 35

(O] 1Y/ o TSP PPPRRRN 27, 35, 57
[PP OUURS PP 57

(O] Y o 1= S RPN 78

OVEroad IN A MESSAGE SINKeeiiiiiiiiiieiee et e e e et e e e e e s et e e e eae e e s st b aeeeeaeesbraeeeaeeeeannraeeeaaeaan 178

OVEI-TEMPEIALUIEeveiiie et e ettt e e e e e et e e e e e e s e etbeaeeeeeeeeeaasasseeeeeeeaassssaeseeaeeaaaassssaeessnnsssseeeeeeesaasnssennaaeean 171

Own configuration INVANIAceiiiiiie e e ettt e e et e e e snt e e e e ante e e e saeeeesnneeeeenneeeeeanes 145, 154

P

[z 101 (] o =1 = TR 27,119
AT = Yo (o L= T T 1 o PSPPSR OPPP 119
48 Bit AQArESSINGeiieeiiiieeeiieeeee e e e ettt e e e e e ettt et e e e ea e aabaeeeeaeeeaa s ta—eeeaaeesaatataeaeaeeeabaateaeeaaaatbaaraeaeeeaanes 119

Packet Data ChanNEl...........oooooiiiiiiiieeeeeee et e ettt e e e e e et e e e e e e e e e e e e e e e e e e eenaannans 33,184

Packet Data Channel CRCoooi ettt ettt e e st e e et e e e st e e e e neeeeeenseeeenteeeeanneeeeennneeeeanneeenn 33

Packet Data TranSmMiSSION SEIVICEccciiuiiiiiiie ettt e e et e e s st e e e s aeee e e sneeeeeaeteeeenneeeaneeeeeanseeeeannees 184

=T =g 1T (= il =l o] TSSO UPRRRT 60

PRYSICAI INTEITACE ... ettt et e e e et e e e ekt e e et e e e s e e e e naneee s 34

PhySiCal POSIIONcoiiiii et e e e e eeee s See Node Position Address

PR 213

Lo TS 1 (1] o TR PP PTP T OPPPPPPPPR 87

Lo =T 1Y =T g F=To [T 0 o= oL TP PRPPT 130

Lo XY =T 1 1Y/ F= 1S (= 27, 130

POWEIMASTEI FBIOCKttt e oo oottt e e e e e e e e et e e e e e e e e s aaeeeeeaaannsbeeeaaaeaeanssnneaaaaeeaannn 52

[(== 10 0] o) L= USSP URTRT 213

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 239
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
PrOCESSINGttt ettt o a e e oo bt e e e bt o b e et e b b e e et en et e ek b et e e et e e nan e e e e b s 65
PrOCESSINGACK ...ttt ettt e e a et e ekt e o a et e oo e bt e e ek bt e e s et e ek et e e et bt e nnn e e e nneee s 63
[0T o =Y o YU PPPRRRRINt 27, 36, 37
Containing MUIEIPIE VATADIEScciiiiieieee et e e et e e e e e st e e e e e eaasbeeeeeeseesnrneeeaaeean 86
=T o | SRR 38
[N 010 o o 38
[RT=T=To [0 To [OOSR OPPTPOPPPRON 37
S T=T 111 0o R OO T E P TU PSP PPP PP TPUPPPURP 37
1] T | = SO SO PP PUPOURP 79
Q
Q0SS [P e e 118, See Streaming data: Isochronous data
(O U= PSSR OPPRTS 131
R
L= 5 PRSP See Ring Break Diagnosis
RBD_IM_LOCK ...ttt ettt ettt et ettt e bt ekt h ekt h et E e e et e bttt e be e bt e ne et e nee 160
RBD _IM_INEEOMT ...ttt ettt ea ettt e e bt e ettt e bt e e b et bR e e bt e an et e nee 160
RBD _IM_INEEOFT2. ...ttt ettt ettt e ettt ettt e bt e be e bt e b et e bt e ae et e n e 160
[R0= 1 Y L= (O £ T STV RTOPRRN 160
[34= 1 Y T o T PO OPRTRN 160
(331 Y ST = USSR 160
(3321 Y S - T o TSRS 160
RBD _S _LOCK ...ttt ettt et h ettt h e e et ettt nb et e ae e nb e nae e 158
RBD_S_ INBEIOTT ..ttt ettt ettt et a e e bt e a et et et e eae e e ne bt eb et e b et et ne et e eee 158
RBD_S_ INEEOT2 ...ttt ettt ettt a et bt e he e e bt eeae e e nh bt b et e b et b et e ae et e 158
RBD_S_ INETOTS ...ttt ettt ettt b e bt e ae e e bt e he e e bt b et bt bt e ne et e e e 158
[34= 1D S T Lo 1 1o [P S O ROPRRTRN 158
(301 S T ST TR PSSR UPRTRN 158
RBD _S_ SIAVE..... ettt ittt ettt ettt ettt e bt e ettt e et e e e bt e et e e ea bt e e bt e oAbt e e Rt e e b et e R et e ebe e e aReeeehbeebee e neeentneeneeetes 158
(331 S TS = o USSR 158
L= ToTo] (o R PP TP PSOPPPPPPTN 87
[RT= 100101V =T 0o o1 g T=T o1 o o SR 192
LT]| PR PPRPRT 65
RESUITACK ..ottt oottt e e e oo et b ettt e e e e e e aae b et e e e e e eaanaeeeeeaaanntbeeeeeeeee e nnnnneeeaeaeaannn 63
Retimed BYPasS MOUEooiiiiiiieiee ettt et s e e e et e e et e e b et 164
Retries
LOW-LEVEI REIIIES ...ttt ettt ettt e e e e e ettt e e e e e e e s aatb et eeaeeeesnsbeseessntssaeeaaeesaansnsseeaaeeean 177
RING Break DIGGNOSISceuueeiiiiiiiiie ettt e ettt e e o et e e et e e ettt e e s b e e b et nnnes 129, 157
L = T PR SPRPTR 157
PRESE 2 ..o h et e e et et e e e a et e e e aR b e e e e R et e e e et e e et beeeeanteeeeanneeeeanaeeenan 157
g F= T PRSP 157
QLI 0T To T =701 o o TS 202
THIMINGIMASTET ...ttt e e e b et e et e e et e e e e e b b et e e abe e e e e e e e e et e e e eanne e e e nanees 160
TIMINGSIAVE ...ttt e e ekt e ettt e e b et e e ea bt e eat et e e e et e e et e e e e aar e e 158
RiNG Break DiagnOSis FESUILcooiiiiiiiii ittt et ettt e e e et e e e et e e e e 162
RiNg Break Diagnosis StateScooiiiiiiiiiiii it 158, 160
R ettt et e e e e e e b e e e e e e e e e e e nnt e e et e e e e e e ntaeneeeeeaaareeaeeaaan See Run Length Encoding
L@ 1Y B 1] F= 1Y =Tl =] o1 52
Lo 10 (=Y gl =] o T T UPRPRT 52
[0 T =Y aTe 1 = g oo T |1 T IR USSP UERR 156
[(e Yo [O RTPPPRPR See Logical Node Address
[o1 P ERP SRR See Node Position Address
LR Yo | PO PSPPI SOOTPPPPPR 27
L (o T TR PPRRRT 27
L e ST PPRPRT 27
S
ST T gl o] L o =To (U= T PSPPSR 211
Seeking CommuUNICAtioN PartNerooi i s e e e See Central Registry
LYY g To [Yo o= T AN Lo | =Y TR 51
S T=Y o | 0 =T = (o I = o SR 60
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 240
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
Segmented TraNSTEIoi e e eneeas See Application Message Service
101 C=14 LT 1V T PP USROS 182
Selecting Array EIEMENTSooi ittt et e e et e e e e et e e e s et e e e anteeeeenee e e enneeeeeaneeeeeannteeeennees 91
ST a0 LT o = o T | SRR 48
Methods With SENAErHANAIE..............e e e e e e e et e e e e e e e e e e e e e e e e e e nnnneeeaaaean 48
Methods Without SenderHANAIEo et e e e e e e e e e e e e e eneeeeeaa e s 49
SEQUENCE MELNOM ...ttt e e bt e ettt e s e bt e e e et e e e bt e e et e et e 110
T To [T g LTl o o] o 1T oY OO SPOTPR 108
ST PSSP 66
ST (1= P TPRR 66
ST T To [0TSR 43
ST a7 A0S (== T oo SRR 76
T T (o (017 oS 131
ShutdOWN RESUIE ANGIYSISeeiiiiiie it e ettt e st e e et e s e e e st e e e e ste e e e nnnes 164
SHUIDOWNREASON ...ttt e ettt e e e e e oottt e e e e e e e aae e eeeaa e e e e nnnseeeeaaeaaanneseeeaaeeasansnseeesaannnnneaaaaeaan 164
1o g TTe I3 PP PSR OPPRR 72
S Tlo o TCTo [o] o o HU R PP PR OUPRR 72
ST (e 0 1=Te INAT] (o H PP PR UOPPPRR 72
SINGIE TFANSTEN ...t See Application Message Service
11 T4 131 SR 189
T[] (N E= T PRSP 189
Size-Prefixed Segmented TranSTer..o it et 182
ST 1Y PP 35
= T 0 = PRSP RRP 168
WOKEN TIMINGSIAVE........eeeiiiieiieiiieee et e ettt e e e e e st e e e e e e s e taeeeeeaee s e ssssaeeeaaesaassneeaeseasnntsaneaaeesannnses 123
ST 10T oT= T £= = TR 27,117
Handling By The NEtWOIK SEIVICEccoiiiieiiiiie ettt e et e e et e e e nte e e e ente e e e eneeeenneeeeaneeeeanns 185
L F= 1ol [T o I Lo T o = o QPP 186
SOUMCEACTIVITY ...ttt oo bt e e ettt e s b e e e e bt e et e e e e s b e e et et e e e e e e e e b b e e e e antee e e nane s 187
S To T (er= B T=T T g o] (o] o H O PO P PP PP PRPOPRP 187
S To 10T o714 (o TS PRSPPI 187
S To 10T ot V=T o1 TSP P U PRP 187
SPECITIC EXECULION ETTON ...ttt e e e e et e e e e e s e et e e eeeeeeeaastsaeeeesnsbaseeeaeeesasnnseeeaeaean 60
Speech Database DEVICE FBIOCKuoiiiiiiiiiiiie ettt et e e e e e e e e e e e e s e ata e e e e e e s eesnnaeeeaaeean 52
SpeeCh OULPUL DEVICE FBIOCK........cci ittt e e e e e et e e e e e e e et e e e e e e eabbeaeeeeeeeseaanreeeaaaaan 52
Speech ReCOGNItioN FBIOCKooiiiiiiiie ettt e e et e e e st e e e e nae e e st ee e e st e e e eanneeeeennees 52
YooY Yol €] =T SN 1Y (@ 1 I PRSP 210
1] © PP PPPPPPPNE See Sudden Signal Off
I =1 o] LT I o PRSPPI 122
S o TP 65
=L A 6 o PP 122
= 7o SRR 63
R T =TT SRR 65
SEAMRESUITACK ... ettt oottt e oo e ookttt et e e e e e et te e e eaaeee s e s e seeeeeaaeeaaaseeeeaeaaaanssseeeaaeeeaannnseeeaaaasn 63
State
=] (1T = Tot =Y Lo PP RRR 122
= (g1 =T = TeT =L@) PRSP RRP 122
o)1 gT= T @] o 1=T =1 1] o PRSP PRPP 127
States of the NEtINTEITACEoooi ettt e et e e st e e et e e e ennes 121
S e o oo Tor= 1N oo [To (o [L7 175
S (1 SRR 66
S D e, 69, 81
IS (Y= o RPN 74
(O70]0010] 53 QS 1 1= =1 1 F U SR O PP P TPUP PR 74
=TS, 1o 1o o 1SRRI 86
ST =T (o) SRR 74
SHMPIE SITEAMottt e e e e e ettt e e e e eeeaatbeeeeeeeeesaasbaeeeeaeeesaasssaae e e e nsnssneeaeesaasnsnneeaenean 74
RS- = OSSR 74
T (= . S o - 1 OO 75
o (U] =To IR (Y= o [SRR 74
(0] TS U1 (0T =To IS (== o SRR 74
Sreaming CRANNEL.........oii ettt e e et e et e s bt e et et e e e e e e b e e et 186
SreamiNg CONNECHIONooiiiiie ettt ettt e ettt e e ae e e e sab et e e e bt e e eabe e e e s bb e e e eaabeeeenanes 192
Y =] o] 1] 1 o To [P PRSP PRPP 194
Establishing DiscreteFrame ISOChIONOUSooiiiiiiiiii e e a e 196
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 241
MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
[RT=T 10TV o o O TP TSPOPPP T OPPPPPURP 195
Removing DiscreteFrame ISOCNIONOUSouiiiiiiiiii ettt e e 196
Y0 o1T oV 1313 o F TSP PRPPP 196

Y (Y= La a1 Te o £ c- I PRSP PPPRP 27, 33, 117
[BToT0] o) =X @7oTaaTa 4 F=T oo FS0 o F= 13 o |11 o Vo S 190
[T Ted o] o] gL TN E= 3 F= = PSPPI 118
SErEAMING SINK .ttt e e e e e ettt e e st e e e e ea et e e et et e s ne e e s b et e e et n e e e e e e e e e e s 189
SrEAMING SOUICEei ittt e e st e e e bt e et et e e e bt e e e st et e e eas et e bre e e e anb et e e snnneesneneeens 187
SYNCRIONOUS GALA. ...ttt et e e e bttt e s st e e e s bt e e e aab et e e neeeesneeeean 117

1o TP PSR OPPRR 73

10l [0 [T o ST o | o =1 O | PRSPPI 162

Y0 o] o] I1=T K] o= Tor ki ol o 2] (oYt (PP 53

SUPPIIEr SPECITIC FANGEee ittt e ettt e s See FktlD:Ranges

111 (e o PO OURPRP 79, 80

SWItChING Off NEIWOTK ... et b e e e et e e e e s b e e e e anbe e e e nnees 131

3V aTed a1 (o] a o103 F= | = OSSPSR 117

a1t D =T (o] PP TR UPRR 59

System ConfIQUration STALUSciiiiiiiiiiee e e e e e et e e e e e e e st b e e e e e e eatbraeeeeeeseatnnaeeaaaeaan 147

Y] (]l o To -=To PEPPR USSR 27

31 (=Y 4IRS T o TSR 27, 141
Yo (o L= o o PRSP 141
Configuration REQUEST ...ttt e e e et e et e e sre e e e e bt e e enne e e s nre e s 141
D TH] = (1] o PRSP RRR 143
ToaTo] oIS T E= 1YL= T PSPPSR PPPP 142
NON RESPONAING SIAVESeeiiiiiieiiitie ettt bt et e e st e e e as b et este e e s esbeeeeanbaeeenaes 141
REPOMING RESUILS ...ttt s st e e s e s e s s sesesnsnnnnnn 143
= (=T T PSP PP PP PPTPPPPP 142

SyStEM SPECIFIC FANGEcei ittt See FktlD:Ranges

SYSEEM STATTUD ...ttt et e e et e oo b e et e e e a bt e e e b et e e e e et e e e e e e b e e e e 135
= Yo 1 =T (=] PRSPPI 206
NetworkSlave

SYSTEM STALE ...ttt e bbbt e e a e et e e e b e e e et e
[0 @ PRSP URRR
O G TP T ST T T TP PP P PP P U PP PP PUPPPPTON

System States

RS (=T 4N 1 SR

SystemCoOmMMUNICATIONINIL........oiiiie et s e e e e et e e e s b e e e e aare e e e nanes 136

T

ASWET -+ +eeseeetteeauteesuteeauteesatee ettt e sateeeateeenteeeat e e oat e e eab et e ARt e oAbt e eaEe e en R et e R et oA R et e Rt e e R et oAt e e R ee e Rt enneeeReeenbeeeabeeenneeeaneeeneean 200

tBoundaryChange ... 201

tBypass .. 200

tCM_DeadIockPrev .. 201

Lo T T T PP U PP R PP PPN 123, 197

tDeIanygRequesﬂ ... 197

tDeIanygRequestZ ... 197

tDiag_Master_T1 .. 202

tDiag_Master_T2 .. 202

tDiag_Master_T3 .. 202

tDiag_Restan ... 202

tDiag_SignaI ... 202

tDiag_SIave ... 202

tDiangIave7T1 ... 202

EDHAG SHAIE -+ x+reesreemreeueeeueesiee s teeste e s eeeae e e ae e eaeeeh e e sh e e e e e ee £ e ee oo eee e e e e et eae e eRe e eRe e R e e R e e EeeReeeaeeean e ean e eaeeee e seeeeeeeee e e eaeeeaeene s 202

T DM ettt ettt e oottt e e e e e e e bt et e e e e e e e e b e e et e e e e e aanbneeeeaeee e e nnnreeeean See Time Division Multiplexing

L= 11 O 181, 183, 185, See Application Message Service

BT T o OO U PR OU P PPRTI 182, 183, 185

TEMPEIAtUIE AlBIT LEVEIS ...ttt ettt e et et e ee e e ee e e eeeeaeseeeeeaeaeaeaeaaaaaaaaaaaaaaaaaaaaaaaananes 171

Temporarily NOt AVaIlabIe EITOT.........oo it e et s e e e s e e e e areeeeeaes 60

LI S PSPPSR 79, 83

Time DiviSION MURIPIEXING ...ttt e e ettt e st e e eb bt e e s abe e e e sabeeeeabbeeenans 117

LI =T PSSR 197

Ll e R ool g 1S3 (=11 | PSRRI 197

Timing Definitions

Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 242

MOST Specification

Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
(C7=T =Y = | PSR PP 200
T T (E=1 7<= 11 (o] o USSP UPPPRE 197
Lo T =T (== 1 QI =T [T 1= L PRSPt 202
0] 10 (o011 o TSR RP 198
B 01T 1= T (= PP PERPSPE 28, 32
Lo T o =1 APPSO 191
THMINGSIAVE ...ttt e ekt e ettt oo bt e ook et e e e et e e er e e e e aa b et e e e e e e e ek e e e e e e e 32
BLLOCK =+ x e e e e e e mmmte e et e e e e e s stee et eee e e e e nteeeeeeeeeeaanaeeeeeeeeeeaanaeteeeeeeeeaansteeeeeeeeeaanteseeeeeeeaaantaeeeeeeaannnneeeaeeeaaannnrneeean 122, 123, 200
Lo T =1 Yo SRR 52
tProcessingDefauIM .. 65, 200
tProcessingDefauhz .. 65, 201
tPropeny .. 200
P SWItCNOMDIEIAY -+« ««+xsseeesrnreresannreeessnneesassseeeaasneeessmneeeeasseeeesnee e e nanne e e e asne e e s easne e e s nnneeesanneeeesneeeennnneeneneeeean 131, 166, 198
Transmission with high BandWidtheeiii e e e e e e 117
RESHAM -+« «++ = mx e e eeeaeeesmmtueeeeeaeeaaanuaeeeeeae e e e annseneeeeae e nnneeeeeeeeeeennteeeeeeeeeeaannseseeeeeeeaansnseeeeaeeensneeeeaeaaanns 131, 132, 166, 198
R EtrYSIUIDOWN « -+« e+ttt et et s e e b e e b e e e b e e h e e e s e e e he e sh b e e e Re e s a R e e e R e s R e e ene e e n e e s ne e re e e s 131, 133, 198
I Te e =Tl 1Y 1= g To T S O UO PP UPPR PP 109
ERUIDOWN ++ s s s teeeeeeeeesanteeeeeeeaesaasaneteeeeaeeaaaneseeeeaeeeeansseseeeeeeesansnsseeeeeeeeeaanseseeeeeeeeeannEaeseeeeeeeaaseeeaeeeeaannrreeeaeeeeaannneees 198
tShutDownWait ... 1 31 y 1 98
tS|aveShu[down ... 198
tSSO_Shutdown .. 198
tSSO_ShutDown .. 162
O FE TP PP PP PP OPPUPPRRP 131
UIMIOGK «++«+x+ -+ mstseeeeaeeesamuseeeeeeae e e anatseeeaaee e e aneaeeeeeaeee e nRnseeeeeeeeeannnteeeeeeeeeeaanEeeseeeeeesaannseeeeeeanseeneeaeeeeaaannnneeeaaaeann 167, 200
tWaitAfterNCE ... 200
tWaitAﬂerOvertempShutDown ... 1 72, 199
tWaitBeforeRescan .. 1 97
tWaitBeforeScan .. 1 97
tWaitForAnswer ... 200
tWaitForNext SEGMENE =+« + +x s x e e e e e et e et e et e e e e e e e e e e e e e e e E e e E e E e E e E e E e e ettt ras 201
tWaitForNextSegment ... 182
tWaitForProcessing1 .. 201
tWaitForProcessingZ .. 201
tWaitForF’roperty .. 200
tWai[Nodes .. 197
tWai[Suspend .. 1 33, 198
tWakeUp .. 197
1D o ST O PP PRI See Logical Node Address
1D o L SRR S See Node Position Address
U
U CrHiC@l v e eeeenneeeeeneeeeseeeeat e e e et e e e eaeeeeaaeeeata e e s eaa e e eaa e eeata e e ssnneaeenaaeeeannaeesnnaeernnaaeenas 170, See Undervoltage Management
ULOW e nerreeeeeeeee ettt e e e e e eeaae e e et e eeeeeeaabaeeeeaeee e nbaeeeeeeeeeaaantaeeeaaeeeaantaaeeaaeeaaaannrnaeaeans 170, See Undervoltage Management
UnDbIocking BroadCast............coiii i e e e e See Broadcast Address
(8 To e T | T=To I (o] o T=Ty 4 USRS UTPPRPPTN 86
UNdervoltage ManagEMENTuu i ittt s s e sesesesesnsnnnnnnnnnes 170
UNIQUE TANGE ...ttt ettt ettt ket e ettt oo bttt e e 1a bt e e ek et e e eab e e e e e abb e e e enbeesnt e e e e naneeeean See FktlD:Ranges
L o T TS UPRRRT 69
L 1 £ TSSO UPRPR 82
IS oy UL 1 (SRR OPRRR 82
UNIOCK (NEIWOTK) ...ttt ettt e e bt e ettt e e e e e et e e e eatne e e nnnees 165, 167
UNSIGNEA By ..ttt ettt ettt ettt et st e nnnnnnnnnnnnnnnn 72
L0 LTS o 7= 1 1o T Vo PRSPPI 72
L8 TS] T T T=To BT A o] o P PPRPR 72
\Y
V2= T (o L= =1L o PRSP RE 52
Virtual COMMUNICATIONooiiieeeiiee ettt e et e e e e e e ettt e e e e e e e s taeeeeeeeesantseaeeeeannnsseeeaeeeeannnnseeeaaansn 40
Voltage
(07 g1 Tor= o] =T [PSPPI 170
01V A o] =T [PPSR 170
RV o] 1 =T T3 I 1T NN 1= o) SRS 165
Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 243
MOST Specification

Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Waking Of The Network

Specification Document
Page 244

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 245

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Document History (Previous Revisions)

Changes MOST Specification 2V4-00 to MOST Specification 2V5-00
In general, “Section” refers to the current document, unless deletions are referred to. Sections that
were deleted and not replaced by others are marked strikethrough. If deleted sections were replaced
by others, details about the substitution can be found in the change description.

Change Section Changes
Ref.
2V5_001 General Optical Interface changed to Physical Interface.
2V5_002 General Removed old section 3.1.2 ‘Source Data Bypass’
MOST25 (up to MOST Specification Rev2.4) permitted that each MOST device could be
switched from active (source data bypass disabled) to passive (source data bypass enabled)
to reduce the source data delay in the network. Disabling the source data bypass in a
MOST25 device adds a delay of 2 network frames to streaming source data.
Therefore network delay compensation is useful for noise canceling, speech recognition, and
multi-channel sound applications.
The bypass to reduce the network delay, as well as the delay compensation is not necessary
when using MOST50. The effective delay is negligible (approx. 300 ns per node).
Starting with MOST Specification Rev2.5 all devices are assumed to be “active”.
This section was removed because the Source Data Bypass was not used with MOST25 and
it is no longer applicable for MOST50.
2V5_003 | General “light” changed to “modulated signal”
2V5_004 | General “FOT” changed to “Physical Interface”
2V5_005 | General Corrected grammar and spelling mistakes.
Fixed cross-references for diagrams that were moved to other chapters (3-13, 3-14, 3-15).
Unified timer names (e.g. occurrences of t_Diag_Slave were replaced by tpiagsiave)-
2V5_006 | General Unified spelling of MOST terms like NetworkMaster, ConnectionMaster, etc.
Replaced “NetOn event” with “Init Ready event”; For MOST50, the “System Lock flag” was
introduced.
2Vv5_007 General Harmonized terminology: Source data, streaming data, packet data vs.
synchronous/asynchronous data/area.
Substituted “all-bypass” with “bypass”.
2V5_008 | Glossary Added Glossary chapter for introduction and definition of frequently used terms.
2v5_009 |11 Revised introduction.
2V5_010 1.4 Rephrased remark about references to improve intelligibility.
Added HTTP 1.1 RFC to referenced documents.
2v5_011 15 Added speed grade and physical interface differentiations.
2V5 012 121141, Improved wording, eliminated redundancies.
21.1.1.2,
2.1.1.1.3,
21.2.3
2V5 013|214 Removed "60 bytes". Refer to the Boundary Descriptor rather than description here. Added
reference to bandwidth management section.
2v5_014 2.1.21 Added remark about support for different physical interfaces.
2v5_015 2211 Substituted description of “Slave, Controller, HMI” with a more precise explanation.
2V5_016 |225 Rephrased paragraph on notifications to promote clarity and consistent use of terminology.
2V5_017 226 Removed statement on use of functions that did not exist during development.
2V5 018 |229 Deleted sections on delegation, heredity and device hierarchy.
2V5 019 231 Removed duplicate introductory part (FBlock grouping and access) that is already contained
2.1.2.1.2 and referenced from this section.
2Vv5_020 2232 Changed reserved and proprietary FBlockID ranges, added table “Responsibilities for

FBlockID and FktID ranges”.
Added remark that Secondary Nodes apply to MOST25 only.
Added note that Supplier specific FBlocks are not reported in NetBlock.FBlocklIDs.Status.

Specification Document

Page 246

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification COOPERATION
Change Section Changes

Ref.

2v5_021 2234 Added the following: Supplier specific functions are not reported in <FBlockID>.FktIDs.Status.

Notification.Set(SetAll) does not affect Supplier specific functions while on the other hand
Notification.Set(ClearAll) clears Notification for Supplier specific functions.

Added table “Responsibilities for FBlockID and FktID ranges”

2V5_022 22336 Added description of the exceptional cases when wildcards can be used in replies.
Limited “Secondary Node” error to MOST25.

2v5_023 2235 Correction in OPType table (ErrorAck is not available for Properties and was removed).

2V5_024 2.2.3.5.1 Note added about segmented error messages.

Added ErrorCode and Errorinfo ranges for use by System Integrators and Suppliers. Added
remark that “Method Aborted” must be sent, even if a method is not executed anymore.

Moved example for sensor failure (Error Code 0x41) to section 2.3.12.

Added remark that “Segmentation Error” might also occur in single telegram context.
Added explanation of different ErrorCode and Errorinfo positions for Error and ErrorAck.
Differentiated between “Secondary Node” error for MOST25 and MOST50.

Removed reference to “generally broken device” for the “Device Malfunction” error.

2V5_ 025 |2.2.3.8.10 Added ranges for System Integrators and Suppliers in String identifier table.
Added string type SHIFT_JIS (code 0x07). Reserved range therefore now starts with 0x08.
2V5 026 |23.6.1 Substituted the abstract description of involved devices with an explanation of the setup for
the example.
2Vv5_027 224 Entire section: Reordered OPType tables so that OPTypes appear in order of OPType ID.

Removed common description (for methods and properties) from single parameter properties
section (2.2.4.1) and inserted it here. Also added Trigger Method, Sequence Method,
Sequence Property and Map to list of function classes.

2V5_ 028 |224.1.1 Added footnote that parameters marked boldface are explained in detail.

2Vv5_029 22412 Added new category “Data” to unit table. Added constants for Byte, kByte, and MByte.
Renamed category “Volume” to “Miscelleaneous”. Added “%” (percent).

Redefined category “Temperature” as “ Temperature and Pressure”. Added K, bar, and psi.
Redefined category “Speed” as “Speed and Acceleration”. Added cm/s, °/s, and m/s?.

2V5_030 22415 Added description of DataType parameter.

2V5_031 22417 Removed “Classified Stream” Parameter for Get OPType.

2V5 032 |224.241, Added function class Container to IntDesc Table.

22422 Removed reference to “internal OPTypes”.

2V5 033 |224.23 Entire Function Class DynamicArray section exchanged.

2V5 034 |224.24 Entire Function Class LongArray section exchanged.

2V5_ 035 |224.25 Added new section: Function Class Map.

2V5_036 |2.3.11.2.6 Corrected list of OPTypes in description of IntDescX.

2V5_ 037 |2243 Explained Sequence Method more precisely.

2V5_038 22432 Added AbortAck OPType and SenderHandle parameter, which was missing for some
OPTypes.

2V5 039 |2.3.12 Described double registration more precisely: No second entry is generated in the Notification
Matrix.

Added description of behavior for invalid target addresses and effect in combination with
groupcast addresses.

Added list of reactions on system events.

Added sensor failure example, previously under 2.3.2.5.1, and made it more generic (i.e.,
removed references to CAN).

2V5_040 |3.2.10.1 Removed 2™ paragraph.
Added bypass differentiation for oPhy and ePhy.
2V5_041 3.1.2 Removed 2™ paragraph.
2v5_ 042|313 Revised section.
2v5_043 3.1.3.1 Replaced section with modified MOST25 frame description and new MOST50 parts.
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 247

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION
Change Section Changes

Ref.

2V5_044 3.1.3.1.2 Added MOST50 Dynamic Boundary description, revised MOST25 description and added

comparison table.
Added note that streaming connections must be re-built after Boundary Descriptor change.

2V5_ 045 |3.1.3.3.1 New section heading is “Control Data Transport”.
Added minimum/maximum number of frames for MOST50.

2V5_046 |3.1.3.34 Renamed section to “Distinction between Source Data and Control Data”.
2V5_047 131335 Rephrased to match both MOST25 and MOST50.
2V5_048 131336 Changed heading from “Synchronous Area” to “Streaming Data”.
Added MOST50 description.
2V5_049 3.1.34.2 Changed heading from “Asynchronous (Packet Data) Area” to “Packet Data”.
Added note on limited applicability for MOST50.
2V5_050 3.1.34.2 Restructured and separated MOST25 part from general description.
Added paragraph on MOST50 frame rate and message rate.
2V5_051 3.1.4.1 Added address range 0x1000...0xFFFE “Reserved for future use”

Changed range 0x440...0x4FF to “Reserved”.

Removed last row in Address range table (“highest nibble reserved for future use”).
Substituted “Unique node address” with “Logical node address” for consistency.
Added distinction between dynamic and static logical node addresses.

2V5_052 3.1.4.3 New section ‘Automatic Allocation Mechanism’.

Merged former sections 3.1.5.4 ‘Automatic Channel Allocation’ and 3.1.5.5 ‘Detection of
Unused Channels’ into this section.

Added MOSTA50 description, separated from MOST25 part.

2V5_053 |3.2.1 Added description of Primary and Secondary Nodes concept.

Removed names of application states; they are not relevant to the specification.
2v5_054 |3.1.222 Revised the 2™ bullet.

Included more general description of Init Ready event and System Lock flag.
2V5_055 |3.1.222 Changed diagrams so that MOST25 and MOST50 are covered.
2V5_056 3.1.2.2.3 Moved and revised parts of sections ‘NetInterface Normal Operation’ and ‘Unlock’.

3.15.2

2V5 057 |3.1.2.24 Added ring break diagnosis results table.

Separated paragraph with applicability limited to MOST25.
Improved diagrams and distinguished between MOST25 and MOST50.
Removed remark on evaluation of signal during NetOn.NetInterfaceNormalOperation.

2v5 058 |323 Merged former sections 3.10 and 3.3.3.2.6 ‘Secondary Nodes' into this section.
Tagged entire section as “MOST25 only” because MOST50 does not support Secondary
Nodes.
2V5 059 |3.1.2.3.1 Replaced AbilityToWake by PermissionToWake and CapabilityToWake.
2V5 060 |3.15 Revised whole section ‘Error Management'.
2V5_061 3.1.55 Changed heading from ‘Low Voltage' to ‘Supply Voltage’
2V5_ 062 13156 Replaced “This recommendation is applicable...” with “This section applies...”
2V5_063 |3.256.2 Mentioned twaiafierovertempshutbown @S relevant timer for restart attempts.
Added note that the PowerMaster must support either re-start by its own decision or by user
request.
2V5_064 3.1.3.1.11, Removed parts that refer to a stored Central Registry.
3.1.3.3.2.3,
3.1.3.3.3,
3.1.3.3.3.2
2V5_065 |3.1.3.1.2.3 Deleted parts of the section (device failure handling).
2V5 066 |3.1.3.2 Added Shutdown.Start(Execute) transition from System State OK to NotOK.
Added footnote stating that logical node addresses will not be recalculated for that transition.
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 248

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2Vv5_067 3.1.3.3.3.2 Content of “Stable Network” section included here because it is was not relevant to
3.1.3.3.3.1, where a similar description is already referenced.

2V5_ 068 |3.1.3.354 Clarification: New InstID is set by using the logical node address.

2V5_069 |3.1.3.3.6.1 Added remark that Configuration.Status(NotOk) must be sent after ConnectionMaster
becomes unregistered.

2v5_070 3.3.3.6.3 Added remark that Configuration.Status(NewExt) with an empty list can only be sent after
completion of the scan.

2v5_071 3.3.3.8 Removed “Verification Scan” and “Missing Devices” sections because the concept of a stored
Central Registry was abandoned.

2V5_072 3.1.34.1.3 Changed description of conditions under which the Decentral Registry is cleared.

2v5_073 33444 Removed “Persistence of the Decentral Registry” section.

2V5_074 3.1.34.3.3 Added recommendation not to include FBlocks with InstIDs derived from position in
NetBlock.FlockIDs.Status or Central Registry.

2Vv5_ 075 |3.1.3437 Added note stating that the device also assumes System State NotOk when the NetInterface
enters normal operation.

2V5_076 3.1.34.38 Removed Configuration.Status(Invalid, <empty>) from the list of examples.

2V5 077 |3.1.34.3.15 Added description of reinitialization behavior regarding streaming/packet connections and
notifications.

2V5 078 322 Emphasized that the example where address ranges are assigned according to device
functionality relies on the static address range.
Added remark that group address can be stored optionally.
Improved the description of group address handling in case of device power loss.

2V5_079 323 Removed reference to “Register” to make the description more generic.

2V5_080 |34.4 Removed section on High Level Retries. These are implemented according to the System
Integrator’s own policy.
As a result of the deletion, previous section 3.4.5 “Basics for Automatic Adding of Device
Address” has become 3.4.4. Heading numbers of the following level 3 headings under 3.4
have decreased by one.

2V5_081 3252 Added remark that telegram length has to be exact.

2V5_ 082 |327.1 Revised section to a more general description regarding data and channels.

2V5_ 083 |3.27.2.1.1, Revised to better differentiate between MOST25 and MOSTS50.

327213

2Vv5_084 3.5.224 New section “Order of Streaming Channel Lists” created.

2V5 085 |3.27.22 Revised section.

2V5 086 |3.2.7.2.1.1 Added footnote about SourceConnect.
Added footnote that SourceActivity is optional.
Revised section to a more general description.

2V5_ 087 |3.26 More generalized description for MOST 25 priorities, previously under 3.6.1.1.

2V5_ 088 |3.2.6.1 Removed previous section 3.6.1 on “Direct Access to the MOST Network Interface
Controller”.
Revised section (previously 3.6.2) to a more general description regarding different types of
telegrams.

2V5 089 |3.6.1.1 Added examples for different telegram types.

2V5 090 |3.28 Former section 3.7 Managing Synchronous/Asynchronous Data removed. The content was
already covered under the ConnectionMaster section.
Previous section 3.8 “Connections” now resides under 3.7.

2V5_091 3.2.81 New section “Bandwidth Management”, containing description of Boundary Descriptor
adjustment.

2V5_092 32822 Specified that a source shall perform 20 retries before Allocate is considered failed by the
ConnectionMaster.

2V5_ 093 |37.24.2 Slightly restructured and rephrased.

2v5_094 |3.2.8.2.1 Revised.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 249

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change
Ref.

Section

Changes

2V5_095

3.2.9

Updated description of timer tgypass-

Changed description of tsjaveshutdown 10 improve intelligibility.
Revised description of tDelanygRequest1 and tsiaveshutdown-

Added timer tWaitAfterOvertempShu(Downy tWailForNextSegment and tMngesponseu
Renamed tpiag_Light tO tpiag_signal-

Added twaitrorproperty NOte on overwriting default maximum value by FBlocks.

2V5_096

3.2.10

Replaced entire chapter with content from WG Phys. Layer.

2V5_097

5.1.1

Previous section 5.1.1 “System Startup when a Central Registry is Available” removed
because the concept of a stored Central Registry has been abandoned.

Section 5.1.1 now contains “Flow of System Initialization Process by the NetworkMaster”.
Replaced “old registry” with “existing registry” in Figure A-5-2.

2V5_098

Appendix B

Removed previous Appendix B “Synchronous Data Types”. The contained information is now
part of the “MOST Multimedia Streaming Specification”.

Examples for typical data rates for MOST25 and MOST50 are now contained in Appendix B.

2V5_099

Document
History

Added remark to emphasize that section references are based on the current document.
Moved document history for versions prior to 2.5 to the end of the document.

Changes MOST Specification 2V3-00 to MOST Specification 2V4-00

Change Section Changes
Ref.
2V4_001 General Old chapter 4.2.2 deleted.
2V4_002 General Old chapter 4.2.3 deleted.
2V4_003 21.1.11 Removed sentence about asynchronous channel administration.
2V4_004 2.1.21 Changed description for CD player.
2V4_005 228 System Service changed to Network Service.
2V4_006 2235 Complemented table.
2V4_007 22351 New wording for Segmentation error with Error Info 0x04.
2V4_008 22351 Clarified ErrorCode 0x01.
2V4 009 2.2.3.5.1 Reserved error code for supplier specific error codes.
2V4_010 2.2.3.51 Improved language
2V4 011 2.2.3.5.1 For clarification, ErrorCode 0x02 is also explained
2V4 012 2.2.3.5.1 Error codes removed 0x08 and 0x09 removed from paragraph “Application error — Parameter
error”.
2V4_013 22351 Added examples to ‘Syntax error’ and ‘Error secondary node’.
2V4_014 22351 Updated figure 2-15.
2V4_015 22355 Added timer twaitrorproperty-
2V4_016 22357 Added timer twaitrorproperty-
2V4_ 017 2.2.3.5.10 Changed description for Abort and AbortAck.
2.2.3.5.11
2V4_018 2.2.3.6 Added data type short stream.
2.2.3.8.13
2V4_019 2.2.3.8.2 Representation of Boolean Data Types
2V4_020 0 Clarification that there is no coding Byte before the string and the string is always coded in
ASCII.
2V4_021 221 InstID changed from 0 to 1.
222
2V4_022 2.3.11.1 Added OPTypes SetGet and Get to function classes Switch and Number in table.

Specification Document

Page 250

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V4 023 22421 Updated tables that describe IntDesc.
22422
2V4 024 22423 Deleted El4 in example.
2V4 025 22424 Completed tables with lost data.
2V4_026 224242 Changed wording for ArrayWindow.
2V4_027 22432 Updated parameter list for Interface in table.
2V4_028 2.3.12 Increased description of deletion of entries.
2V4_029 2.3.12 Notification changed to FktID.
2V4_030 3.2.10.1 Section name Electrical Bypass changed to only Bypass.
2V4_031 3.2.10.1 Changed description for electrical bypass.
2V4 032 3.1.4.1 Reserved device address 0xOFFO as optional for debug purpose.
2V4_033 3.1.3.34 Removal of MOST transceiver register references.
3.1.222
3.1.223
3.1.224
3.26
6
2V4 034 3.1.2.2.2 Replaced tyaster aNd tgiave With teonsig-
3.1.5.1.2
2V4_035 3.1.22.4 Replaced t_off by t_restart in Figure 3-14.
2V4_036 3.1.2.3 Changed description.
2V4_037 3.1.23.2 Added timer tsjaveshutdown-
3.29
2V4_038 3.1.2.3.3.1 Increased description for “Request Stage”.
2V4_039 3.1.5.3 New definition of NCE.
2V4_040 3.1.3.2.2 Wording changed in bullet number 4.
2V4_041 3.1.3.2.2 The Connection Manager must not de-allocate channels.
2V4_042 3.1.3.3.1.2 Changed timer twainsterneton tO twaitseforescan @nd extended timer to cover
33334 Configuration.Status(NotOk).
3.2.9
2V4_043 3.1.3.34.7 Changed description.
2V4_044 3.1.3.3.6.3 Changed the headline.
2V4_045 3.1.3.3.6.3 NWM should send a Config.New with an empty list when a network scan that was triggered by
an NCE could not detect any changes to the registry.
2V4 046 3.1.3.4.3.13 Chapter updated.
2V4 047 3.2.2 Group Address part extended.
2V4_048 3.2.2 Four changed to five.
2V4_049 3.23 Reduced chapter about control message priority.
2V4_050 3.5.21 Improved language.
2V4_051 3.2.7.2.1 Channel lists must always be in ascending order.
2V4_052 3.2.7.2.11 Increased requirements for Connection Manager.
2V4_053 3.2.7.21.3 Sink changed to source.
2V4 054 3.7 Deleted part that describes Boundary.
2V4_055 3.2.8.2.1 InstID changed to 1.
2V4_056 3.2.8.2.1 Extended parameter lists.
2V4_057 3.2.8.2.2 ResultAck changed to Result.
2V4_058 3.2.9 Added new timer twairorroperty-

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 251

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V4_059 3.10 A third scenario added, where primary node handles Ctrl + Stream and the secondary node
handles Packet.

2V4_060 3.10.2 Extended for clarification.

Changes MOST Specification 2V2-00 to MOST Specification 2V3-00

Change Section Changes

Ref.

2V3_001 General NetServices replaced by Network Service

2V3_002 General MOST Transceiver replaced by MOST Network Interface Controller

2V3 003 General Function Catalog replaced by FBlock Specification

2V3 004 General Differentiation between all-bypass and source data bypass.

2V3 005 General Old chapter 3.1.5.2 removed.

2V3_006 General Old chapter 3.1.5.7 removed

2V3 007 General Old chapter 3.3 moved to 3.4 and some contents distributed to other chapters.

2V3 008 General 3.3.8 “Direct Access to 0S8104” and 3.3.9 “Remote Control” were removed.

2V3_009 1 Chapter reworked, new document structure.

2V3_010 21.2 Connection Manager introduced.

2V3_011 214 MOSTSet Boundary removed

2V3_012 228 Is now MOST Network Service overview. Picture changed.

2V3_013 2.3.2.2 Connection Master not mandatory. FBlock Enhanced Testability added.

2V3_014 23.23 Description of InstlDs improved. Section on handling InstID of FBlock Enhanced Testability
added.

2V3 015 2.3.2.3.2 Added Note: Wildcard must not be used for InstlD assignment.

2V3 016 23234 InstID NWM added

2V3_017 2.3.25.1 Error codes 0x08 and 0x09 deprecated. Application notified when segmentation error occurs.
No ErrorAck on segmentation errors.

2V3_018 2.3.253 Added t_ProcessingDefault1, t_ProcessingDefault2, t_WaitForProcessing1,
t WaitForProcessing2 to text and pictures.

2V3_019 2.3.25.5 teroperty iNtroduced.

2V3 020 2.3.25.7 teroperty iNtroduced.

2V3 021 2.3.2.7 Reference to MOST High removed.

2V3 022 2.3.2.7.10 DAB Charsets added.

2V3_023 2.3.8 FBlock Enhanced Testability does not need to be listed.

2V3 024 2.3.11.2 Overview table added.

2V3 025 2.3.11.24.2 Reference to Layer 2 of NetService removed.

2V3 026 2.3.11.2.5 Function Class Sequence Property added.

2V3 027 2.3.11.3 Overview table added.

2V3 028 2.3.11.3.2 Function Class Sequence Method added.

2V3_029 2.3.12 Error handling extended.

2V3 030 3.1.1 Changed “Rx pin” to “Tx pin”

2V3_031 3.1.4.4.2 Remote Access removed. Transceiver register reference removed. Standalone mode
removed. Remote GetSource added.

2V3 032 3.1.5.1 SAl removed. Table changed.

2V3 033 3.1.5.2 Standalone mode removed.

2V3 034 3.1.5.3 Transceiver specifics removed

2V3 035 3.1.5.4 Transceiver specifics removed. Time estimation removed.

2V3_036 3.1.5.8 Rewritten without transceiver registers.

2V3_037 3222 As soon as the initialization of the MOST Network Interface Controller starts, the logical node
address in the MOST Network Interface Controller has to be set to OxOFFE.

2Vv3_038 3.2.2 Setting logical node address in MOST Network Interface Controller has been added to Figure
3-4, Figure 3-5, and Figure 3-6. Note that Figure 3-5 and have switched places from previous
version.

2V3 039 3.2.2.4 t Diag_Start and t Diag_Restart added

2V3 040 3.2.2.4 Figure 3-10 and Figure 3-12, Diagnosis Normal Shut Down replaced by Diagnosis Ready.

2V3_041 3.24 Power Management section reworked. The Shutdown procedure has been divided into
Network Shutdown and Device Shutdown. The Device Shutdown procedure is new.

2V3_042 3.25 Configuration.Status NotOk added as a case for securing synchronous data. Also changed so

that sinks have to mute in case of an error. Not sources.

Specification Document

Page 252

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V3 043 3.2.54 New definition of Network Change Event.

2V3_044 3.25.5 Note rewritten and maximum changed to 11 Bytes. NWM has InstID changed to 1

2V3 045 3.2.5.7 Failure of a Network Slave Device added.

2V3_046 3.25.8 Figure 3-17, Application may PowerOff in “Device Standby”. Voltage levels are no longer
exact. Application removed from power states. Note added.

2V3_047 3.3 Network Management section is new. This section replaces section 3.2.3 and 3.3.5 of MOST
Specification V2.2.

2V3 048 3.3.3.34 Introduced a new timer twaitatterNeton-

2V3 049 3.34.3.2 Deleted : The exception...(rest of paragraph)

2V3 050 3.3.4.3.8 Determination of System State clarified

2V3 051 3.4 This is old chapter 3.3

2V3 052 3.4.1 Address descriptions changed and Internal Node Communication Address added.

2V3 053 3.4.5 Section contains an example of Basics For Automatic Adding of Physical Address. This
section is compiled from parts of section 3.3.5 of MOST Specification V2.2.

2V3 054 3.5 Chapter reworked and SourceConnect added. Mute was changed to SetGet.

2V3 055 3.5.1 NetServices routines removed.

2V3 056 3.5.2.1 Added remark that the SourceHandles function should only be used for debugging purposes.

2V3 057 3.5.2.2 Added that sources and sinks are numbered in ascending order starting from 1.

2V3 058 3.6.2.1 Ethernet Frames replaced by MAMAC Packets.

2V3 059 3.7 Boundary is now SetGet and NWM has InstID 1 in example.

2V3 060 3.8 Reworked. t_DeadlockPrev added. t_CleanChannels added and RemoteGetSource
mentioned in Supervising Synchronous Connections.

2V3 061 3.8.1.4 Reworked supervising synchronous connections

2V3 062 3.9 New Timing Definition table.

2V3 063 4.1 Picture is only an example solution.

2V3 064 4.2.2 Table removed.

2V3 065 4.3 Standalone mode removed.

2V3 066 4.6 Absolute power values removed from the picture. Relative values introduced. SwitchToPower
detector is optional.

2V3 067 4.7 Absolute power values replaced by relative values. Application changed to device.

2V3 068 Appendix A: Added. Contains information from old chapter 3.4.

Network
Initialization

Changes MOST Specification 2V1-00 to MOST Specification 2V2-00

Change Section Changes
Ref.
2V2_001 Bibliography - Added [9] MAMAC Specification.
2V2_002 1 - Figure 1-1 updated with MAMAC. Function catalog has been split
2V2_003 2.2.2 - Events are only generated if requested.
2V2_004 2.2.4.2 - SetResult changed to SetGet. Incrementing/decrementing added to the table.
2V2_005 2.2.10.1 - Removed a table and the surrounding text.
2V2_006 2.3.2.2 - Added Mandatory to Table2-2. Added the following function blocks to Table 2-2 and
Table 2-3:
Handsfree Processor: 0x28
DVD Video Player: 0x34
TMC Decoder: 0x53
Bluetooth: 0x54
2V2_007 2323 - Changed default instance ID to 0x01. Removed two sentences that had to do with the old
way the instance ids worked.
2V2_008 2324 - Added NotificationCheck.
2V2_009 23.251 - Re-numbered the list correctly. Added text to Method Aborted
2V2_010 2.3.2.5.2 - Removed Result and Processing from the headline. Rephrased the text.
2vV2_011 23253 - Figure 2-16 and Figure 2-17 now use “yes” and “no”.
2V2_ 012 2.3.257 - Added information about the Get part of SetGet.
2V2_013 2.3.259 - Added Status, Error to the headline.
2V2_014 2.3.25.10 - Added Error/ErrorAck to the headlines.
2.3.25.11

- Added references to Method Aborted.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 253

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V2_015 23.27 - Classified stream added. Also a note about MOST High was added.
2V2_016 2.3.2.7 - Values of example 2 corrected. The first sentence on the same page was re-written.
2vV2_017 2.3.2.7.10 - RDS character set added and a warning about RDS strings size.
- Also added warning that character sets can’t contain null characters.
- Added example of empty RDS string.
- Added Reserved and Proprietary string types.
- Added Unicode to the UTF8 lines and UTF16 to the Unicode lines.
- Removed the ASCII code type.
2vV2_018 2.3.2.7.12 - Classified Stream type added.
2V2_019 2.34 - Removed the paragraph that provided information about Protocol Catalogs in OASIS
tools.
2V2_020 235 - Changed instance ID to 1. Since default instance ID was changed.
2v2_021 231141 - Changed to a table.
- Added Channel Type and Reserved bitfields.
- Added that Unicode is not ASCIl compatible
- Added Table 2-9 and descriptions about the different modes that can be set through
Channel Type.
- Added Function Class Container (0x1B)
- Changed 0x1A to BitSet
2V2_022 2.3.11.1.2 - Changed mils to miles in Table 2-10.
2V2_023 231117 - Added Function Class Container.
2V2_024 2.3.11.2.3 - Changed <> to = in front of “Ox01not allowed, no access to Tag”
2.3.11.24.2
2V2_ 025 2311243 - Clarified that parameters are not used in mode Top and Bottom.
- Clarified what happens when an invalid position of the ArrayWindow is reached.
2V2_026 23.11.24.4 - Added Re-synchronization of ArrayWindows.
2v2_027 2.3.12 - Removed the requirement of three entries.
2V2_028 3.2.23 - Added text and Figure 3-7 to better explain how devices behave when unlocks occur.
2V2_029 3224 - Changed timer from tiock tO tpiag Lock
2V2_030 3.2.31 - Added chapter about Configuration Status Events
2V2_031 3.23.2 - Added information about tgypass Which is set to 200ms.
- Changed Figure 3-14 to include a new timer.
2V2_032 3.2.3.3 - Removed the requirement to store the Decentral Registry in buffered RAM.
2V2_033 3.2.51 - Added information about electrical wakeups.
2V2_034 3.2.6.3 - Added a sentence to explain that the behavior applies to all sinks.
2V2_035 3.26.4 - Added that the status message may not be sent before the NetworkMaster has asked
the device.
2V2_036 3.2.6.6 - Removed the Power Save Mode and altered the text to fit the new structure.
- Figure 3-21 was redrawn.
2V2_037 3.2.7 - Included a chapter about Over-Temperature Management.
2V2_038 3.3.1 - Changed the text about Node Position Address.
2V2_039 3.3.5.3 - Changed a “nein” to "no” in Figure 3-23.
2V2_040 3.3.6 - Added a “yes” to Figure 3-24.
2V2_041 3.3.7.2 - Added a maximum length to segmented transfers.
2V2_042 3.41.1.21 - Changed the second parameter to RequiredChannels.
- Added that allocation must not be done partially.
2V2_043 34113 - Added “Handling of Handling of Double (De)/Allocate/(Dis)Connect Commands”
2V2_044 3.5.2.1 - Added TellD “B” for MAMAC48
2V2_045 3.5.3 - Removed chapter about MAMAC and included a short overview and a reference to [9].
2V2_046 3.71.2 - Point 5 was updated to RequiredChannels. Point 7 was removed.

Specification Document

Page 254

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V2 047 3.8 - tconfig changed to 2000ms.
- - tgypass added.

- twaitaternce Changed to 200ms, and it is now a minimum

- Added the Sentence “This time also applies to a shutdown after a slave-wakeup.” to
tShutDown-

- trestart changed to 300 ms or MPR*15 ms. Added “The 300ms minimum applies to
networks containing up to 20 devices. For larger networks the time can be calculated as
follows: trestart > MPR * 15ms”.

- tpelaycigrequest added to complement the Figure 3-14.

2V2_048 5 - This chapter was removed.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 255

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification 2V0-01 to MOST Specification 2V1-00

Change
Ref.

Section

Changes

2V1_001

- Added paragraph introducing object oriented approach

2V1_002

2322

- FBlocklDs “System Specific” and “Supplier Specific’ added (WG-DA 2000-09-12)

2V1_003

2324

- FktlDs “System Specific” and “Supplier Specific’ added (WG-DA 2000-09-12)

- Handling of proprietary Functions/ Function Blocks by controller added
(WG-DA 2000-02-09)

2V1_004

2322

- Speech output Device added (WG-DA 2000-09-12)

- Speech Database Device added (WG-DA 2000-09-12)

- Corrected FBlocklDs DAB Tuner (0x43) and TMCTuner (0x41)
- FBlock Satellite Radio (0x44) added

- FBlock HeadphoneAmplifier (0x23) added

- FBlock Auxiliarylnput added (0x24)

- FBlock Microphonelnput added (0x26)

- FBlock (0x51) "Telephone mobile" replaced by "Phonebook"

- FBlock Router added (0x8) (WG-DA 2001-01-17)

2V1_005

2.3.2.5.1

- Specification of “Error Secondary node” revised

- Specification of “Error Device Malfunction” added (WG-DA 2000-05-04)

- Specification of “Segmentation Error” added (WG-DA 2000-09-12)

- Hint to avoiding “infinite loops” added

- "No error replies allowed in case of reception of broadcasted messages" added
- Specification of “ Error Method Aborted” added (WG-DA 2000-11-22)

- Added remark that methods in general should be aborted only by that application, which
has started the method.

- Code 0x05 and 0x06: Returning of the value of first incorrect parameter is optional
(WG-DA 2001-01-17).

2V1_006

2325

- Renamed StartAck -> StartResultAck (0x6) and adapted every occurrence in
specification document.

- Added AbortAck (0x7)
- Added New StartAck (0x8)

2V1_007

23254

- Added New StartAck (0x8)

2V1_008

2.3.2.5.11

- Added AbortAck (0x7)

2V1_009

2326

- Maximum value for LENGTH changed to 65535

2V1_010

2327

- Encoding of signed values added

- Codes for ISO 8859/15 8 bit and UTF8 added

- Maximum value for LENGTH changed to 65535
- Examples enhanced

- Data type Boolean revised

- Data type BitField added

- Description of String enhanced (Null Strings)

2V1_011

23253

- Flow chart “Flow for handling communication of methods (controller’s side)’. Error
handling for “Timeout = YES” added

- Changing of timeout (100ms) for "PROCESSING"

2V1_012

2.3.11.1.2

- Specification of NSteps extended
- Units for Speed (m/s), Angle and Pixel added

2V1_013

231114

- Interpretation of Increment and Decrement added

2V1_014

226

- Handling of dynamic changes of Function Interfaces through Notification added

2V1_015

General

- MMI replaced by HMI (Human Machine Interface)

2V1_016

3.9

- Description of Secondary Node added

2V1_017

3.2.6.8

- Section completely removed, due to an overlapping with the MOST Function Catalog

Specification Document

Page 256

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V1_018 3.2 - Generally revised
3.2.2 - Figure 3-3 “Diagnosis Normal Shutdown” changed to “Diagnosis Ready”
3.2.21 - Table 3-6 changed
3.2.3.2 - “Network Slave” removed,
“Requesting System Configuration — Network Master” added
3.2.3.3 - “Network Master” removed,
“Requesting System Configuration — Network Slave” added
2V1_019 3.24 - Dynamic Behavior of Secondary Nodes added
2V1_020 3.264 - "Failure Of A Function Block" added
2V1_021 3.8 - Timeout trunime added
- Timeout tegstaus changed
- Timeout tanswer changed
- Timeout tpiag master Changed
- Timeout tpiag_siave changed
2V1_022 2.3.12 - Error handling in case of property failure added
- Notification of Function Interface (FI) added (WG-DA 2001-01-17)
- Error handling added, in case of values in property not yet available during subscription
(WG-DA 2001-01-17)
2V1_023 2.3.2.2 - Note about FBlockID OxFF added
2V1_024 2.311.24.2 - Added parameters CurrentSize and AbsolutPosition to description of ArrayWindows
- Added PositionTag, and descriptions for PositionTag and WindowSize
(WG-DA 2001-01-17)
2V1_025 2.3.25.10 - Added remark that methods in general should be aborted only by that application, which
has started the method.
2V1_026 2.3.2.5.11 - Function Class BoolField added
- Function Class BitField added
- Description of parameter "OPType" enhanced
2V1_027 231141 - Start of Ring Break Diagnosis revised
2V1_028 3.2.5.1 - Note about wakeup methods added
2V1_029 46,4.7 - Voltage levels and Implementation of Power Supply Area are no longer normative.
2V1_030 General - Eithernet replaced by Ethernet
2V1_031 3.22.2 - Behavior of a waking Slave device (Figure 3-6)
2V1_032 3.5.3 - “MOST Asynchronous Medium Access Control (MAMAC)” added
2V1_033 3.4.3.3 - Equation for delay compensation revised (Tsource < TNode)
2V1_034 424 - Hint Added. Description of pig tail is only one of the possible implementations.
2V1_035 3.4.1.1.21 - Method SourceActivity added
2V1_036 3.2.6 - General handling of errors. Synch. connections are removed in case of Fatal Errors.

Specification Document

© Copyright 1999 - 2010 MOST Cooperation
Page 257

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification 2V0-00 to MOST Specification 2V0-01

Change | Section Changes
Ref.
2V01_001 | General Document no longer specified as “Confidential”; Legal Notice inserted.

Changes MOST Specification 1V0 to MOST Specification 2V0

Change Section Changes
Ref.
2V0_001 3.3.1 Equation modified; Startup address OxFFFF
2V0_002 2.1.2/225 Section 2.2.5 moved to 2.2.2
2V0_003 2.2.1 NetBlock “functions related to the entire device.”
2V0_004 2322 Table 2-5: Proprietary FBlocklDs 0xFO..0xFE
2V0_005 2.3.2.3 Completely revised
2V0_006 2324 Minor modification
2Vv0_007 2.3.25 Completely revised
2V0_008 2.3.26 Completely revised
2V0_009 2327 Boolfield introduced; Definition of STRING expanded, Examples for Exponent, Step and Unit
2V0_010 2.3.5 Minor modification
2V0_011 2.3.6 Distinguishing Properties and Methods; Communication with routing revised
2V0_012 2.3.10 Transmitting function interfaces. Introduced.
2V0 013 | 2.3.11 Function Classes (completely revised)
2V0_014 2.3.12 Notification for array properties; Notification re-build at system start
2V0_015 3.2.2.2 Error_t_slave replaced by Error_NSInit_Timeout
2V0_016 3.223 Completely revised
2V0_017 3.2.24 Completely revised
2V0_018 3.2.3.2 Completely revised
2V0_019 3.2.3.2 Completely revised
2V0_020 3.2.51 Completely revised
2V0_021 3.2.6 General rules added
2V0_022 3.2.6.1 Completely revised
2V0_023 3.2.6 Completely revised
2V0_024 3.353 - Table 3-14;

- sample for receiving logical node address;

- section below Table 3-15
2V0_025 3.3.7.2 TellDs for MOST High Protocol removed
2V0_026 3.3.8.1 Figure 3-25; Set STX bit added
2V0_027 34.1.1.1 Replaced “.0.” by “.Pos.”
2V0_028 3.4.11.2 Completely revised
2V0_029 3.4.3.3 Equations
2V0_030 3.5.2.1 TellD and TelLen changed; One ID reserved for Ethernet frames
2V0_031 3.7.1.1 Revised (OPTypes)
2V0_032 3.71.2 Revised (OPTypes)
2V0_033 3.7.1.3 Revised (OPTypes)
2V0_034 3.14.2 Table 3-1
2V0_035 3.1.4.22 Revised
2V0_036 3.1.4.3.1 Handling of Isochronous data removed

Specification Document

Page 258

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V0_037 3.1.4.3.6 Table 3-2; Table 3-3 added, Handling of Isochronous data removed
2Vv0_038 3.1.4.4.2 Completely revised

2V0_039 4.1 Figure 4-1

2V0_040 421 Completely revised

2V0_041 422 Revised

2V0_042 424 Completely revised

2V0_043 4.3 Revised

2V0_044 45 Completely revised

2V0_045 4.6 Completely revised

2V0_046 4.7 Completely revised

2V0_047 — General changes in Structure:

- Chapter 2.1 removed, contents included within 2.2.9

- Detailed descriptions of Control Channel (2.2) moved to 3.3
- Introduction of CMS/ AMS moved to 3.3.7

- Chapters 2.6 up to 2.12 moved to 3.2 up to 3.8

- Chapter 2.5 and 2.13 moved to Chapter 5

Specification Document

© Copyright 1999 - 2010 MOST Cooperation

MOST Specification
Rev.3.0E2 07/2010

Page 259

MOST® MOST

Specification CODPERATION

Notes:

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 260

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION
Notes:
Specification Document © Copyright 1999 - 2010 MOST Cooperation

Page 261

MOST Specification
Rev.3.0E2 07/2010

MOST® MOST

Specification CODPERATION

Notes:

Specification Document © Copyright 1999 - 2010 MOST Cooperation
Page 262

MOST Specification
Rev.3.0E2 07/2010

	Glossary
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 MOST Document Structure
	1.4 References
	1.5 Overview

	2 Application Section
	2.1 Application Layer Service Specification
	2.1.1 Basic Principles of MOST
	2.1.1.1 Overview of Data Transport
	2.1.1.1.1 Control Channel
	2.1.1.1.2 Streaming Data
	2.1.1.1.3 Packet Data Channel

	2.1.2 Device Model
	2.1.2.1 Function Block
	2.1.2.1.1 Slave, Controller, HMI
	2.1.2.1.2 First Introduction to MOST Functions

	2.1.2.2 Functions
	2.1.2.3 Methods
	2.1.2.4 Properties
	2.1.2.4.1 Setting a Property
	2.1.2.4.2 Reading a Property

	2.1.2.5 Events
	2.1.2.6 Addressing MOST Functions

	2.2 Application Layer Protocol Specification
	2.2.1 Application Messages in a MOST Network (Introduction)
	2.2.2 Controller / Slave Communication
	2.2.2.1 Communication with Properties Using Shadows
	2.2.2.2 Communication with Methods
	2.2.2.2.1 Using Methods with SenderHandle
	2.2.2.2.2 Using Methods without SenderHandle

	2.2.3 Structure of MOST Messages
	2.2.3.1 DeviceID
	2.2.3.1.1 Basics for Automatic Adding of Device Addresses

	2.2.3.2 FBlockID
	2.2.3.2.1 Handling of Supplier Specific FBlocks

	2.2.3.3 InstID
	2.2.3.3.1 Uniqueness of Functional Addresses
	2.2.3.3.2 Assigning InstID
	2.2.3.3.3 InstID of NetBlock
	2.2.3.3.4 InstID of NetworkMaster
	2.2.3.3.5 InstID of FBlock EnhancedTestability
	2.2.3.3.6 InstID Wildcards

	2.2.3.4 FktID
	2.2.3.5 OPType
	2.2.3.5.1 Error
	2.2.3.5.2 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck
	2.2.3.5.3 Start, Error
	2.2.3.5.4 StartResult, Result, Processing, Error
	2.2.3.5.5 Get, Status, Error
	2.2.3.5.6 Set, Status, Error
	2.2.3.5.7 SetGet, Status, Error
	2.2.3.5.8 GetInterface, Interface, Error
	2.2.3.5.9 Increment and Decrement, Status, Error
	2.2.3.5.10 Abort, Error
	2.2.3.5.11 AbortAck, ErrorAck

	2.2.3.6 Function Formats in Documentation
	2.2.3.7 Length
	2.2.3.8 Data and Basic Data Types
	2.2.3.8.1 Boolean
	2.2.3.8.2 BitField
	2.2.3.8.3 Enum
	2.2.3.8.4 Unsigned Byte
	2.2.3.8.5 Signed Byte
	2.2.3.8.6 Unsigned Word
	2.2.3.8.7 Signed Word
	2.2.3.8.8 Unsigned Long
	2.2.3.8.9 Signed Long
	2.2.3.8.10 String
	2.2.3.8.11 Stream
	2.2.3.8.11.1 Stream Cases
	2.2.3.8.11.2 Stream Signals

	2.2.3.8.12 Classified Stream
	2.2.3.8.13 Short Stream

	2.2.4 Function Classes
	2.2.4.1 Properties with a Single Parameter
	2.2.4.1.1 Function Class Switch
	2.2.4.1.2 Function Class Number
	2.2.4.1.3 Function Class Text
	2.2.4.1.4 Function Class Enumeration
	2.2.4.1.5 Function Class BoolField
	2.2.4.1.6 Function Class BitSet
	2.2.4.1.7 Function Class Container

	2.2.4.2 Properties with Multiple Parameters
	2.2.4.2.1 Function Class Record
	2.2.4.2.2 Function Class Array
	2.2.4.2.3 Function Class DynamicArray
	2.2.4.2.4 Function Class LongArray
	2.2.4.2.4.1 MotherArray
	2.2.4.2.4.2 ArrayWindow
	2.2.4.2.4.3 Positioning an ArrayWindow on a MotherArray
	2.2.4.2.4.4 Re-Synchronization of ArrayWindows

	2.2.4.2.5 Function Class Map
	2.2.4.2.6 Function Class Sequence Property

	2.2.4.3 Function Classes for Methods
	2.2.4.3.1 Function Class Trigger Method
	2.2.4.3.2 Function Class Sequence Method

	2.2.5 Handling Message Notification

	3 Network Section
	3.1 Network Layer Service Specification
	3.1.1 MOST Data
	3.1.1.1 Control Data
	3.1.1.2 Source Data
	3.1.1.3 Distinction between Source Data and Control Data
	3.1.1.4 Differentiating Streaming Data and Packet Data
	3.1.1.5 Synchronous Data
	3.1.1.6 Isochronous Data
	3.1.1.7 Packet Data

	3.1.2 Dynamic Behavior of a Device
	3.1.2.1 Overview
	3.1.2.2 NetInterface
	3.1.2.2.1 NetInterface Off
	3.1.2.2.2 NetInterface Init
	3.1.2.2.3 NetInterface Normal Operation
	3.1.2.2.4 NetInterface Ring Break Diagnosis
	3.1.2.2.5 NetInterface Diagnosis Result

	3.1.2.3 Power Management
	3.1.2.3.1 Waking of the Network
	3.1.2.3.2 Network Shutdown
	3.1.2.3.3 Device Shutdown
	3.1.2.3.3.1 Performing Device Shutdown
	3.1.2.3.3.2 Waking from Device Shutdown
	3.1.2.3.3.3 Persistence of Device Shutdown
	3.1.2.3.3.4 Response when Device Shutdown is Unsupported

	3.1.3 Network Management
	3.1.3.1 General Description of Network Management
	3.1.3.1.1 System Startup
	3.1.3.1.1.1 Initialization of the Network
	3.1.3.1.1.2 Initialization on Application Level

	3.1.3.1.2 General Operation
	3.1.3.1.2.1 Finding Communication Partners
	3.1.3.1.2.2 Network Monitoring
	3.1.3.1.2.3 Dynamic FBlock Registrations

	3.1.3.2 System States
	3.1.3.2.1 System State NotOK
	3.1.3.2.2 System State OK

	3.1.3.3 NetworkMaster
	3.1.3.3.1 Setting the System State
	3.1.3.3.1.1 Setting the System State to OK
	3.1.3.3.1.2 Setting the System State to NotOK (Network Reset)

	3.1.3.3.2 Central Registry
	3.1.3.3.2.1 Purpose
	3.1.3.3.2.2 Contents
	3.1.3.3.2.3 Responsibility
	3.1.3.3.2.4 Responding to Requests for Information from the Central Registry

	3.1.3.3.3 Specific Behavior during System Startup
	3.1.3.3.3.1 Valid Logical Node Address Not Available
	3.1.3.3.3.2 Valid Logical Node Address Available

	3.1.3.3.4 Scanning the System (System Scan)
	3.1.3.3.4.1 Configuration Request Description
	3.1.3.3.4.2 Addressing
	3.1.3.3.4.3 Non Responding NetworkSlaves
	3.1.3.3.4.4 Retries of Non Responding NetworkSlaves
	3.1.3.3.4.5 NetworkSlave Continuous cause for System State NotOK
	3.1.3.3.4.6 Duration of System Scanning
	3.1.3.3.4.7 Reporting the Results of a System Scan without Errors

	3.1.3.3.5 Invalid Registration Descriptions
	3.1.3.3.5.1 Un-initialized Logical Node Address
	3.1.3.3.5.2 Invalid Logical Node Address
	3.1.3.3.5.3 Duplicate Logical Node Addresses
	3.1.3.3.5.4 Duplicate InstID Registrations
	3.1.3.3.5.5 Error Response

	3.1.3.3.6 Updates to the Central Registry
	3.1.3.3.6.1 Disappearing FBlocks in System State OK
	3.1.3.3.6.2 Appearing FBlocks in System State OK
	3.1.3.3.6.3 System scan without any change in Central Registry
	3.1.3.3.6.4 Non-responding Devices in System State OK

	3.1.3.3.7 Miscellaneous NetworkMaster Requirements
	3.1.3.3.7.1 Network Change Event (NCE)
	3.1.3.3.7.2 Positioning of the FBlock NetworkMaster in the MOST Network
	3.1.3.3.7.3 System Configuration Status Information

	3.1.3.4 NetworkSlave
	3.1.3.4.1 Decentral Registry
	3.1.3.4.1.1 Building a Decentral Registry
	3.1.3.4.1.2 Updating the Decentral Registry
	3.1.3.4.1.3 Deleting the Decentral Registry

	3.1.3.4.2 Specific Startup Behavior
	3.1.3.4.2.1 Behavior when a Valid Logical Node Address is not Available at System Startup
	3.1.3.4.2.2 Behavior when a Valid Logical Node Address is Available at System Startup
	3.1.3.4.2.3 Deriving the Logical Node Address of the NetworkMaster

	3.1.3.4.3 Normal Operation of the NetworkSlave
	3.1.3.4.3.1 Behavior in System State OK
	3.1.3.4.3.2 Behavior in System State NotOK
	3.1.3.4.3.3 Responding to Configuration Requests by the NetworkMaster
	3.1.3.4.3.4 Reporting Configuration Changes to the NetworkMaster
	3.1.3.4.3.5 Failure of an FBlock in a NetworkSlave
	3.1.3.4.3.6 Failure of a NetworkSlave Device
	3.1.3.4.3.7 Unknown System State
	3.1.3.4.3.8 Determining the System State
	3.1.3.4.3.9 Finding Communication Partners
	3.1.3.4.3.10 Reaction to Configuration.Status(OK) when in System State NotOK
	3.1.3.4.3.11 Reaction to Configuration.Status(OK) when in System State OK
	3.1.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK
	3.1.3.4.3.13 Reaction to Configuration.Status(NotOK) when in System State OK
	3.1.3.4.3.14 Reaction to Configuration.Status(NewExt)
	3.1.3.4.3.15 Reaction to Configuration.Status(Invalid)

	3.1.3.4.4 Seeking Communication Partner
	3.1.3.4.5 Requesting FBlock Information from a Device
	3.1.3.4.6 Requesting Functions from an FBlock
	3.1.3.4.7 Extended FBlock Identification

	3.1.4 Diagnosis
	3.1.4.1 Ring Break Diagnosis
	3.1.4.1.1 Functional Description
	3.1.4.1.1.1 Behavior of a TimingSlave device
	3.1.4.1.1.2 Behavior of TimingMaster device

	3.1.4.1.2 Ring Break Diagnosis Result

	3.1.4.2 Detection of Sudden Signal Off and Critical Unlock
	3.1.4.3 Shutdown Result Analysis
	3.1.4.4 Coding Error Counter

	3.1.5 Error Management
	3.1.5.1 Fatal Error
	3.1.5.1.1 Handling of Modulated Signal Off
	3.1.5.1.2 Waking
	3.1.5.1.3 Operation

	3.1.5.2 Unlock
	3.1.5.3 Network Change Event
	3.1.5.4 Failure of a NetworkSlave Device
	3.1.5.4.1 Failure of the Network Interface Controller
	3.1.5.4.2 Failure of an Application

	3.1.5.5 Undervoltage Management
	3.1.5.6 Over-Temperature Management
	3.1.5.6.1 Levels of Temperature Alert
	3.1.5.6.2 Mandatory Over-temperature Behavior
	3.1.5.6.2.1 Mandatory Slave Behavior
	3.1.5.6.2.2 Mandatory PowerMaster Behavior

	3.1.5.6.3 Optional Over-Temperature Behavior
	3.1.5.6.3.1 Optional Slave Behavior
	3.1.5.6.3.2 Optional PowerMaster Behavior

	3.2 Network Layer Protocol Specification
	3.2.1 Support at System Startup
	3.2.2 Addressing
	3.2.2.1 16 Bit Addressing
	3.2.2.2 48 Bit Addressing

	3.2.3 Low-Level Retries
	3.2.4 Handling Overload in a Message Receiver
	3.2.5 MOST Message Services
	3.2.5.1 Control Message Service
	3.2.5.2 Application Message Service (AMS)
	3.2.5.2.1 AMS Protocol Description

	3.2.6 Handling Packet Data
	3.2.6.1 MOST Network Service
	3.2.6.1.1 Use Cases and Data Formats
	3.2.6.1.1.1 MOST High
	3.2.6.1.1.2 Ethernet over MOST

	3.2.7 Handling Streaming Data
	3.2.7.1 MOST Network Service API
	3.2.7.2 FBlock Functions
	3.2.7.2.1 General Source / Sink Information
	3.2.7.2.1.1 Streaming Source
	3.2.7.2.1.2 Streaming Sink
	3.2.7.2.1.3 Handling of Double Commands

	3.2.7.2.2 Compensating Network Delay

	3.2.8 Connections
	3.2.8.1 Bandwidth Management
	3.2.8.2 Streaming Connections
	3.2.8.2.1 Connection Manager
	3.2.8.2.2 Establishing Streaming Connections
	3.2.8.2.3 Removing Streaming Connections
	3.2.8.2.4 Establishing DiscreteFrame Isochronous Streaming Connections
	3.2.8.2.5 Removing DiscreteFrame Isochronous Streaming Connections
	3.2.8.2.6 Supervising Streaming Connections

	3.2.9 Timing Definitions
	3.2.10 MOST Network Interface Controller and its Internal Services
	3.2.10.1 Bypass

	4 Appendix A: Optional OPTypes
	4.1 Introduction to Function Interfaces
	4.2 Transmitting the Function Interface
	4.2.1.1 Principle
	4.2.1.2 Realization of the Ability to Extract the Function Interface

	5 Appendix B: Network Initialization (informative)
	5.1 NetworkMaster Section
	5.1.1 Flow of System Initialization Process by the NetworkMaster

	5.2 NetworkSlave Section

	6 Appendix C: Typical Data Rates of Current Implementations (informative)
	7 Appendix D: Frame Structure and Boundary (informative)
	7.1 Frames
	7.1.1 Preamble
	7.1.2 MOST System Control Bits

	7.2 Control Data Transport
	7.3 Boundary Descriptor

	8 Addendum A — MOST50 Adaption
	8.1 Adaptations
	8.1.1 Application Message Service (AMS)
	8.1.1.1 Protocol Field “TelLen”
	8.1.1.2 Max. Size of an Application Message Segment
	8.1.1.3 Protocol Field “TelID”

	8.1.2 Isochronous Data
	8.1.3 Packet Data (16 bit addressing)
	8.1.4 Tunneling Ethernet Packets
	8.1.5 Slave Wake-Up
	8.1.6 NetInterface Init
	8.1.7 Bypass
	8.1.8 NetInterface Normal Operation
	8.1.9 Ring Break Diagnosis
	8.1.9.1 NetInterface Ring Break Diagnosis

	Shutdown and Initialization Timing Definitions
	8.1.11 Sudden Signal Off and Critical Unlock Detection

	9 List of Figures
	10 List of Tables
	INDEX
	Document History (Previous Revisions)

