

MOST
Media Oriented Systems Transport

Multimedia and Control
Networking Technology

MOST MSC Cookbook
Rev 1.2
04/2005

Version 1.2-00

© Copyright 1999 - 2005 MOST Cooperation.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 2

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Legal Notice

COPYRIGHT

© Copyright 1999 - 2005 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION

For more information on the MOST technology, please contact:

 MOST Cooperation
 Administration
 Bannwaldallee 48
 D-76185 Karlsruhe
 Germany

 Tel: (+49) (0) 721 966 50 00
 Fax:(+49) (0) 721 966 50 01
 E-mail: contact@mostcooperation.com
 Web: www.mostcooperation.com

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 3

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

 This Specification is Confidential Information of the MOST

Cooperation. It may only be disclosed to member
companies. Member companies wishing to discuss these
Specifications with suppliers or other third parties must
ensure that a commercially standard form of non-disclosure
agreement has been previously executed by the party
receiving such Specifications. Use of these Specifications
may only be for purposes for which they are intended by the
MOST Cooperation. Unauthorized use or disclosure is a
violation of law.

© Copyright 1999 - 2005 MOST Cooperation.
All rights reserved.

MOST is a registered trademark

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 4

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Contents

1 INTRODUCTION...9
1.1 Motivation...9
1.2 Target Audience...9
1.3 Overview ..9
1.4 Request for Comments ... 10
2 MESSAGE SEQUENCE CHARTS – AN INTRODUCTION.. 11

3 SPECIFIC ADAPTATION OF MSCS FOR TELEMATICS AND IN-CAR INFOTAINMENT......... 13
3.1 Instances... 13

3.1.1 The HMI Instance .. 13
3.1.2 Deployment Information .. 14

3.2 Messages.. 14
3.3 Timing ... 15
3.4 ”Processing” Messages .. 15
3.5 Notifications... 15

3.5.1 General Notification Handling.. 15
3.5.2 Notification Messages as Triggers .. 16

3.6 Formal Conditions and Actions ... 17
3.7 Naming Scheme for Constants and Variables.. 19

3.7.1 Structure .. 19
3.7.2 Scope .. 19
3.7.3 Variability ... 19
3.7.4 Types... 20
3.7.5 Examples... 20

4 MSC NOTATION AND GUIDELINES FOR MSC COMPOSITION ... 21
4.1 Instance... 21
4.2 Message.. 22

4.2.1 Overview.. 22
4.2.2 Message Parameters .. 23
4.2.3 Lost Message .. 24
4.2.4 Found Message... 25

4.3 Condition ... 26
4.3.1 Condition Scope .. 26
4.3.2 Condition Types... 26
4.3.3 Overscoping of Conditions .. 27
4.3.4 Conditions in HMSCs .. 28

4.4 Actions .. 28
4.5 Reference.. 29

4.5.1 Requirements .. 29
4.5.2 References to Guarded MSCs .. 30

4.6 Environment and Gates .. 31
4.6.1 Environment .. 31
4.6.2 Message Gates ... 31
4.6.3 Use of Message Gates.. 33

4.7 Timers and Time Constraints.. 34
4.8 Inline Expression: loop.. 37

4.8.1 Loop Boundaries ... 37
4.8.2 Guarded Loops.. 37
4.8.3 Loop Termination... 39
4.8.4 Waiting Condition .. 40

4.9 Inline Expression: Alternative.. 41
4.9.1 Deterministic Alternatives – Bilateral Alternatives... 41
4.9.2 Deterministic Alternatives – Multilateral Alternatives .. 42

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 5

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.10 Inline Expression: Optional ... 43
4.10.1 General Use .. 43
4.10.2 Deterministic Alternatives – Unilateral Alternatives... 43

4.11 Inline Expression: Parallel... 44
4.12 Inline Expression: Exception... 45
4.13 Coregion.. 46
4.14 Broadcast / Groupcast .. 48

4.14.1 Recommended Approach.. 48
4.14.2 Alternative Representations (not recommended).. 50

4.14.2.1 Broadcast Comment ...50
4.14.2.2 Lost and Found Messages ...50

4.15 Generic instances ... 51
5 APPENDIX A: EXTENSION TO MSC2000 (NAMED PARAMETERS) .. 52
5.1 Rationale / Requirements ... 52
5.2 Named Message Parameters ... 52
5.3 Hierarchical Representation of Complex Values .. 53
5.4 Named MSC/Reference Parameters .. 54
6 APPENDIX B: TOOL REQUIREMENTS... 55
6.1 The MSC Editor... 55

6.1.1 Main Features of the MSC Editor .. 55
6.1.2 Additional Features of the MSC Editor.. 55

7 APPENDIX C: DATA LANGUAGE ... 56
7.1 Constructs ... 56

7.1.1 Conditions.. 56
7.1.2 Actions... 56
7.1.3 Time Constraints ... 56
7.1.4 Text Symbols... 56

7.2 Data Types.. 57
7.2.1 Boolean Type .. 57
7.2.2 Enum type ... 57
7.2.3 Integer type.. 58
7.2.4 Real Type .. 58
7.2.5 String Type .. 58

7.3 Examples .. 59
7.3.1 Declaration .. 59
7.3.2 Usage of Variables and Functions in MSCs.. 59
7.3.3 Using MOST Catalog Types.. 59

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 6

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Document References

This document is a Guideline and may therefore refer to any document published by MOST
Cooperation or any other documentation listed in the references.

References

[1] ITU-T Recommendation Z.120 (MSC2000)
 Message Sequence Chart (MSC)
 Geneva, (11/1999)
[2] ITU-T Z.120C1 LC-Text: Recommendation
 Z.120 Corrigendum 1
 (11/2001)
[3] ITU-T Recommendation Z.100 (SDL)

Specification and Description Language (SDL)
(11/1999)

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 7

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Definitions

The following table explains abbreviations, and contains definitions for terms used throughout this
document.

Term Description
Component The term “component" is used for hardware components

(devices) as well as software components (applications).
HMI Human Machine Interface. This is the user interaction part.

We use “HMI” instead of the more common “MMI” to
distinguish between the user instance and the MMI
FunctionBlock (0x10).

HMSC High Level Message Sequence Chart. HMSCs are used to
describe the relations between a number of MSCs.

MMI Man Machine Interface. Whenever the term “MMI" is used,
we intend to address the MMI FunctionBlock (0x10).

MSC Message Sequence Chart. Commonly used to refer to a
single Basic MSC.

MSC-GR The graphical representation of MSCs.
MSC-PR The textual representation of MSCs.
MSC standard The MSC standard is officially called “recommendation

Z.120” [1].
To better distinguish between our recommendations
(guidelines) and the official “MSC recommendation”, we will
use the term “MSC standard” instead of “recommendation
Z.120” or “MSC recommendation” in this document.

MPR The most common file extension for MSC-PR. It is quite
common to use the term “mpr file” when talking about the
storage format.

Named parameters An extension to the MSC standard to facilitate use of MSCs
in the telematics and in-car infotainment domains.

SDL Specification and Description Language. In this document,
we use a few simple SDL constructs to describe operations
on data.

Z.100 SDL is specified in ITU-T recommendation Z.100 [3].
Z.120 MSCs are specified in ITU-T recommendation Z.120.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 8

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Document History

Changes MOST MSC Cookbook 1V0-00 to MOST MSC Cookbook 1V2-00

Change
Ref.

Section Changes

- - Initial revision

1V1-00 All Several aspects refined. Inconsistencies resolved.

1V2-00 Examples Additional chapter for dealing with MOST Catalog types.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 9

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

1 Introduction
Welcome to the MOST MSC Cookbook!

Message Sequence Charts (MSCs) offer an intuitive description of communication in complex
distributed systems. The following document presents an insight into the application of MSCs within
the telematics and in-car infotainment domains.

1.1 Motivation
We all share the need for requirements that are more formal than textual descriptions. The realization
that MSCs can help to bridge the gap between requirements and automated testing has resulted in the
creation of this document, which will hopefully help you to avoid the most common mistakes.

The proven success of MSCs as a tool for the creation of formalized specifications has led to the
authors‘ commitment to make MSCs a central building block of their telematics and infotainment
system specification.

One of our main goals is to reuse system specification MSCs for testing. To be able to do that, a
number of things need to be considered, and some foresight is required. Many of the
recommendations we make throughout this document are based on testability requirements.

The purpose of the MSC Cookbook is to

• promote testability of MSCs

• promote correctness

• promote disambiguation

• help in preventing side effects

1.2 Target Audience
The goal of the MSC Cookbook is to regulate the use and application of MSCs. It shall serve as a
guideline for all who get in contact with MSCs during their work.
This document shall serve as the main reference throughout the process of specification and
development and addresses all the stakeholders involved, mainly

• Creators of specifications

• Implementers

• Test Engineers

1.3 Overview
The document is subdivided in the following main sections:

• Message Sequence Charts - an Introduction

• Specific adaptation of MSCs for telematics and in-car infotainment

• MSC Notation and Guidelines for MSC Composition

The MSC introduction section illuminates the idea behind Message Sequence Charts. The telematics-
and infotainment-specific adaptation section contains a number of recommendations for use in the
respective domains. The extensive notation and guidelines part offers a detailed guide to relevant
MSC notation and MSC composition. Rather than just explaining MSC constructs in general, we
focused on the use in the field of telematics and in-car infotainment, also pointing out a number of
pitfalls that we have come across in the past.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 10

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

1.4 Request for Comments
If any construct that you need for your specification is not described here, please contact the
coordinator of Working Group Device Architecture. It is of utmost importance to us that all MSCs are
kept consistent.
Also, your suggestions are always very welcome. So if you discover a gap in this cookbook, and you
know how to fill it, please share your knowledge!

For questions, please contact the following persons:
Name E-Mail Address
Mr. Matthias Boll, DaimlerChrysler AG matthias.boll@daimlerchrysler.com
Ms. Leila Öhman-Denton, Oasis SiliconSystems AB leila.ohman-denton@oasis.com
Dr. Bernd Sostawa, BMW AG bernd.sostawa@bmw.de

mailto:matthias.boll@daimlerchrysler.com
mailto:leila.ohman-denton@oasis.com
mailto:bernd.sostawa@bmw.de

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 11

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

2 Message Sequence Charts – An Introduction
In the automotive domain, MSCs are mainly used to describe the dynamic behavior of the distributed
telematics and in-car infotainment system. Syntax and semantics of Message Sequence Charts
(MSCs) have been standardized by the International Telecommunications Union (ITU). The relevant
standard is ITU-T Z.120 (MSC2000) [1], including the Corrigendum1 [2].

The fact that a precisely defined grammar exists for MSCs makes them easily interchangeable
between tools from different suppliers.

In the past, several graphical notations for component interaction have been suggested. Out of these
notations the Message Sequence Charts gained a comparably strong position as an intuitive form of
describing asynchronous message exchange between instances in a communications system.

The origin of the semiformal notation lies in the areas of Requirements Engineering, Specification and
Design during the development of telecommunications switching systems. MSCs have always been
one of several views on an SDL-Model (Specification Description Language). In the meantime MSCs
have emancipated from SDL and their standardization process is run by the ITU.

"The purpose of recommending MSC is to provide a trace language for the specification and
description of the communication behavior of system components and their environment by means of
message interchange. Since in MSCs the communication behavior is presented in a very intuitive and
transparent manner, particularly in the graphical representation, the MSC language is easy to learn,
use and interpret. In connection with other languages it can be used to support methodologies for
system specification, design, simulation, testing, and documentation.”

International Telecommunication Union (ITU)

A collection of MSCs is capable of painting an arbitrarily exact picture of the system. MSCs that
describe recurrent communication behavior are to be reused by the mechanism of referencing. The
MSC standard explicitly supports a modular structure of MSCs. There are two different categories of
MSCs: HMSCs (High Level MSCs) and Basic MSCs.

Here is an example of a Basic MSC:

msc Example

HMI FunctionBlock1Controller FunctionBlock1

w hen (g_bEXAMPLECONDITION = true) Here w e might desc ribe
w hat the value of the
cons tant depends on

USERDEF.MMI_Event
(Action='TriggerSomething')

Example2

USERDEF.MMI_Update

comment

MSC instance

guarding condition
with expression

message name

message parameter

MSC reference

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 12

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

While Basic MSCs describe the communication between different parts of a system on message level,
High-level MSCs provide a means to graphically define how a set of MSCs can be combined.

msc Overview

when
(g_eMARKET=

JAPAN)

when
(g_eMARKET=

USA)

Example3 Example Example2

backward
flow line

HMSC start

guarding condition
with expression

connection

HMSC end

MSC
reference

flow line

When testing telematics and infotainment systems, it is important to be able to determine or control
the preconditions to the test in a way that ensures that they are uniform throughout any number of test
runs. For example, a mode change from CD to Radio can only be successfully tested when the current
mode is the CD mode.

If a scenario is present in the form of MSCs, and we want to test that particular scenario, we have to
find a way to guide the system to the point where the preconditions are established. This is usually
done by means of HMSCs.

The MSC standard proposes two flavors of MSCs, the graphical notation (MSC-GR) and the textual
(MSC-PR) notation. Both notations are semantically identical.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 13

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

3 Specific Adaptation of MSCs for Telematics and
In-Car Infotainment

The MSC2000 [1] recommendation deliberately does not prescribe the communication protocol
implemented in the specified system. For the application in the automotive field, provisions have to be
made to embrace the different communication busses and relevant protocols.

MSCs of the telematics/infotainment system describe the bus communication of the bus systems
involved. In addition to the bus communication, communication patterns between software
components inside a device may be specified in some cases as far as they are relevant for system
behavior.

MSCs that are strongly related are grouped to a scenario (e.g. a scenario concerning HMI events for
the radio application). Scenarios that belong together are grouped to a scenario category.
During the adoption of MSCs in the telematics and infotainment domains, it became evident that the
current MSC standard is not sufficient to fully meet the needs of those who create specifications in the
MOST domain, especially when complex data types are involved. Therefore “named parameters” have
been introduced. Please see “Appendix A: Extension to MSC2000 (Named Parameters)” for more
information.

3.1 Instances
Instances are represented by an instance head box, a vertical axis and an instance end symbol.
Instances in telematics/infotainment MSCs may equally be MOST FunctionBlocks, MOST
FunctionBlock Controllers or even CAN nodes in the system. Examples of legal instance names in the
MOST domain are NetBlock, AmFmTuner, and PowerMaster. Those instances that implement a
MOST FunctionBlock should always bear its name. Controllers of FunctionBlocks are not required to
bear the name of the FunctionBlock; in fact, they shall never bear its name.

MOST instances may be specified in three different ways. The FunctionBlock name (FBlockID) can
solely identify the instance or alternatively be accompanied by the Instance-ID (InstID). Furthermore
there is a user-defined variant available (General Instance), i.e. an instance that cannot be
represented by a FunctionBlock.

Instances in MOST

msc InstanceHeads

HMI HeadUnit AmFmTuner AmFmTuner.0x01

general instance for
user interaction

MOST instance
with InstID

general instance for all
controllers in the HeadUnit

MOST instance
without InstID

3.1.1 The HMI Instance
The Human Machine Interface (HMI) instance is a so-called “user-defined instance“. The complement
of a user-defined instance is a “MOST instance“. MOST instances are associated with MOST
FunctionBlocks, while user-defined instances are not.

Our interpretation of the HMI instance is that we imagine the user, who stimulates the HMI, to be a
part of that instance, as if he was sitting inside. We also do not name the actual buttons and switches
the user operates, but rather add an abstraction layer that translates the operations of the user into
events, which the user can create or receive. So even if the user navigates through a number of
menus of his HeadUnit to start a search for the next radio station, we would only model one input from
the HMI instance to the system, for example named “TuneNextStation“.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 14

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

For the HMI messages we have agreed on a notation that lets us easily distinguish those from MOST
or CAN messages. The names of messages from the HMI instance are prefixed “MMI_Event“, while
message to the HMI instance are prefixed “MMI_Update“. (We assume that the update usually will be
perceivable by the user, either by a change of the displayed content or any other form of user
notification, or a combination. Still, there is only one message to the HMI instance.)

The second part of the message name contains the name of the application, for example “Radio“.
The next part is the abstraction of the user action, which usually maps to a particular function of an
application.

The message may also contain parameters. For example, when the user decides to tune to a certain
frequency, the frequency would be included as parameter. The frequency could be provided as a
numeric value, or as a constant or variable like “MaxFrequency“.

It is important to notice that the parameter interface needs to be consistent for all messages with
identical names. This means that the tune-to-frequency message should not occur with a varying
number of parameters.
Why is this important? When we deal with MOST messages we can rely on the MOST
FunctionCatalog to obtain the exact layout of a message. If we omit a few, we will still know if the
provided parameters comply with the FunctionCatalog. The messages which are user-defined,
however, in most cases will not be matched against an interface description. So the only reliable
information we have comes from the messages themselves, and therefore it is highly recommended to
give them a stable interface.

A few examples of HMI messages
Only a trigger event:

• MMI_Event.Radio_TuneSeek

Events with parameters:

• MMI_Event.Radio_TunePreset(i)

• MMI_Update.Radio_Frequency_set(i)

3.1.2 Deployment Information
DeviceID and device names can be used. However, to promote reusability of MSCs for upcoming
projects, in general they are left out. Then there is no information in the MSC concerning the device
that implements the FunctionBlocks.
Although an abstract view of the system is sufficient during the system architecture phase, it is later
required to have a concrete view of the system, i.e. during system integration. So the information
about the deployment of the individual logical system parts (FunctionBlocks) to actual devices needs
to be injected somewhere between specification and system integration.

3.2 Messages
MOST messages in MSCs should be strictly based on the MOST FunctionCatalog. Even though early
design phases do not require a detailed description of parameters, it is mandatory that every MOST
and CAN message is matched with the MOST FunctionCatalog or CAN database. Thus, at any stage
in the specification process, consistency with the corresponding database is guaranteed.
In addition, the frequent use of the underlying databases will detect errors and increase overall quality,
which will be helpful during system integration and generation of test cases.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 15

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

3.3 Timing
In order to enable an automated test generation, MSCs have to be supplemented with further
information. That information is similar to non-functional requirements, as known from requirements
engineering. During system operation - and therefore also during test execution – timing is critical. So
it is good practice to add timing restrictions and timers as soon as possible in the specification
process. This can also prove helpful in finding timing inconsistencies among a number of connected
MSCs that otherwise would lead to incorrect implementations.
We propose to add timing constraints whenever standard MOST timings do not suffice.

3.4 ”Processing” Messages
In a MOST environment, ”Processing” or “ProcessingAck” messages can occur after a MOST method
has been triggered by ”StartResult” or “StartResultAck” OpTypes. If the device that implements the
method cannot answer within a defined timeframe, it will send “Processing” messages to inform the
requester that the request is still being processed, but operation has not finished yet.

Processing messages basically could occur in any part of an MSC after the method has been called.

In most cases it is not helpful to include those Processing messages in the MSCs, as they will make
the MSC more obscure to human readers. However, it should be kept in mind that they will occur in an
actual system, and need to be handled properly.

In some cases it might be required to model Processing messages, i.e. when the receiving MSC
instance wants to trigger an animation that informs the user of the ongoing operation, e.g. by
displaying an animated hourglass or by offering an opportunity to cancel the operation.

3.5 Notifications
MOST Notifications are used to track changes of properties. When a property is notified, then any
change of that property will cause a notification message to be sent to the devices that have request
to be notified.

Pertaining to MSC design, Notification messages raise issues, quite similar to the "Processing"
peculiarities. Thus, the approach to circumvent potential complexity problems is almost the same.

3.5.1 General Notification Handling
We recommend including the following in one Basic MSC for each scenario or scenario group,
depending on your individual requirements:

• Setting of notifications

• The first received Status message for every notified property

This MSC can be reused for different scenarios. Those Notification MSCs should have names that
clearly distinguish them from other MSCs, e.g. by prefixing “Notification”. Tools that subsequently
transform those MSCs could dynamically determine which notifications are currently active, and set a
filter accordingly, to allow notification messages to appear arbitrarily without breaking test cases.

Notifications are most commonly set during system startup and initialization phases. In many cases,
you will therefore find Notification MSCs referenced from system or subsystem initialization MSCs.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 16

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

3.5.2 Notification Messages as Triggers
Apart from the modeling of notification messages as described in “General Notification Handling”,
notification messages are usually not depicted in the MSCs, unless they have impact on the current
scenario, e.g. when a thread is waiting for a notification message before it continues operation.

Usually it is not necessary to mark notification messages. If it is required to make the reader aware of
the “notification-ness” of the message, a “Notification” comment can be attached to the message.

Inclusion of all notification messages at all times is hard to model, although it can be done, e.g. by
introducing notification loops in concurrent (see “4.11 Inline Expression: Parallel”) MSCs. We have
come to the conclusion that this would add information which usually is of no interest to System and
Device Architecture, and increase complexity without providing adequate benefit.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 17

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

3.6 Formal Conditions and Actions
Conditions and actions will be described in detail in “4 MSC Notation and Guidelines for MSC
Composition”. Right now, we will give you a step-by-step example of how to make your MSCs more
formal.

We recommend using common language in MSC comments only.

Message Sequence Chart Comment

msc VeryInformal

FunctionBlock1Controller FunctionBlock1

In the Japan and US
market, whenever a

station is not found, tune
to the last station.

MOST.Function1.Status

The action is informal. For example, a
sentence like “In the Japan and US market,
whenever a station is not found, tune to the
next station” in an action symbol, is valuable
to help the reader understand the intention of
the following sequence, but poses many
problems to tools that process the MSC in
some way.

Also, two conditions, namely the restriction to
the Japanese and US market, and the fact
that a station could not be found are mixed
with an action, the tuning to the next station.

Message Sequence Chart Comment

msc VeryInformalImprovedStructure

FunctionBlock1Controller FunctionBlock1

This only applies to Japan and USA models.

Station could
not be found.

Tune to the next station.

MOST.Function1.Status

The first step to improve the MSC is to
differentiate between conditions and actions.

Here we have introduced a condition that
guards the entire MSC – the applicable
markets.

Also we have introduced a condition that is
local to the FunctionBlock. Here we indicate
that the station was not found.

The action now contains the tuning part.

The problem of the use of common language
still persists.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 18

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Message Sequence Chart Comment

msc Formalized

FunctionBlock1Controller FunctionBlock1

when (g_eMARKET = JAPAN or g_eMARKET = USA)
when (i_eTuneState =

NotFound)
i_iStation :=

funcNextStation(i_iStation);
MOST.Function1.Status

This is the formalized version. We use SDL
notation. SDL is very closely related to MSCs,
and has also been standardized by the ITU-T
as Z.100.

We have introduced variables for the market,
the current state of tuning and the current
station.

Also, finding the next station could represent a
call to a function that searches for the next
available station.

The MSC is still comprehensible to the human
reader, but very much facilitates subsequent
tool-based operations.

In cases where the formalization reduces
readability too much, comments can be
attached to the individual symbols.

The MSC 2000 recommendation strictly separates the MSC domain (structure) and the data domain
(data and operations). While the structural elements are clearly defined, no particular syntax, i.e.
programming language is enforced on the level of expressions.
In this example, we have used SDL as data language. Depending on different companies’ individual
needs this could as well be C, C++ or any other programming language. However, we do not
recommend mixing a variety of languages. This would take away much of the benefit of formalization.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 19

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

3.7 Naming Scheme for Constants and Variables
We have found the use of a naming scheme for constants and variables very helpful. It quickly
provides the reader of an MSC with type and scope information.

We have gathered our most common uses of type/scope combinations and derived a few simple rules.

3.7.1 Structure
The MSC standard offers no strongly typed data language. We add information about scope and type
to constants and variables to help the reader perform visual type checking.

However, you should not rely on the naming scheme to perform automated type checking.
Rather, you should utilize the instruments provided by the data language (i.e. keywords for scope
and type).
We propose the following format, loosely based on Hungarian notation:
<scope>_<type><Name>
The tokens for scope and type will always be lowercase while the case of the name will depend on
whether we are dealing with a constant or variable. Names of constants are always uppercase.

3.7.2 Scope
Our main scope factors are MSCs and instances. The lifetime of constants/variables may be bound to
single instances or individual MSCs. You should always make sure that the scope of a constant or
variable is explicitly defined!
Please note that including MSCs through references or “using” clauses extends the visibility of
variables and constants; contained declarations and definitions will be visible on the level of the
referencing MSC and even above! This can easily lead to conflicts. Therefore, we strongly advise
you to choose variable names deliberately, especially when you design MSCs that will be reused in
many different scenarios.

Token Scope Comment
g Global Known to all instances in all MSCs. In our SDL-like data language,

global variable scope is introduced by the “global” keyword.
i Instance-local Known only to one instance but in all MSCs. In our data language, the

keyword “process”, followed by an instance name, defines the scope of
instance local variables.

l MSC-local Known to all instances but only within the scope of one MSC. Whenever
formal data parameters are used, those are MSC-local.

3.7.3 Variability
Determines whether the value of a data item can change during its lifetime.

Variability Comment
Constant The data item’s value is immutable.

Names of constants are uppercase (e.g. LIGHTSPEED).
Variable The data item’s value is allowed to change.

Names of variables can be mixed case (e.g. AverageTravelSpeed).

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 20

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

3.7.4 Types
This is a list of the types that are most common in the telematics/infotainment domain. It is by no
means complete.

Token Type Name Comment
b Boolean Contains either True or False.
e Enum Enumeration type; consists of a number of constants.
i Integer Contains an integer which is typically in the range -32,768 to 32,767.
r Real Contains a floating-point number. We do not make any assumptions on

precision or range.
s String Contains a variable-length string. Strings contain a sequence of

alphanumeric characters.
c Complex Type This type can be used whenever non-simple types are referred to.

Those can be records, arrays, arrays of records.

3.7.5 Examples
Here we provide a number of example names to illustrate the naming scheme.

Example Comment

g_bClampState30 We assume that every connected device is aware of the clamp state
through some kind of low-level communication which is not part of the
MSC specification. This makes the clamp state global (known to all
instances in all MSCs). Also, the clamp state can change. Therefore it is
variable and written in mixed case.

The type we used here is Boolean. It might make sense to use an
Enum type instead. The possible values would then be ON and OFF.

Consequently, we would name the variable g_eClampState30.

g_eMARKET We consider the market a globally known constant, so the name is
capitalized. The individual values could for example be ECE, USA and
JAPAN.

l_iSOME_PARAM An auxiliary integer constant that is local to an MSC but visible to all
instances in that MSC.

(The const-ness of such an item might be imposed by the MSC
standard when a referenced MSC contains formal parameters.)

i_iDiskNumber The variable for the slot that contains a CD changer’s currently selected
disk.
If the CD changer is an instance, the disk number is known only to this
instance during its entire lifetime in all MSCs.

i_iCAPACITY The nominal capacity of a CD changer is also local to its instance, but
unlike the disk number it will not change.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 21

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4 MSC Notation and Guidelines for MSC
Composition

4.1 Instance
Instances represent the communication partners in the different buses involved in the
telematics/infotainment system. Instances are represented by vertical axes in the MSC. An axis starts
and ends with a non-filled and a filled rectangle respectively.

MSC instances represent time as follows:

• time flows from top to bottom

• there is no global time scale

• there is no common time scale for different instances

The MSC standard states:
A global clock is assumed for one Message Sequence Chart. Along each instance axis the time is
running from top to bottom, however, a proper time scale is not assumed. If no coregion or inline
expression is introduced a total time ordering of events is assumed along each instance axis.

msc Instance

Device1

FunctionBlock1.InstanceID

instance kind

instance head

instance end

In general, we do not use dynamic instance creation. Therefore all instances start to live on the top of
the MSC and end at the bottom of the MSC.

The example above shows an MSC instance which has the instance name
“FunctionBlock1.InstanceID“. The instance name is always depicted inside the instance head. In the
MOST world it consists of FunctionBlock name and instance ID that are separated by a period.

An instance may also have an instance kind. In combination with SDL, instance kinds can be systems,
blocks, processes or services. In the MOST world it is not uncommon to deviate from the SDL usage
and provide device information in the instance kind field. In the example we have used this to indicate
that FunctionBlock1.InstanceID will be deployed to Device1.

Individual enterprise regulations determine whether instance kinds are used during the specification of
telematics/infotainment devices. In the MSC Cookbook we normally will not use instance kinds.

Apart from MOST instances, general instances, as described in chapter “4.1 Instance” can be used,
too.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 22

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.2 Message

4.2.1 Overview
Arrows, directed from the sending to the receiving instance, denote communication.

The label on an arrow denotes the message exchanged by the two instances involved.
The message name is to be placed above the arrow, whereas the parameter(s) are optional and
placed below the arrow in parentheses.

channel OpTypefunction

MOST.Function1.Status
(Param1='true')

parameter name parameter value

The given example shows a MOST message which requires some additional explanation:

The message name consists of three parts: The channel name, the function name and the OpType,
separated by periods. Unlike the channel name, function and OpType require no explanation as they
are well known in the application domain. Typical channels names are “MOST”, “USERDEF” and
“CAN”. Those are required to facilitate synchronization of the specification with databases or catalogs
that list all available messages. So a tool that parses an MSC will always know in which database to
look for a certain message to either support the user in creating an MSC or verifying an existing MSC
against a database of messages.

Messages that belong to the “USERDEF” channel usually will not be matched against a database.
In the MOST domain we use message parameters in a special way, which is further explained and
justified in “Appendix A: Extension to MSC2000 (Named Parameters)”. Right now it should be enough
to know that “parameter names“ or “named parameters“ are an extension to the MSC 2000
recommendation. The use of named parameters gives us the freedom to specify only those
parameters which are relevant to a certain use case, while the MSC standard requires the use of
positional parameters which would force us to supply all parameters at all times for reasons of
consistency.

Something that is not visible in the graphical representation, but becomes evident when we look at the
textual representation is that a message consists of two parts, namely sending and receiving:

FunctionBlock1: label L0; out MOST.Function1.Status,1(Param1='true') to
FunctionBlock1Controller;

FunctionBlock1Controller: in MOST.Function1.Status,1(Param1='true') from
FunctionBlock1;

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 23

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

This makes it possible to model message overtaking. However, as we usually work with a
synchronous transmission technology, we highly recommend not using message overtaking.

Some readers of this document might wonder what “Status,1” stands for in the MSC snippet given
above. The “,1” is a so-called “message instance name“, represented by a number in this case.
Message instance names are used to distinguish multiple occurrences of an identical message. This is
something that the MSC standard requires.
Most existing MSC tools will always add such a name, even if only one instance of that message
exists.
Also, there is a “label L0”. This label is important for providing an anchor for timing restrictions.

4.2.2 Message Parameters
The current parameter concept for the MOST domain does not fully comply with the MSC standard.
Please see the “Appendix A: Extension to MSC2000 (Named Parameters)” chapter for a detailed
explanation of the extensions.
If parameter values are not known, an underscore (_) will be used as wildcard character. A wildcard
character limiting a stream, array or record represents possibly following parameters.

Parameter Examples
Parameter Description
Number = _ Any value is legal for the parameter “Number”.
Number = 3 Only “3” is a legal value for the parameter “Number”.
Number =3=: A This example shows the use of named parameters and variables.

The parameter with the name “Number” has a value of “3”. This
value is assigned to the variable “A”. Variable “A” can later be
reused, e.g. in a conditional expression.

Variants of parameter specification and definition

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 24

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

msc Messages

FunctionBlock1Controller FunctionBlock1

MOST.Function1.Status

MOST.Function1.Status
(Param1=_, Param2=_, Param3=_)

MOST.Function1.Status
(Param1=_, Param2='true',

Param3='SomeValue')

MOST.Function1.Status
(Param1='true')

MOST.Function1.Status
(Param1='true', ...)

MOST.Function2.Status
(Pos={x='0'},

Data={RecordMember1='SomeValue',
RecordMember2='SomeOtherValue'})

no parameterscomplete list of
parameters with

wildcards

complete list of
parameters with

some valuessome
parameters

omitted

ellipsis displayed
for missing
parametersparameter

of record type

Messages can be specified in different ways according to the level of detailed required. The level of
detail can be rendered more and more precisely over time during the development process.

4.2.3 Lost Message

msc MessageToLost

FunctionBlock1

MOST.Function1.Status

to lost

Currently, the “message to lost” construct is one of the possible ways to describe the sending
broadcast messages. Please see “4.14 Broadcast/Groupcast” for more details.
Whenever possible, do not use messages to lost. See the next chapter for an explanation.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 25

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.2.4 Found Message

msc MessageFromFound

FunctionBlock1

MOST.Function1.Set

from found

Currently, the “message from found” construct is one of the possible ways to describe the receiving of
broadcast messages. Please see “4.14 Broadcast/Groupcast” for more details.

Messages to lost or messages from found have one particular feature which is not beneficial for our
application: Either the sender or the receiver is unknown. Thus, such a message only consists of
one line in the textual representation:

FunctionBlock1: label L0; in MOST.Function1.Set,1 from found;

This makes it very hard to resolve them when using automated tools to process the MSCs.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 26

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.3 Condition

4.3.1 Condition Scope
Conditions may apply to one instance (local condition), to some instances (non global condition) or to
all instances (global condition) of the MSC. It is important to choose the proper scope for a number of
reasons, which we will explain after an introduction to condition types.

msc ConditionScope

HMI FunctionBlock1Controller FunctionBlock1

w hen (g_bEXAMPLECONDITION = true)

w hen (l_bExampleCondition = true)

global condition local condition

4.3.2 Condition Types
There are two types of conditions: setting and guarding conditions.

msc ConditionKinds

HMI FunctionBlock1Controller FunctionBlock1

MyNamedCondition

w hen MyNamedCondition

i_bExampleCondition := true;

w hen (i_bExampleCondition = true)

setting condition

guarding condition
with name

guarding condition
with expression

action

msc ConditionKinds

HMI FunctionBlock1Controller FunctionBlock1

MyNamedCondition

w hen MyNamedCondition

i_bExampleCondition := true;

w hen (i_bExampleCondition = true)

setting condition

guarding condition
with name

guarding condition
with expression

action

It is important that we differentiate between named conditions and conditions with expressions.
Take a look at the above MSC: The first condition is a setting condition, which means that
MyNamedCondition is set, so that it will evaluate to “true” whenever checked. The second condition is
a guarding condition which checks the state of MyNamedCondition. The following parts in the MSC
will be executed if it evaluates to “true“, which it does in this case.
Both are “named conditions“, and the names are within the domain of the MSC standard.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 27

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Named conditions have a few particularly displeasing characteristics:
• When a condition is set, all other conditions are deleted.

• Named conditions cannot explicitly be unset.

• Complex data types cannot be used.

• Logic operations are not allowed

The last condition is a guarding condition with an expression. Expressions are outside the domain
of the MSC standard. That means that different groups of MSC users can apply their own
programming or data languages. In this example we have chosen an SDL-like form. To cause the
expression to evaluate to “true” we use an action symbol, where we explicitly set the
ExampleCondition variable to true.

We recommend the use of conditions with expressions for the following reasons:

• Unlike named conditions, they allow the use of complex data types.

• Variables can be set to arbitrary values without influencing other variables.

• Logic operations can be used.

4.3.3 Overscoping of Conditions
The general rule is: Reduce the scope of conditions as much as possible.
However, there are good reasons to use globally scoped conditions. For example, certain features of a
device that are local to a market have no relevance in other markets. Therefore it makes sense to
guard an entire MSC with a constant that represents the market, and ensure that only features
pertaining to a particular market are considered.

To understand why other conditions should be local, you have to think like a test engineer. The test
engineer usually cannot monitor the inner state of devices. If the sending of a message from device A
to device B depends on a certain state of device A, let us call the state X, the test engineer can
deduce that state by observing the message, but he cannot anticipate it.

Message Sequence Chart Comment

msc Scope

A B

USERDEF.Trigger

opt

when X

USERDEF.Response

Tester simulates
this device

No information
about „X“

Now let us assume we perform a black box
test of device A, so the test equipment
simulates device B. If both sending and
receiving of message “Response” is guarded
by X, it means that the test equipment is not
allowed to consume that message if the state
variable evaluates to X!
But the test equipment does not have any
knowledge about the current value of the state
variable. So what happens now?

„X“ is an internal
state to this

instance

A human will be able to resolve that problem and realize that the condition was not supposed to apply
to device B. But as soon as we introduce tools that transform specifications into tests we have a real
problem.
Apart from that it is also confusing for the readers of the MSCs in the specification phase, as in some
cases it will not be clear which instance “owns” a condition, leading to misinterpretation and faulty
system behavior.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 28

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Message Sequence Chart Comment
The modified MSC has clearer semantics.
Now, the sender will send the message in
state “X”, and the receiver will be ready to
receive it, not having to know about the
internal state.

msc ReducedScope

A B

USERDEF.Trigger

opt

when X

USERDEF.Response

No information
about „X“ required

to receive
the message.

Scope of guard
has been
reduced.

Apart from keeping the scope of conditions minimal, you should only apply conditions when they
have an influence on the behavior of the system. Conditions that only serve the purpose of
describing an assumed state of the environment without having direct influence on the behavior as
described in the MSC should be transformed into text boxes.

4.3.4 Conditions in HMSCs
The MSC standard is quite rigorous and does not allow data-based conditions in HMSCs at all. Mainly,
this is due to the lack of instances in HMSCs. Thus, it is impossible to determine the context of
instance-local data.
However, the nature of telematics and infotainment system specifications makes us highly dependent
on data. Therefore, we have decided to allow conditions in HMSCs but restrict them to global
variables.

Conditions in HMSCs must not rely on data that is local to instances!

4.4 Actions
An Action describes the internal activity of an instance.

The MSC standard does not make any assumptions on the data language, leaving it up to the user
whether informal text or a formal language is used to describe the semantics of an action. We propose
to decide on a programming language that will be used consistently throughout an entire project, for
both actions and conditions. We have used SDL notation in this example.

msc Action

HMI FunctionBlock1Controller FunctionBlock1

USERDEF.MMI_Event.Application1_
TriggerSomething

(Value='On') MOST.Function1.SetGet
(Param1='true')

InternalValue1 := True;

MOST.Function1.Status
(Param1='true') USERDEF.MMI_Update action

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 29

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

The MSC standard determines that multiple data statements in an action are evaluated concurrently.
To prevent side effects, we suggest that you do not use more than one statement per action!

4.5 Reference
The reference within an MSC defers to a different MSC which has to be uniquely identifiable in the
collection of MSCs.

msc ReferenceExample

HMI FunctionBlock1Controller FunctionBlock1

Sub1

Sub2

reference

msc Sub2

FunctionBlock1Controller FunctionBlock1

MOST.Function1.SetGet
(Param1='true')

MOST.Function1.Status
(Param1='true')

msc Sub1

HMI FunctionBlock1Controller

USERDEF.MMI_Event
(Action='TriggerSomething')

4.5.1 Requirements
MSCs must not refer to themselves, be it directly or indirectly.

The reference symbol must include all instance axes that occur in the referenced MSC. It may overlap
instance axes that do not occur in the referenced MSC.

If the MSC contains at least two references: All instance axes shared by at least two of the referenced
MSCs must be present in the referencing MSC. This ensures the assignment of an order to the events
on axes that occur in referenced MSCs.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 30

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.5.2 References to Guarded MSCs
The MSC standard does not explicitly define the semantics for references to MSCs which contain
global guards. Let us take a look at the following situation where “ReferenceExample” references
“Sub”.

msc ReferenceExample

FunctionBlock1Controller FunctionBlock1

Sub

MOST.Function2.Get

msc Sub

FunctionBlock1Controller FunctionBlock1

when (0 = 1)

MOST.Function1.SetGet
(Param1='true')

MOST.Function1.Status
(Param1='true')

The guard in MSC “Sub” is always false, so none of the messages in Sub will be sent. In MSC
ReferenceExample, will FunctionBlock1.Controller send Function2.Get or not?

The MSC standard itself is inconclusive. Two interpretations are possible:

• The referenced MSC is considered optional and Function2.Get is sent.

• The referenced MSC blocks the referencing MSC. The entire scenario becomes dynamically
illegal.

At first glance, the idea of considering the referenced MSC optional appears favorable because the
scenario will execute no matter what.
However, assuming implicit options leads to another question: How do we model the case when the
scenario must become illegal? The condition may be a critical one and the system might not be able
to operate when it is false.

The blocking interpretation is to be preferred. Whenever a referenced MSC is meant to be optional,
the reference shall be explicitly modeled that way!
We do not recommend making all referenced MSCs themselves optional by introducing a bounding
optional box. Rather we recommend controlling their uses as shown below.
Always try to place the optional box in the outermost possible context! For reasons of clarity, we also
propose to repeat the guarding condition in the referencing MSC:

Not recommended! Recommended!

msc SubOptional page 1 of 1

FunctionBlock1Controller FunctionBlock1

opt

when (0 = 1)

MOST.Function1.SetGet
(Param1='true')

MOST.Function1.Status
(Param1='true')

msc OptionalReferenceExample page 1 of 1

FunctionBlock1Controller FunctionBlock1

opt

when (0 = 1)

Sub

MOST.Function2.Get

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 31

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.6 Environment and Gates
Gates represent the interface between the MSC and its environment.

The MSC standard mentions several types of gates, namely

• Message gates

• Order gates

• Create gates

• Gates on inline expressions
We are mainly interested in message gates. The other gate types are not widely used, and we have
not encountered a case where they would have been required, so far.

4.6.1 Environment
The term “environment” covers everything outside an MSC, which is able to send messages into the
MSC, or receive messages from the MSC. The concept of an MSC environment can refer to two
different situations:

• The environment of a referenced MSC (i.e. interaction with some other instances that are still
within the boundaries of the system being modeled by MSCs)

• The environment of the whole system(.i.e. any interactions between the system and the outside
world)

Unless stated otherwise, the environment we speak of is the environment of the MSC.
An MSC communicates with the environment through gates. Gates always have a name, although it is
allowed to create MSCs where the gate name is not explicitly given. In that case the gate name is
implicitly composed of the message direction (in or out) and the message name.

Incomplete messages, i.e. those messages that are sent but never consumed (lost messages), and
those messages that are found spontaneously (found messages), are not part of the communication
with the environment. In lost or found messages either the receiver or the sender is not known, while
the use of the environment demands that both sender and receiver of a message are specified. It is
important to understand that instances and gates are both equally qualified to be sender and receiver
of messages.
Therefore, a message from a gate or a message to a gate is considered a complete message.

4.6.2 Message Gates
This MSC illustrates the use of explicitly and implicitly named gates. Messages from implicitly named
gates are called “messages from env”.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 32

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

msc MessageGateExample

FunctionBlock1Controller FunctionBlock1

USERDEF.MMI_Event_TuneNext
MyInGate

MOST.Function1.Set

MOST.Function1.Status
USERDEF.MMI_Update

MyOutGate

USERDEF.MMI_Event_TunePrevious

message
gate name

message
from env

message
 from gate

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 33

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.6.3 Use of Message Gates
This MSC shows us how gates are used in references.

msc MessageGateUsageExample

HMI FunctionBlock1Controller FunctionBlock1

USERDEF.MMI_Event_
TuneNext

MyInGate

USERDEF.MMI_Event_Update MyOutGate

USERDEF.MMI_Event_
TunePrevious

MessageGateExample

USERDEF.MMI_Event_DriverOverride
MyOuterGate

MyInnerGate

AnotherMessageGateExample

message
gate name

named gate

message
to named gate

message from
named gate

message from outer named
gate to named gate in reference.

Here, the “MessageGateExample” MSC from the previous chapter is referenced. It is easy to see how
the referencing MSC and the referenced MSC come to match when you take a look at both.

You can also see an additional reference to an MSC named “AnotherMessageGateExample” (the
content of which we did not depict here). The interesting part about it is that messages which come
from the environment can be forwarded to a reference. No MSC instance is involved in the
communication, but merely two gates – one that sends the messages, and one that receives it.

So, why do we need gates at all? We have two main applications for gates. One is the reuse of
generic MSCs, which combines well with gates. Also, gates are essential in our favored approach to
modeling Broadcast and Groupcast messages.

When using gates, it is important to ensure proper matching of the in- and out-gates.

You will find more information on generic MSCs and handling of Broadcast and Groupcast messages
in the following chapters.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 34

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.7 Timers and Time Constraints
Timers provide information on the timing requirements which have to be respected to achieve correct
(free of errors) execution of the MSC. Timers can be set and stopped. When a timer times out, a
“timeout event” occurs.

msc Timers

FunctionBlock1Controller FunctionBlock1

MOST.Function1.SetGet
(Param1='true')

Timer1

10[ms]

Timer1

MOST.Function1.Error
(ErrorCode=_, ErrorInfo=_)

MOST.Function2.SetGet
(Param1='true')

Timer2

20[ms]

Timer2

MOST.Function2.Status
(Param1='true')

set timer

timeout event

reset timer

The above MSC example uses the “MSC 96” form of timers.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 35

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Timers can be used for the following two purposes:

• specify delays

• specify an alternative to receiving a certain message within a certain tie interval (the timeout
becomes a “no interaction” kind of event)

Untitled

msc TimerExample

A B C

USERDEF.Request

USERDEF.Request
t1

[10]

alt
USERDEF.Reply

t1
USERDEF.OK

t1
USERDEF.NOK

This example shows how timers can be used to specify behavior that depends on not receiving a
certain message.

Instance A that is forwarding a request for instance C, waits for the “Reply” message from instance B.

If it arrives, everything is fine, timer t1 is stopped and instance C is notified of success. If nothing
happens, in the second part of the alternative, timer t1 will time out and a “not ok” message is sent to
tell instance C that B did not reply in time.

When the duration between two events is of interest, we propose the use of the more intuitive way of
describing time constraints, which has been introduced in MSC 2000.

Time constraints do not affect the execution of MSC events. Still, for traces to be valid, the timings
as specified have to be respected.
On the other hand, timers are real events!

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 36

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

msc Black_Box_Measurement_Scenario

TC SUT

@abs1

Get_NamedAccess

SetUserContext
(variables 'name' = 'ua')

Start_Service
(variables 'type' = 'services')

@abs2

[0,5s]&rel1

&rel2

(0,
2*rel2)&rel3

MSC 2000 timing example from the MSC-Specification:
The MSC Black_Box_Measurement_Scenario uses absolute measurements (indicated by @) and
relative measurements (indicated by &). Absolute measurements observe the value of the global
clock.
The absolute measurements @abs1 and @abs2 give the absolute start and end of the test described
as a sequence of Get_NamedAccess, Set_UserContext and Start_Service. In addition, relative
measurements are used to measure the time distance between pairs of events.
For example, &rel1 measures the distance between the start event of Get_NamedAccess and the start
event of Start_Service. This measurement is combined with a constraint (0,5s] meaning that the
duration between start of Get_NamedAccess and start of Start_Service is constrained and the time it
takes really (within the given bounds of the constraint) is observed by means of the relative
measurement.
(0, 2*rel2) &rel3 is also a relative time constraint combined with a relative measurement. This
constraint refers to a measurement on the duration between start of Get_NamedAccess and its end
taken before.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 37

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.8 Inline Expression: loop

4.8.1 Loop Boundaries
When “loop” inline expressions are used, it is vital that the proper loop boundaries are specified.

msc Loop

FunctionBlock1Controller FunctionBlock1

loop <0, inf> Send Function1.Status
zero times up to
infinite repetitions. It is
not determined how
often it will actually be
sent.

MOST.Function1.Status
(Param1='SomeValue')

loop boundaries

inline expression frame

The most basic form is “loop <n,m>” where n and m are expressions of type natural numbers. This
means that the operand may be executed at least n times and at most m times. The expressions may
be replaced by the keyword inf, like “loop <n,inf>”. This means that the loop will be executed at least n
times. If the loop bounds are omitted like in “loop”, it will interpreted as “loop <1,inf>”.
The termination of loops may depend on parameter values. We will provide examples of how to
specify those cases.
The loop inline expression includes messages that occur in a loop according to the condition given in
the upper left corner of the inline expression.
Loop examples
Expression Description
loop <a> Interpreted as loop <a,a>, exactly a repetitions.
loop <a,b> At least a repetitions / max. b repetitions.
loop <a,inf> At least a repetitions / max. unlimited repetitions.
loop <a,a> Exactly a repetitions.
loop <0,inf> No specified number of repetitions.
loop <inf> Caution! “loop <inf>” means the same as loop <inf,inf>, which is a

truly infinite loop! This loop cannot be broken!

4.8.2 Guarded Loops
When the loop operand is guarded, the loop is terminated if the guard is false, or continued if the
guard is true as long as the upper bound has not been reached. Thus, a loop equals an empty MSC if
the guard is false the first time the loop is entered.

If the lower boundary of the loop is not reached due to the guard, the entire loop is interpreted as
dynamically illegal.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 38

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

If the number of loop cycles is not bounded, the guard condition can be used to terminate the loop:

Message Sequence Chart Symbolic Notation
msc loop1

FBlockID1.InstID1 FBlockID2.InstID2

loop <0, inf>

when cond

msg

while (cond)
{
 msg();
}

However, you should be aware that the guard is not altered anywhere in this MSC! So to terminate
the loop, we have to assume that while the loop is being executed, a parallel MSC performs the
invalidation of “cond”, so that the loop can terminate. What we have here is a potentially infinite
loop–which could be exactly what the creator of the MSC wanted to specify.

The following loop shall be executed at least Nmin times, and no more than Nmax times. If the
maximum number of loop cycles equals Nmax, the termination of the loop depends both on Nmax and
the guard condition:

Message Sequence Chart Symbolic Notation

int n = 0;
while (cond && (n<Nmax))
{
 msg();
 n++;
}
if (n < Nmin)
 throw DynamicError;

msc loop2

FBlockID1.InstID1 FBlockID2.InstID2

loop <Nmin, Nmax>

when cond

msg

In the example given above, there is potential problem. A situation might occur, where the loop
counter is less than Nmin, but “cond” does not evaluate to true anymore. So even if the minimum
required number of loops iterations has not been reached, the loop is terminated. In the MSC world
this is called a “dynamic error”, or as mentioned before the loop might be “dynamically illegal”.

Please also note that “cond” is not altered in this MSC, just as in the example before. In general, it is
good practice to do that in the same MSC and not in another MSC, which performs the re-setting in
parallel.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 39

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

If the minimum and maximum number of cycle loops is identical, it does not make any sense to guard
the loop operand:

Message Sequence Chart Symbolic Notation

int n = 0;
while (n < N)
{
 msg();
 n++;
}

msc loop3

FBlockID1.InstID1 FBlockID2.InstID2

loop <N, N>

msg

4.8.3 Loop Termination
Here is an example of how to break a loop:

Message Sequence Chart Symbolic Notation

StateType State =
working;

while (State == working)
{
 Status();

 if (ReceivedStart
 (abort))
 {
 State = aborted;
 }
}

msc LoopTermination

 FunctionBlock1Controller FunctionBlock1

 State := working;

 loop <0, inf>

when (State =
 working)

 MOST.Function1.Status
 (Param1='SomeValue')

opt
MOST.Function2.Start

 (Operation='abort')

 State := aborted

Please note that we are using “guarding conditions with expressions” in this example, this gives us the
opportunity to define actual types. This would not be permitted if we used named conditions.
We have a variable “State” that monitors the current state. Before the loop is entered it is set to
working, so the loop will perform at least one iteration. After sending the Status message, it is checked
whether or not a “Start” message has been received from the Controller, containing the “abort” as
requested operation.

If the message exists, the State variable will be set to “aborted”. Thus, when the loop entry condition is
checked the next time, the loop will break as intended, and the Status message will no longer be sent.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 40

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.8.4 Waiting Condition
There are cases when an “MSC shall wait” for a system event to occur that is not explicitly modeled.
Such an event might be the change of a clamp state.

For example, we might want to model the following requirement:
FunctionBlock1 shall wait until clamp “R” has value “OFF”. Then it shall send “Function1.Status” to its
controller instance.

If we merely used a guarding condition that checks if clamp “R” is OFF, it might evaluate to false when
the MSC becomes active, causing the scenario to fail even if the clamp state changes to OFF shortly
after. We could explicitly model the change of the clamp’s state as an MSC message. But usually we
will not want to ornate application level MSCs with low level communication.

Our solution to this problem can be found in the following diagram. Here, the MSC will wait in the loop
until g_eClampR no longer contains ON as value.

Message Sequence Chart Symbolic Notation

msc WaitingCondition

FunctionBlock1Controller FunctionBlock1

loop <0, inf>

when (g_eClampR = ON)

MOST.Function1.Status
(Param1='SomeValue')

while (g_eClampR == ON)
{
 // wait
}
Status();

Unfortunately, it is not self-explanatory that g_eClampR can alter its state without any visible
interaction. We highly recommend to document in detail that variable g_eClampR is expected to be
changed externally. Otherwise the readers of the MSC will look for the change of clamp state in other
MSCs and not find it.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 41

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.9 Inline Expression: Alternative
The Alternative inline expression embraces messages which are variants of valid message patterns.
Alternative Inline Expressions can be recognized by the word alt in the upper left corner of the inline
expression. In addition a condition can be placed inside each alternative of the alternative inline
expression. A dashed line separates the different alternative areas.

msc Alternative

FunctionBlock1Controller FunctionBlock1

alt

when (
MyCondition =

true)

MOST.Function1.Set
(Param1='true')

otherwise

MOST.Function2.Set
(Param1='true')

alternative

guarding condition for
first alternative

dashed line
separates alternatives guarding condition for

second alternative

4.9.1 Deterministic Alternatives – Bilateral Alternatives
This means that the message msg1 is executed if the condition cond is true. Otherwise the message
msg2 is executed.

Message Sequence Chart Symbolic Notation
MSC bilateral_alternative

FBlockID1.InstID1 FBlockID2.InstID2

alt

when cond

msg1

otherwise

msg2

if(cond)
 msg1();

else
 msg2();

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 42

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.9.2 Deterministic Alternatives – Multilateral Alternatives
This means that the message msg1 is executed if the expression cond1 is true. If the expression
cond1 is false and the expression cond2 is true the message msg2 is executed. Otherwise the
message msg3 is executed.

Message Sequence Chart Symbolic Notation
MSC multilateral_alternative

FBlockID1.InstID1 FBlockID2.InstID2

alt

when cond1

msg1

when cond2

msg2

otherwise

msg3

if(cond1)

 msg1();

else if (cond2)

 msg2();

else
 msg3();

If one alternative block contains one or more unguarded alternatives, those are considered
to be “true” by definition, and the “otherwise” branch will never come to execution!

(See ITU-T Z.120, chapter 7.2 “Inline Expression”, page 74 “Semantics”)

Recommendations for alternatives:

• Do not mix unguarded and guarded branches. Guard all branches or none.
• To avoid non-determinism, do not use overlapping conditions. Keep conditions disjoint

among one another.
• Do not overscope guarding conditions.
• Place guards on the sender instance, not the receiver instance.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 43

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.10 Inline Expression: Optional
The Optional Inline Expression embraces messages that can occur (without guards) or are necessary
under certain conditions (with guards).

4.10.1 General Use
Optional inline expressions are marked by the word opt in the upper left corner of the inline
expression. In addition, a condition can be placed inside each alternative of the optional inline
expression. If the condition evaluates to “true“, the content of the optional expression must be
executed.

msc UnguardedOptional

FunctionBlock1Controller FunctionBlock1

opt

MOST.Function1.Status
(Param1='true')

4.10.2 Deterministic Alternatives – Unilateral Alternatives
In the unilateral alternative the execution of one or more messages depends on a condition cond. The
condition cond is included in a condition symbol and can be attached to one or more instances.

Message Sequence Chart Symbolic Notation

if(cond)
{
 msg();
}

MSC unilateral_alternative

FBlockID1.InstID1 FBlockID2.InstID2

opt

when cond

msg

This means that the Message msg only occurs if the expression cond is true.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 44

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.11 Inline Expression: Parallel
The Parallel Inline Expression includes messages that occur in parallel. Parallel Inline Expressions are
indicated by the word par in the upper left corner of the inline expression area. A dashed line divides
the areas that are to be processed in parallel.

msc Parallel

FunctionBlock1Controller FunctionBlock1

par

MOST.Function1.Status
(Param1='true')

MOST.Function2.Status
(Param1='true')

MOST.Function3.Status
(Param1='true')

parallel
dashed lines

divide the
parallel sequences

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 45

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.12 Inline Expression: Exception
The exc operator is a compact way to describe exceptional cases in an MSC. The meaning of the
operator is that either the events inside the <exc inline expression symbol> are executed and then the
MSC is finished or the events following the <exc inline expression symbol> are executed. The exc
operator can thus be viewed as an alternative where the second operand is the entire rest of the MSC.

If an MSC that contains an exception is referenced by another MSC, the messages that follow the
reference are not influenced by the presence of the exception.
All exception expressions must be shared by all instances in the MSC.

Guarding can be used to give an entry condition for the exception expression. The two following MSCs
show a guarded exception expression and the equivalent bilateral alternative.

Message Sequence Chart with exception Equivalent representation with alternative

msc ExceptionAsAlternativemsc GuardedException

FunctionBlock1 FunctionBlock2

MOST.Function1.Status

FunctionBlock1 FunctionBlock2

MOST.Function1.Status
(Param1='initializing, about to send some

data')

exc

when (InitState
= failed)

MOST.Function1.Status
(Param1='we have a problem')

MOST.Function2.Status
(Param1='some data')

(Param1='initializing, about to send some
data')

alt

when (InitState
= failed)

MOST.Function1.Status
(Param1='we have a problem')

otherwise

MOST.Function2.Status
(Param1='some data')

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 46

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.13 Coregion
A coregion, whose graphical representation is a vertical dashed line delimited by short horizontal lines,
is part of one instance axis. All events located in the coregion are unordered.

A number of coregions on different instances can be used at the same time:

msc CoregionResolved1

FunctionBlock1Controller FunctionBlock1

MOST.Function1.Status
(Param1='true')

MOST.Function2.Status
(Param1='true')

start of
coregion

end of
coregion

two potential
sequences

msc Coregion

FunctionBlock1Controller FunctionBlock1

MOST.Function1.Status
(Param1='true')

MOST.Function2.Status
(Param1='true')

msc CoregionResolved2

FunctionBlock1Controller FunctionBlock1

MOST.Function2.Status
(Param1='true')

MOST.Function1.Status
(Param1='true')

From an MSC standard point of view, even four sequences would be possible in this example if
message overtaking was taken into consideration. In a MOST environment, messages will not
overtake each other, so the number of potential sequences is limited to two.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 47

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

msc CoregionToOrderedExample page 1 of 1

HMI FunctionBlock1Controller FunctionBlock1 FunctionBlock2

MOST.Function1.SetGet
(Param1='true')

MOST.Function1.Status
(Param1='true')MOST.Function3.Status

MOST.Function2.Status
(Param1='true')USERDEF.MMI_Update

This example shows how coregions can be used when communicating with instances that require
ordering of messages.
The reception of MOST.Function1.SetGet in FunctionBlock2 triggers the sending of two messages in
arbitrary order. Therefore, of course, FunctionBlock1 should also be able to receive them in any order.
At some point before, during or after the reception FunctionBlock1 shall send MOST.Function3.Status
to its controller instance. The controller instance itself requires ordering and will only notify the HMI
instance after the MOST.Function3.Status message has arrived.

The MSC standard does not permit placing inline expressions or MSC references inside
coregions.
In fact, only “orderable events” are allowed. Orderable events are messages and actions boxes.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 48

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.14 Broadcast / Groupcast
The MSC2000 standard does not provide a vocabulary for broadcast or groupcast messages, i.e. for
messages with multiple receiving instances. This is, however, a crucial element in bus oriented
communication protocols. In the following, a convention for the representation of broadcast/groupcast
messages is described that is conforming to the MSC 2000 standard.

4.14.1 Recommended Approach
For exchanging message sequence charts via the standard textual representation, a special
identification of broadcast and groupcast messages is necessary. For this purpose, a "note" will be
employed. Optionally, also a special graphical marking can be used in the diagrams.
Ordinary messages with a single receiving instance are to be placed on different vertical positions, i.e.
no two message arrows are to be placed on the same height. For broadcast or groupcast messages,
however, multiple arrows will be placed on the same vertical position, so that multiple receiving
instances can be shown in the diagram. Additionally, each broadcast/groupcast message will involve
the environment (via a message from or to an environment gate, cp. section “4.6 Environment and
Gates”), indicating that there might be additional recipients outside of the scope of the message
sequence chart.

See the following diagram for an example of a broadcast message originating from the NetworkMaster
and being received by two NetBlock instances:

msc ExampleBroadcast

PowerMaster NetBlock.0x01 NetBlock.0x02

MOST.ShutDown.Start MOST.ShutDown.Start MOST.ShutDown.Start

If the sender of the broadcast/groupcast message is not shown in the diagram, a message from the
environment is included on the same vertical position:

msc ExampleBroadcastExtern

NetBlock.0x01 NetBlock.0x02

MOST.ShutDown.Start MOST.ShutDown.Start

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 49

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

In both cases, a gate name for the message to/from the environment can be given (not shown in the
example diagrams).
This convention also allows for specifying broadcast/groupcast messages into or out of referenced
MSCs. When an MSC reference is associated with a subset of the instances in an MSC, a broadcast
can originate in the referencing MSC and be received within the referenced MSC or vice versa. See
the following examples:

msc ExampleBroadcastFromRef

PowerMaster NetBlock.0x01 NetBlock.0x02

MOST.ShutDown.
StartSendBroadcast MOST.ShutDown.Start MOST.ShutDown.Start

This shows a broadcast message sent within a referenced MSC and received in the referencing MSC.
The general mechanism of gate and environment messages is described in section “4.6 Environment
and Gates”. In the following example, a broadcast message originating in the referencing MSC can be
received within the referenced MSC:

msc ExampleBroadcastIntoRef

NetBlock.0x01 NetBlock.0x02 PowerMaster

MOST.ShutDown.
StartMOST.ShutDown.Start ReceiveBroadcast

Optionally, a special graphical marking can be employed to explicitly mark messages as broadcast or
groupcast and to differentiate between the two types. The single letter "B" or "G" respectively in a
circle can be displayed above one of the message arrows. Additionally, a groupcast address can be
specified for groupcast messages. Note that this is not part of the MSC2000 standard.

msc ExampleGroupcastIndication

PowerMaster AudioAmplifier.0x01 NetBlock.0x01

MOST.ShutDown.Start 0x001 G MOST.ShutDown.Start

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 50

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

In the textual representation of the message sequence chart, the broadcast/groupcast message will be
represented by a set of messages, one for each receiver and with a common sender. To indicate the
special meaning and the grouping, a broadcast or groupcast id is assigned in a special note. See the
following example fragment (this corresponds to the first example in this section, broadcast id
highlighted):

 PowerMaster: label L0; out MOST.ShutDown.Start,1 to NetBlock.0x01
 /* BroadcastId:1 */;
 NetBlock.0x01: in MOST.ShutDown.Start,1 from PowerMaster;
 PowerMaster: label L1; out MOST.ShutDown.Start,2 to NetBlock.0x02
 /* BroadcastId:1 */;
 NetBlock.0x02: in MOST.ShutDown.Start,2 from PowerMaster;
 PowerMaster: label L2; out MOST.ShutDown.Start,3 to env
 /* BroadcastId:1 */;

4.14.2 Alternative Representations (not recommended)
For the sake of completeness we will mention two alternative ways of representing
Broadcast/Groupcast Messages, even if we do not recommend that you use them.

4.14.2.1 Broadcast Comment
In this variation, Broadcast messages are marked with the comment “{broadcast}” (the curly brackets
are an indication for the test generator to evaluate this comment. They are used to differentiate them
from normal comments.)
In the example below, two broadcast messages are sent to every NetBlock instance in the system.
Each broadcast message has a “{broadcast}” comment. Only one message is sent, but it is received
by a number of instances. The reader of the MSC has to be familiar with MOST and “imagine” those
receives.

msc BroadcastExample

NetBlock.0x01 PowerMaster

MOST.ShutDown.Start
(Suspend='Query') {broadcast}

t_suspend

2000[ms]

t_suspend

MOST.ShutDown.Start
(Suspend='Execute')

{broadcast}

broadcast message

4.14.2.2 Lost and Found Messages
Alternatively, lost and found messages can be used to represent a broadcast/groupcast message.
However, they hold the disadvantages that we mentioned when we described the concept of
lost/found messages (either sender or receiver are unknown).

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 51

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

4.15 Generic instances
Instances in MSCs that are placeholders for concrete instances are called generic instances. An MSC
that contains at least one generic instance is called a generic MSC.
Generic instances are those which appear in the list of formal parameters, in parentheses right
behind the MSC name. In the example below, both instances are generic because both “Origin” and
“Target” are contained in the formal parameters list.

formal parameters
msc GenericReferenced(inst Origin, Target;)

Origin Target

MOST.Function1.StartResult

MOST.Function1.Result

If a generic MSC is referenced in another MSC, the generic instances have to be bound, i.e. it has to
be defined which instance of the referencing MSC maps to which generic instance in the referenced
generic MSC.
In the example below, the generic MSC from above is referenced. The binding is done by providing
actual parameters in the reference. “FunctionBlock1Controller” is assigned to “Origin”, while
“FunctionBlock1” is assigned to “Target”.

msc GenericMain

HMI FunctionBlock1Controller FunctionBlock1

USERDEF.MMI_Event.App1_Trigger
(Action='SomethingUrgent')

GenericReferenced
(inst Origin = FunctionBlock1Controller, Target =

FunctionBlock1)

reference with actual parameters

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 52

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

5 Appendix A: Extension to MSC2000 (Named
Parameters)

5.1 Rationale / Requirements
When employing Message Sequence Charts for the specification, definition, and description of
communication protocols with complex parameter types, the simple message format of the MSC2000
Standard and commonly used data languages reveal their shortcomings. Especially when looking at
MOST communications, the following requirements are identified:

• naming of parameters in messages (e. g. SourceNr, Data, ErrorInfo, etc.)

• representation of complex types (arrays, records, arrays of records etc.)

• different parameter formats for the same message (e. g. complete array of records, single
record, single entry etc.)

Therefore, by common agreement between DaimlerChrysler, BMW, and a number of tool vendors and
software suppliers, an extension of the MSC2000 Standard was defined. A respective proposal will be
submitted to ITU for a future release of the MSC Standard.
In the following sections a simple, backward compatible extension is described that introduces
optional parameter names. This is complemented by a convention for using parameter expressions for
complex types - with the advantage of maintaining static message signatures.

5.2 Named Message Parameters
In the MSC2000 Standard, message parameters can be defined solely "by position", i.e. parameter
values can be specified - and the order determines the assignment to declared parameters, e.g.

MOST.Allocate.Result('1', '10', 'Channel1')

In the extended format, optional definitions of parameter names are allowed, e. g.

MOST.Allocate.Result(SourceNr='1', SrcDelay='10', ChannelList='Channel1')

with the parameter names defined in the MOST Function Catalog. When parameter names are
specified, the order of the parameters is not fixed - but it is not permissible to mix positional and
named specifications within the same message.

Thus, partial specifications become possible by omitting irrelevant parameters, e. g.

MOST.Allocate.Result(SourceNr='1', ChannelList='Channel1')

Optionally, the omission can be indicated in the diagram by ellipses ("..."), but not in the MPR file:

MOST.Allocate.Result(SourceNr='1', ..., ChannelList='Channel1')

Alternatively, a parameter name can be specified without assigning a value by using wildcards
(default: "_"), e. g.

MOST.Allocate.Result(SourceNr='1', SrcDelay=_, ChannelList='Channel1')

Parameters, which are omitted, are treated as if wildcards had been provided.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 53

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

5.3 Hierarchical Representation of Complex Values
In MOST Function Catalogs, complex parameter types are defined (e. g. arrays of records). When
representing these in messages, a hierarchical format is employed. An array of records is specified by
using a pair of parameters "Pos" and "Data". The latter of these contains the array of records, or part
of it, depending on the value of "Pos". Example:

MOST.ATPresetList1.Status(Pos={x='0', y='0'},
 Data={PresetSelection[0]=_, Sendername[0]=_, SendernameInfo[0]=_,
 PTY[0]=_, TpTa[0]=_, PI[0]=_, PresetSelection[1]=_,
Sendername[1]=_,
 SendernameInfo[1]=_, PTY[1]=_, TpTa[1]=_, PI[1]=_, ...})

Curly brackets ("{", "}") are used to delimit the value of a complex parameter - this constitutes a legal
<expression string> in terms of the MSC2000 Standard. Within the curly brackets, the same named
parameter format is employed, i.e. parameter names, omissions, wildcards and ellipses (in graphical
representation only!) are used. Note the convention for indicating array members (indices in square
brackets) and the usage of record member names. The record is not named, so the generic (sub-
)parameter name is

RecordMemberName[ArrayIndex]

In the above example, the parameter "Pos" has two components, x and y. Setting both to 0 requires
the complete array of records to be transmitted in "Data". But different settings of "Pos" specify that
"Data" contains only parts of the array of records. One advantage of the chosen approach is that the
signature of the overall message ("Pos"/"Data") is still static.

Stream parameters are not represented in hierarchical form, as there are many different uses for this
kind of parameters. Instead, the parameter value is treated as a string that is to be parsed by the
target application in the context of the specific message type. E.g.

MOST.Allocate.Result(ChannelList='Channel1, Channel2, ...')

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 54

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

5.4 Named MSC/Reference Parameters
The MSC2000 allows for the declaration of MSC parameters (instance, message, data, and timer
parameters) and their assignment in MSC references. Both declaration and assignment also profit
from the use of parameter names.

Therefore, the format for named message parameters is applied here analogously. E.g.

msc Handshake(inst Source, Sink)

defines two instance parameters (“Source”, “Sink”) for MSC “Handshake”. A reference to “Handshake”
can assign actual values (instances from the referring MSC) to these parameters by using

reference Handshake(inst Source = AmFmTuner, Sink = AudioAmplifier)

In the diagram, only the reference expression

Handshake(inst Source = AmFmTuner, Sink = AudioAmplifier)

will be shown within the MSC reference symbol.

The declaration and assignment of message, data, and timer parameters is analogous (with the
respective keywords "msg", "variables", and "timer").

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 55

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

6 Appendix B: Tool Requirements
A tool is required to edit MSCs. The most frugal way to view, create and edit MSCs is to use a text
editor, because MSCs are based on a textual representation with a defined grammar.
For good reasons, most people will shy away from that alternative and rather utilize a more
sophisticated instrument – a graphical editor.
In the following, we will outline the basic requirements and characteristics of such a tool. We will call it
“MSC editor”.

6.1 The MSC Editor
The MSC editor is the central tool for handling MSCs. Its main features shall support the composition
of MSCs, while additional features support the seamless integration into tool chains and development
processes that are common in the automotive telematics/infotainment domain.

The MSC editor shall be compliant to the Z.120 recommendation, both when reading and writing MSC
files. At the same time it shall support required extensions, e.g. “named parameters”.
The composition of MSCs typically is performed by software architects and engineers who specify
requirements for applications and devices. Those are usually familiar with flowcharts and UML
diagrams. Therefore, the MSC editor shall work similar to commonly used tools for drawing flowcharts
or creating UML diagrams.

6.1.1 Main Features of the MSC Editor
The MSC editor shall support an intuitive graphical composition of MSCs (MSC-GR) and the
modification of existing MSCs. It shall support both HMSCs (High-Level MSCs) and Basic MSCs.
The graphical representation shall be based on a layout engine which uses default settings to
automatically display the MSCs in a way that is convenient for a majority of the users, at the same
time allowing experienced users to modify those settings to meet their special needs.

The MSCs shall be stored in their textual representation (MSC-PR).
The MSC editor shall support the structuring of MSCs by allowing to group MSCs into scenarios.
Further information about scenarios and individual MSCs within a scenario can be added and
displayed, e.g. by the use of MSC comments.

The MSC editor shall offer the user WWW-browser-like functionality to follow references and navigate
back and forth between references. It shall have drag&drop capability to let the user move parts of
MSCs or entire MSCs.

6.1.2 Additional Features of the MSC Editor
Versioning of MSCs is done on the scenario-level (scenarios are mapped to files). The MSC editor
shall support the embedding of version control tags for commonly used version control systems, e.g.
by adding tags to the very top of each *mpr-file (MSC-PR) under version control. These tags are
visible in the textual representation and may also be displayed in the MSC editor’s GUI.

MSCs usually become part of the requirements specification. Therefore, the tool shall support the
connection to one or more requirements management systems, which requires a certain degree of
automation. The user shall be able to view and modify MSCs from their requirements management
system, depending on the particular development process.

In the MOST domain, the MOST FunctionCatalog is commonly used. The MSC editor shall be able to
parse the XML representation of the MOST FunctionCatalog, and offer the user syntactical help during
the specification of MOST communication. The CAN protocol is another commonly used
communication format. It shall be supported by the MSC editor in a way that is similar to the handling
of the MOST FunctionCatalog, wherever applicable.
For different car models, the user shall be able to select different catalogs or databases.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 56

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

7 Appendix C: Data Language
In the MSC Cookbook, SDL was used in many examples that involved data. Here we will introduce
you to the extended subset of the SDL language that we have used in a number of MSCs.

7.1 Constructs
We used SDL data in MSC conditions, actions and time constraints. Data declarations are placed
inside MSC text symbols. (The MSC standard expects them in the document head under the “data”
section.)

Declaration Usage

msc SDLExampleDeclaration

FunctionBlock1Controller FunctionBlock1

data

/*---------- tune state type----------*/
type eTuneState = enumeration of {Tuned, Tuning, NotFound};

process FunctionBlock1; /* set variable scope for follow ing declarations */

/*---------- tune state----------*/
dcl i_eTuneState eTuneState;

/*---------- station ----------*/
dcl i_iStation Integer;

msc SDLExample

FunctionBlock1Controller FunctionBlock1

w hen (g_eMARKET = JAPAN or g_eMARKET = USA)

opt

w hen (i_eTuneState = NotFound)

i_iStation :=
funcNextStation(i_iStation);

MOST.Function1.Status

7.1.1 Conditions
Conditions may include

• Variables of Boolean, Enum, Integer, Real and String types

• Boolean expressions

7.1.2 Actions
Actions include

• Assignments to Variables

• Function Calls

7.1.3 Time Constraints
Time constraints may consist of

• Variables of Real type

7.1.4 Text Symbols
Text symbols are used for

• Data Declarations

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 57

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

7.2 Data Types
We mainly rely on Boolean, Enum, Integer, Real and String types. This chapter contains their
characteristics and the supported operations.
Declaration of data
data
<scope identifier>;
dcl <variable_name1> <variable_type>;
dcl <variable_name2>, <variable_name3> <variable_type>;

7.2.1 Boolean Type
This type can have two literal values, False and True.
Operators
Operator Description
not inverts the value.
and if both parameters are False the result is False, else it is True.
or if both parameters are False then the result is False, else it is True
xor if parameters are different then the result is True, else it is False
= equal
/= not equal

7.2.2 Enum type
This type can be assigned to those constants that have been provided during its declaration.
Enum type declaration example
data
type eMarket = enumeration of {ECE, USA, JAPAN};

Operators
Operator Description
= equal
/= not equal

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 58

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

7.2.3 Integer type
The integer type is used to represent mathematical integers. The literal values of the Integer type are
the usual unsigned decimal numbers. Negative numbers are represented using the unary “-” operator.
Operators
Operator Description
= Equal
/= not equal
+ Addition
- subtraction or “unary minus”
* Multiplication
/ integer division
mod modulus in integer division.
rem remainder in integer division.
< less than
<= less than or equal
> greater than
>= greater than or equal

7.2.4 Real Type
The real type is used to represent mathematical rational numbers.
Operators
Operator Description
= Equal
/= not equal
+ Addition
- subtraction or “unary minus”
* Multiplication
/ Division
< less than
<= less than or equal
> greater than
>= greater than or equal

7.2.5 String Type
The string type is used to represent sequences of alphanumerical characters.
Operators
Operator Description
= Equal
/= not equal

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 59

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

7.3 Examples
In the following, we give a few examples of data language use.

7.3.1 Declaration
Declarations are introduced by the keyword “data“.

data
global;
constant g_eMARKET eMarket := ‘USA’;
dcl g_iTemperature Integer;
dcl g_bCANAvailable Boolean;

process Telephone;
dcl i_sTelephoneNumber String;

process AmFmTuner;
dcl i_rTunedFrequency Real;

In this example, one global constant and two global variables are declared. The global constant that
represents the market is initialized with the value ‘USA’.
In addition, two instance-local variables are declared: A telephone number string that belongs to the
Telephone instance and a Real number value for the AmFmTuner Frequency.

7.3.2 Usage of Variables and Functions in MSCs
Variables can be assigned, compared and used in function calls. The optional SDL keyword “task” can
be used to determine that an action is formal.

task l_iLoopCounter := l_iLoopCounter + 1;

task i_sCurrentStations := GetStationString(i_rTunedFrequency);

7.3.3 Using MOST Catalog Types
A common problem when working with MSCs is properly using data items that are specified in MOST
FunctionCatalogs.
The complex compositions of basic types in records and arrays used in the XML representation of
MOST FunctionCatalogs are not named. That makes it hard to specify MSCs that use variables for
MOST message parameters. For example, how can we create a variable that represents a phonebook
entry with tag, name and telephone number?
We tackle the problem by making an assumption: Structural identity is equivalent to type identity.
Whenever only the names of types differ, the types shall be interchangeable regardless. This
arrangement enables us to declare user-defined types and use them in place of MOST types.

type PhonebookEntry=record of
{
 Tag integer;
 Name string;
 TelNumber integer;
};

process PhonebookController;
dcl i_cNewEntry PhonebookEntry;

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 60

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

In this example, you see the declaration of a record that represents a phonebook entry. A variable of
that user-defined type is declared. In the MSC below, we rely on this declaration and variable
definition.

msc PhonebookEntry

PhonebookController GeneralPhoneBook

MOST.StandardPhonebook.Status
(Tag=_, PosY='1', Data={Tag[_]='_',

...}=:i_cNew Entry)

opt

w hen (i_cMostRecentEntry.Name
/= "Aunt Fanny")

i_cNew Entry.Name := "Aunt
Fanny";

MOST.StandardPhonebook.Set
(Tag='i_cNew Entry.Tag', PosY='1',

Data={Tag[i_cNew Entry.Tag]='i_cNew Entry.Tag',
Name[i_cNew Entry.Tag]='i_cNew Entry.Name',

TelNumber[i_cNew Entry.Tag]=
'i_cNew Entry.TelNumber'})

In the PhonebookEntry example, we assume that Aunt Fanny’s number was the last one dialed. The
user now wants to store the number under the entry “Aunt Fanny”.

The PhonebookController receives the most recently made entry to the phone book. If the name is
already set to “Aunt Fanny”, nothing happens; otherwise the “Name” member is modified.
This example shows how implicitly known MOST types and user-defined data types can be used in
the same context to address a StandardPhonebook entry.

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
 Page 61

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Notes:

Guideline © Copyright 1999 - 2005 MOST Cooperation. All rights reserved.
Page 62

MOST®
MOST MSC Cookbook

MOST MSC Cookbook Rev 1.2 04/2005
Document Version 1.2-00

Notes:

	1 Introduction
	1.1 Motivation
	1.2 Target Audience
	1.3 Overview
	1.4 Request for Comments
	2 Message Sequence Charts – An Introduction
	3 Specific Adaptation of MSCs for Telematics and In-Car Infotainment
	3.1 Instances
	3.1.1 The HMI Instance
	3.1.2 Deployment Information

	3.2 Messages
	3.3 Timing
	3.4 ”Processing” Messages
	3.5 Notifications
	3.5.1 General Notification Handling
	3.5.2 Notification Messages as Triggers

	3.6 Formal Conditions and Actions
	3.7 Naming Scheme for Constants and Variables
	3.7.1 Structure
	3.7.2 Scope
	3.7.3 Variability
	3.7.4 Types
	3.7.5 Examples

	4 MSC Notation and Guidelines for MSC Composition
	4.1 Instance
	4.2 Message
	4.2.1 Overview
	4.2.2 Message Parameters
	4.2.3 Lost Message
	4.2.4 Found Message

	4.3 Condition
	4.3.1 Condition Scope
	4.3.2 Condition Types
	4.3.3 Overscoping of Conditions
	4.3.4 Conditions in HMSCs

	4.4 Actions
	4.5 Reference
	4.5.1 Requirements
	4.5.2 References to Guarded MSCs

	4.6 Environment and Gates
	4.6.1 Environment
	4.6.2 Message Gates
	4.6.3 Use of Message Gates

	4.7 Timers and Time Constraints
	4.8 Inline Expression: loop
	4.8.1 Loop Boundaries
	4.8.2 Guarded Loops
	4.8.3 Loop Termination
	4.8.4 Waiting Condition

	4.9 Inline Expression: Alternative
	4.9.1 Deterministic Alternatives – Bilateral Alternatives
	4.9.2 Deterministic Alternatives – Multilateral Alternatives

	4.10 Inline Expression: Optional
	4.10.1 General Use
	4.10.2 Deterministic Alternatives – Unilateral Alternatives

	4.11 Inline Expression: Parallel
	4.12 Inline Expression: Exception
	4.13 Coregion
	4.14 Broadcast / Groupcast
	4.14.1 Recommended Approach
	4.14.2 Alternative Representations (not recommended)
	4.14.2.1 Broadcast Comment
	4.14.2.2 Lost and Found Messages

	4.15 Generic instances

	5 Appendix A: Extension to MSC2000 (Named Parameters)
	5.1 Rationale / Requirements
	5.2 Named Message Parameters
	5.3 Hierarchical Representation of Complex Values
	5.4 Named MSC/Reference Parameters

	6 Appendix B: Tool Requirements
	6.1 The MSC Editor
	6.1.1 Main Features of the MSC Editor
	6.1.2 Additional Features of the MSC Editor

	7 Appendix C: Data Language
	7.1 Constructs
	7.1.1 Conditions
	7.1.2 Actions
	7.1.3 Time Constraints
	7.1.4 Text Symbols

	7.2 Data Types
	7.2.1 Boolean Type
	7.2.2 Enum type
	7.2.3 Integer type
	7.2.4 Real Type
	7.2.5 String Type

	7.3 Examples
	7.3.1 Declaration
	7.3.2 Usage of Variables and Functions in MSCs
	7.3.3 Using MOST Catalog Types

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

