

© Copyright 1999 - 2006 MOST Cooperation.

MOST
Media Oriented Systems Transport

Multimedia and Control
Networking Technology

 MOST Dynamic Specification
Rev 1.3
12/2006

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 2

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Legal Notice

COPYRIGHT

© Copyright 1999 - 2006 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:
 MOST Cooperation
 Administration
 Bannwaldallee 48
 D-76185 Karlsruhe
 Germany

 Tel: (+49) (0) 721 966 50 00
 Fax: (+49) (0) 721 966 50 01
 E-mail: contact@mostcooperation.com
 Web: www.mostcooperation.com

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 3

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

© Copyright 1999 - 2006 MOST Cooperation.
All rights reserved

MOST is a registered trademark

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 4

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Contents

1 INTRODUCTION.. 11
1.1 Purpose .. 11
1.2 Scope.. 11
2 MSC STRUCTURING .. 12
2.1 General MSCs vs. Scenario MSCs .. 12
3 NETWORK MANAGEMENT ... 13
3.1 SystemStates.. 13
3.2 NetworkMaster General MSCs... 14

3.2.1 Variables used in general NetworkMaster MSCs.. 14
3.2.2 High-level NetworkMaster MSC .. 15
3.2.3 Initializing the NetworkMaster ... 16
3.2.4 Requesting Configuration.. 18
3.2.5 Receiving Registrations... 20
3.2.6 Updating SystemState... 24
3.2.7 Processing NCEs .. 26

3.3 NetworkMaster Scenario MSCs ... 27
3.3.1 Scan Types.. 27
3.3.2 Setting the SystemState to NotOk... 28
3.3.3 Initial Scan ... 29

3.3.3.1 Initial Scan without Node Address ..29
3.3.3.2 Initial Scan System State NotOK to OK ..30
3.3.3.3 Initial Scan with Node Not Responding...31
3.3.3.4 Error during Initial Scan with a stored Central Registry ..31

3.3.4 Regular Scan... 32
3.3.4.1 Normal Scan without implications ...32
3.3.4.2 Normal Scan with Secondary Node ..33
3.3.4.3 Mismatch in InstID in SystemState Ok..34
3.3.4.4 Collision between InstIDs ...35
3.3.4.5 Error when Node Registers an Invalid NodeAddress..36
3.3.4.6 Node Not Responding in SystemState NotOk ..37
3.3.4.7 Node Not Responding in SystemState Ok..39
3.3.4.8 Node Reporting Error (not 2ndary) in SystemState NotOk ...41
3.3.4.9 Node Reporting Error (not 2ndary) in SystemState Ok...43
3.3.4.10 Node causing NotOk three times in succession..45
3.3.4.11 Scan Interrupted by NCE..46
3.3.4.12 NCE in SystemState NotOk Resulting in SystemState Ok ...47
3.3.4.13 NCE in SystemState Ok Resulting in SystemState Ok ...48
3.3.4.14 NCE Resulting in SystemState NotOk ..49
3.3.4.15 Spontaneous Registration of Node ...50
3.3.4.16 Network Slave changes NodeAddress in SystemState OK ..50

3.4 Network Slave General MSCs.. 51
3.4.1 High-level Network Slave MSC ... 51
3.4.2 Initializing the Network Slave .. 53
3.4.3 Running Operation - Primary Node... 56
3.4.4 Running Operation - Secondary Node .. 58
3.4.5 Reset ... 60
3.4.6 Communicate .. 61

3.5 Network Slave Scenario MSCs .. 62
3.5.1 Startup scenarios... 62

3.5.1.1 Startup - Ok ..62
3.5.1.2 Startup - NotOk...63

3.5.2 Communication Scenarios .. 64
3.5.2.1 Communicate with partner ..64

4 CONNECTION MANAGEMENT.. 65
4.1 Introduction ... 65

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 5

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.2 Logical Model of Connection Management .. 65
4.3 Variables used in Connection Management MSCs.. 66
4.4 Normal Behavior ... 66

4.4.1 Connection Management General MSCs ... 67
4.4.1.1 BuildSyncConnection in a SourceConnect System ..67

4.4.1.1.1 Retrieving SourceInfo ..69
4.4.1.1.2 Connecting a Source with SourceConnect ..70
4.4.1.1.3 Connecting a Sink..71
4.4.1.1.4 SourceActivity turned on ..72

4.4.1.2 BuildSyncConnection in a Mixed System ...73
4.4.1.2.1 Establishing the Source Type ..76
4.4.1.2.2 Allocate in a Mixed System..77

4.4.1.3 Removing a Synchronous Connection..78
4.4.1.3.1 Disconnecting a Sink ...79
4.4.1.3.2 Disconnecting a Source using SourceDisConnect...80
4.4.1.3.3 Deallocation Procedure..81

4.4.2 Connection Management Scenario MSCs .. 82
4.4.2.1 Building a Connection with a Known Source ..82
4.4.2.2 SourceConnect with an Unknown Source ..83
4.4.2.3 Building a Connection in a Mixed System with Unknown Sources ...84
4.4.2.4 Removing a Synchronous Connection..85

4.5 Error Handling... 86
4.5.1 Error Handling General MSCs... 86

4.5.1.1 CleanUp in a SourceConnect System ..86
4.5.1.2 CleanUp in a Mixed System ...87

4.5.2 Error Handling Scenario MSCs ... 88
4.5.2.1 Source drop ..88
4.5.2.2 Sink drop ..89

4.6 Extended ConnectionMaster General MSCs ... 90
4.7 Extended ConnectionMaster Scenarios ... 90
4.8 General Sink MSCs .. 91

4.8.1 Connect ... 91
4.8.2 Disconnect... 92

4.9 General Source MSCs.. 93
4.9.1 Allocate.. 93
4.9.2 Deallocate.. 94
4.9.3 SourceConnect.. 95
4.9.4 SourceDisconnect ... 96

4.10 Boundary Change ... 97
5 POWER MANAGEMENT... 99
5.1 Introduction ... 99
5.2 Network wake up .. 99
5.3 Network shutdown .. 100
5.4 Device shutdown .. 102
5.5 Device wake up .. 103
5.6 Network shutdown due to over temperature .. 104
5.7 Network restart after over-temperature shutdown.. 105
6 GENERIC MANAGEMENT OF AUDIO (SYNCHRONOUS DATA).. 107
6.1 Introduction ... 107
6.2 Example Architecture of Synchronous Management ... 107
6.3 Logical Model of Streaming Management.. 108
7 FUNCTION BLOCKS... 109
7.1 AudioAmplifier... 109

7.1.1 Methods... 109
7.1.2 Balance.. 110

7.2 AudioDiskPlayer ... 111
7.2.1 Notification... 111
7.2.2 Loading a CD... 112
7.2.3 Ejecting a Disc... 114

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 6

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.4 New Track Selected .. 116
7.2.5 Searching .. 118
7.2.6 New Track Unchanged.. 120
7.2.7 Start Scan Disc.. 121
7.2.8 Stop Scan Disc.. 123
7.2.9 Start Random .. 124
7.2.10 Stop Random... 126
7.2.11 Start Repeat Track .. 127
7.2.12 Start Repeat Disc .. 128
7.2.13 Stop Repeat... 130

8 TIMERS.. 131

9 NAMING CONVENTIONS ... 131
9.1 Connection Management Naming Conventions... 131
10 APPENDIX A: INDEX OF FIGURES ... 132

11 APPENDIX B: INDEX OF TABLES... 133

12 APPENDIX C: INDEX OF MSCS... 134

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 7

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Document References

Number Document Revision
[1] MOST Specification 2.5
[2] MOST FunctionBlock NetworkMaster 2.5
[3] MOST FunctionBlock ConnectionMaster 2.5
[4] MOST FunctionBlock NetBlock 2.5

Document History

Changes MOST Dynamic Specification Rev 1V2 to MOST Dynamic Specification Rev 1V3

Change
Ref.

Section Changes

1V3_001 General − Minor spelling and grammar corrections.
− Fixed parameters to match Function Library.
− Modified timer names to match the MOST Specification.
− Replaced "synchronous" with "streaming" to match the terminology of the MOST

Specification.
− Where applicable, added note that Secondary Nodes are not supported by MOST50.
− Removed elements/notes that mentioned the stored Registry. The concept of a stored

Central/Decentral Registry is no longer supported by the MOST Specification.
− Replaced NetOn event with Init Ready event.
− Replaced MOST.NCE with USERDEF.NCE because the NCE is not contained in any

function catalog.
− Changed channel info from "AudioAmplifier" to "MOST" to match other MSCs that belong

to the Dynamic Specification.
− Replaced "all bypass" with "bypass".

1V3_002 3.1 − Updated System States diagram to include Shutdown.Start(Execute) transition.

1V3_003 3.2.2 NM_Gen_Startup
− Added end node to HMSC.
− Removed NetOn setting condition because the NetOn state is only reached after Init

Ready is received.

1V3_004 3.2.3 NM_Gen_Init
− Replaced when NetOn condition with reception of Init Ready event.

1V3_005 3.2.7 NM_Gen_ProcessNCE
− Changed single cast NCE into a broadcast message.

1V3_006 3.3.3.1 NM_Sc_Initial_Scan_CR_Not_Stored_SystemState_NotOk
− Modified and renamed to NM_Sc_Initial_Scan_NoNodeAddress_SystemState_NotOk

because Central Registry is no longer stored.
− Renamed section to “Initial Scan without Node Address”.

1V3_007 3.3.3.2 NM_Sc_Initial_Scan_CR_Stored_SystemState_NotOk_To_Ok
− Modified and renamed to NM_Sc_Initial_Scan_SystemState_NotOk_To_Ok because

Central Registry is no longer stored.
− Renamed section to “Initial Scan System State NotOK to OK”

1V3_008 3.3.3.3 NM_Sc_Initial_Scan_CR_Stored_Node_Not_Responding
− MSC removed because the MOST Specification does not support a stored Central

Registry anymore.

1V3_009 3.3.3.4 NM_Sc_Initial_Scan_CR_Stored_Registration_Error
− MSC removed because the MOST Specification does not support a stored Central

Registry anymore.

1V3_010 3.4.1 NS_Gen_Startup
− Added HMSC End element.
− Added note that secondary nodes are not supported by MOST50.
− Removed NetOn condition because Init Ready event was received yet.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 8

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Change
Ref.

Section Changes

1V3_011 3.4.2 NS_Gen_Init
− Renamed NetOn_event to InitReady event. NetOn event is no longer used.

1V3_012 3.3.4.16 NM_Sc_NS_Change_Of_NodeAddress
− This MSC has been removed from the collection due to lack of compliance with the MOST

Specification. A network slave is not allowed to change its NodeAddress during runtime.
The NetworkMaster would signal a transition to NotOk in such an error case, as soon as
the inconsistency is noticed.

1V3_013 3.5.1.1 NS_Sc_StartupOk
− Renamed NetOn_event to InitReady event. NetOn event is no longer used.

1V3_014 3.5.1.2 NS_Sc_StartupNotOk
− Renamed NetOn_event to InitReady event. NetOn event is no longer used.

1V3_015 4.5.1.2 CM_Gen_M_CleanUp
− Changed guarding condition "when (SourceType = Allocate)" to "otherwise".

1V3_016 4.10 − Added new MSC CM_Boundary_Change.

1V3_017 5.5 PM_Gen_Device_WakeUp
− Modeled pre-condition as guarding condition.

1V3_018 5.6 PM_Gen_Overtemp_Shutdown:
− Changed AbilityToWake to PermissionToWake.
− Switching light off when theta_dead is reached is modeled as exception instead of a mere

parallel action.

1V3_019 5.7 PM_Gen_Restart_After_Overtemp_Shutdown
− Changed AbilityToWake to PermissionToWake.
− In those cases where no corresponding events are modeled, added comments, stating

that restarting the network is performed by the NetworkMaster.
− Added Over-Temperature-Shutdown broadcast message from device that is still in the

overtemperature state.
− The device that initiated the over temperature shutdown is allowed to wake up the

network.
− The PowerMaster may restart the network but is not required to do so.
− The network restart may be triggered by the user after tWaitAfterOverTemp has expired.

1V3_020 - NM_Sc_Avoiding_InstID_Collision
− This empty MSC was removed from the collection.

1V3_021 - NM_Gen_ScanType
− This outdated MSC was removed from the collection.

Changes MOST Dynamic Specification Rev 1V2 (04/2006) to MOST Dynamic Specification Rev
1V2 (06/2006)

Change
Ref.

Section Changes

1V2_06_001 3.3.4.13 Substituted unguarded OPT inline expression with additional branch in ALT inline expression
to make the behavior deterministic.

Changes MOST Dynamic Specification Rev 1V1 to MOST Dynamic Specification Rev 1V2

Change
Ref.

Section Changes

1V2_001 General Changed light to modulated signal.

1V2_002 Document
References

Added Function Blocks that also affects the Dynamic Specification.

1V2_003 3.2.3 Updated MSC comments and added timer t_WaitBeforeScan.

1V2_004 3.3.2 Changed order in MSC. Added timer t_WaitBeforeScan and action.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 9

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Change
Ref.

Section Changes

1V2_005 3.3.3.2, 3.3.3.3,
3.3.3.4

Added timer t_WaitBeforeScan.

1V2_006 3.3.4.16 Corrected typo in MSC.

1V2_007 3.4.5 Changed order in MSC and added remark.

1V2_008 3.5.1 Deleted section “Startup – Timeout” due to deletion of t_CfgStatus.

1V2_009 4.4.1.1.4,
4.4.1.3,

4.4.2.1-4.4.2.4,
4.9.3,

Added remark that the source activity is optional.

1V2_010 5.3 Added timer t_SlaveShutdown.

1V2_011 4.5.2 Added Chapter and MSCs handling source and sink drop.

1V2_012 8 Updated Timers table.

1V2_013 3.3.4.4,
3.3.4.10

Deleted specific description of reasons for scan initiation.

1V2_014 3.4.2, 3.5.1.1,
3.5.1.2

Replaced tCfgStatus with tAnswer. tCfgStatus equivalent removed from MSCs.

1V2_015 5.4 MSC changed with respect to t_RetryShutdown timer.

1V2_016 General Unified spelling of NetworkMaster and ConnectionMaster.

1V2_017 3.2.3, 3.3.2,
3.3.3.2, 3.3.3.3,

3.3.3.4

Condition NotOk now set before timer t_WaitBeforeScan starts.

1V2_018 3.2.3 OPT inline expression with “Wait until NCE has not occurred…” action removed - already
covered by tWaitBeforeScan timer.

1V2_019 3.3.4.7, 3.3.4.9 Configuration.Status(invalid) now directly after Central Registry change detected, “No errors
occurred during…” text block removed.

1V2_020 3.3.4.5,
3.3.4.10,
3.3.4.11,
3.3.4.13

Added Remark: “This scenario is only valid for the mechanism of parallel scanning of the
system. It does not cover sequential scanning.”

1V2_021 3.4.5 Deleted Configuration.Status(NotOk) message - already contained in referencing MSCs.

1V2_022 5.2 MSC change: Removed the idle loop. Removed the alternative path that deals with devices
that do not have the permission to wake the network.

1V2_023 3.3.4.3 MSC change: Configuration.Status(Invalid) is now sent immediately after a conflict occurs.
At which point Configuration.Status(New) is sent now depends on whether the NetworkMaster
supports “immediate notification”.

1V2_024 3.3.4.4 SystemState(NotOk) event added as trigger for this MSC.
MSC change: At which point Configuration.Status(New) is sent now depends on whether the
NetworkMaster supports “immediate notification”.

1V2_025 3.3.4.12 Original section 3.3.4.12 NM_Sc_NCE_SystemState_To_Ok has been split into two;
NM_Sc_NCE_SystemStateNotOk_To_Ok now only deals with SystemState NotOk.

1V2_026 3.3.4.13 New section, derived from former section 3.3.4.12 NM_Sc_NCE_SystemState_To_Ok.
Here, the focus is on SystemState Ok. The MSC now differentiates between NetworkMasters
with or without the “immediate notification” feature.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 10

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Change
Ref.

Section Changes

1V2_027 3.3.3.3, 3.3.4.6,
3.3.4.7, 3.3.4.8,

3.3.4.9

Corrected inconsistent use of timer t_DelayCfgRequest:
Timers t_DelayCfgRequest1 and t_DelayCfgRequest2 were renamed to t_DelayCfgRequest.
The latter is now initialized with values t_DelayCfgRequest1 and t_DelayCfgRequest2, in
accordance with 3.2.5 NM_Gen_ReceiveConfiguration.

Changed guarding condition “node has been scanned less than 20 times without answering”
to “ScansWithoutAnswer < 20” and added improved description as comment.

Changes MOST Dynamic Specification Rev. 1V0 to MOST Dynamic Specification Rev 1V1

Change
Ref.

Section Changes

1V1_001 General Deleted old chapters 3.1.1 and 3.1.2.

1V1_002 3 Changed un-initialized logical node address from 0x0FFD to 0xFFFF.

1V1_003 3.3.2 Changed order in MSC.

1V1_004 3.3.4.12 MSC23 compliant with MSC5.

1V1_005 4.3 Added chapter.

1V1_006 4.4 Timeout replaced abort in connection management.

1V1_007 4.4.1.2.1 Sink changed to source.

1V1_008 4.5 Timeout replaced abort in connection management.

1V1_009 5 Added chapter.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 11

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

1 Introduction

1.1 Purpose
Most Dynamic Specification is aimed to be complementary to the MOST Specification and the MOST
FunctionCatalog. The behavior of controller – slave (FBlock) communication is described with
Message Sequence Charts (MSC).

1.2 Scope
The scope of MSCs in this specification is to describe dynamic communication sequences between
controllers and slaves. The Dynamic Specification covers the main scenarios.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 12

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

2 MSC Structuring
There are many different ways to describe a MOST System. In this specification, we look at the
system as consisting of slaves or functional services (FBlocks) which are managed by different
controllers.

When looking at the general behavior in a MOST Network (e.g., network startup procedures), all
network slaves are managed by the NetworkMaster.

The Connection Management manages all connections between slaves.

Audio and video implemented in larger systems are managed by logical entities, Audio or Video
Management. The purpose of these is to control amplifiers and displays. In some systems, these are
implemented as a part of the HMI but could also be implemented as separate devices. Therefore,
Synchronous Management (Audio, Video, or Camera Management) is useful in order to keep complex
systems well structured.

Every FBlock in a MOST System is controlled by a controller. After a startup of a MOST system, it is
possible for different controllers to act simultaneously. Timers and other constraints may affect this
behavior. Communication in the MOST System could, therefore, be seen as consisting of many
controller–slave communication sequences which are either mandatory or optional. The perspective of
looking at these communication sequences could either be a master perspective or a slave
perspective. The aim of this specification is to describe communication from either a master or a slave
perspective. Only the relevant perspective is shown.

2.1 General MSCs vs. Scenario MSCs
The purpose of the general MSCs is to, as complete as possible, describe the dynamic behavior of the
different functional areas (e.g., NetworkMaster, Network Slave or Connection Management). All
possible events and responses from the communication partner are considered. The high-level MSC
of a specific functional area shows how the general MSCs are combined to describe the complete
behavior of this area.

The purpose of the scenario MSCs is to extract a specific path from the general MSCs and thereby
show a simple case. To reduce the total number of MSCs, there can still be alternative or optional
paths inside the scenario MSCs (e.g., handle different responses to a sent message). However, the
intention is to describe the different example cases as simple as possible.

For some functional areas (e.g., AudioDiskPlayer), it is not convenient to describe the complete
dynamic behavior with general MSCs. Instead, different scenario MSCs are used to exemplify the
usage of these functional areas.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 13

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3 Network Management
The MSCs in this section show how the NetworkMaster maintains the Central Registry by collecting
configuration information from all network slaves. The NetworkMaster then distributes information
about the status of the network to all network slaves. Note that the information stored in the Central
Registry is not distributed; the controllers in need of this information have to request this information
from the NetworkMaster.

3.1 SystemStates
The NetworkMaster distributes the SystemState of the network to the network slaves by broadcasting
Configuration.Status() messages. The state diagram in Figure 3-1 shows the SystemStates and which
events affect the states.

Configuration.Status(OK)

Configuration.Status(New)

Configuration.Status(NotOK)

Init Ready

Configuration.Status(OK)

Configuration.Status(Invalid)

Configuration.Status(NotOK)

Shutdown.Start(Execute)

Figure 3-1: States of the network are shown, as well as the status of the Central Registry (CR).

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 14

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2 NetworkMaster General MSCs
The general NetworkMaster MSCs are divided into two parallel processes. One process requests
configurations from the network slaves when required. The other process receives the registrations
when provided by the network slaves. The latter process checks the validity of the registrations. All
network slaves in the network are treated individually.

3.2.1 Variables used in general NetworkMaster MSCs

The general MSCs use variables to simplify the MSCs, as well as reducing the total number of MSCs.
Table 3-1 shows a list of the variables used in the general NetworkMaster MSCs. Figure 3-2 shows an
example of what a Central Registry using some of these variables may look like.

Note that these variables, and the Central Registry in figure Table 3-1 and Figure 3-2 respectively, are
used only to show the behavior and do not specify the actual implementation of the NetworkMaster.

Variable Range Explanation
numErr_nodepos1 0..2 The number of times that this node has caused Configuration.Status(NotOk) in

succession. If the same node causes Configuration.Status(NotOk) three times in
succession, then the node will be ignored until the next NCE or system restart.

request_nodepos1 True, False Holds information if this node should be scanned. If request_4 is set to true, then the
node at node position four should be scanned.

tnodepos
1 0..tWaitForAnswer This is a tWaitForAnswer for each node.

numCompScans 0..∞ The number of times the NetworkMaster has made complementary scans. The value of
numCompScans affects the time between the complementary scans. If the node has
been scanned less than 20 times, then the tDelayCfgRequest1 is used, otherwise tDelayCfgRequest2 is
used instead.

doRequest True, False This variable tells the NetworkMaster if all nodes are to be scanned. If it is set to true,
then all nodes are requested.

ConfigUpdate Success,
Error

This variable tells if the last registration was correct or not. It is used when updating the
configuration status of the network and broadcasting the result of a scan or registration.

numNodes 1..64 The number of nodes to scan.

Table 3-1: Variables used in the general Network Management MSCs

Figure 3-2 shows a cleared Central Registry in a network with four nodes before the NetworkMaster
starts scanning the network. The example Central Registry uses some of the variables in Table 3-1.

Node position NodeAddress FBlockID InstID request_nodepos numErr_nodepos tnodepos

0 - - - request_0 = True numErr_0 = 0 t_0
1 - - - request_1 = True numErr_1 = 0 t_1
2 - - - request_2 = True numErr_2 = 0 t_2
3 - - - request_3 = True numErr_3 = 0 t_3

Figure 3-2: An example of what a Central Registry may look like.

1 "nodepos" is replaced by the node’s actual node position.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 15

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2.2 High-level NetworkMaster MSC
General MSC: NM_Gen_Startup

Description: High-level MSC of NetworkMaster network configuration process. After detecting the Init Ready event,
the NetworkMaster initializes itself, this is shown in NM_Gen_Init.

When the NM_Gen_Init has completed, two parallel processes are started. One process
(NM_Gen_RequestConfiguration) asks nodes for their configuration and one process
(NM_Gen_ReceiveConfiguration) handles the reception of registration messages. These two processes
run in parallel until shutdown.

Prior Condition:

Initiator:

Communication
Partners:

All NetBlocks

Events Init Ready

Timers/Timing
constraints

Remarks:

msc NM_Gen_Startup

NM_Gen_Init

NM_Gen_RequestConfiguration NM_Gen_ReceiveConfiguration

 MSC 1: NM_Gen_Startup

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 16

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2.3 Initializing the NetworkMaster
General MSC: NM_Gen_Init

Description: The NetworkMaster initializes its NodeAddress and resets all variables used during scanning. It also
sets “request_nodepos” for all nodes; this leads to all nodes being scanned, as well as setting
“doRequest” which triggers the scanning process.

Prior Condition:

Initiator:

Communication
Partners:

All NetBlocks

Events Init Ready

Timers/Timing
constraints

- tWaitBeforeScan

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 17

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Gen_Init

Netw orkMaster Netw orkSlave

1

InitReady_event

SystemState NotOk 2

tWaitBeforeScan
[]

tWaitBeforeScan

Derive NodeAddress 3

opt 4

w hen (NodeAddress = 0xFFFF)

NM_Gen_SystemConfigurationUpdate
(variables 'Conf igUpdate' = 'Error')

Delete CentralRegistry and derive
NodeAddress Delete DecentralRegistry and

derive NodeAddress

loop <1,
nodes_in_netw ork>

5

numErr_nodepos := 0 6

request_nodepos := true 7

numCompScans := 0 8

doRequest := true 9

InitComplete

 MSC 2: NM_Gen_Init

1. All nodes in the network, treated individually.
2. The system state is always NotOk following the Init Ready event.
3. The address should be static, stored, or calculated.
4. All NodeAddresses have to be recalculated and all Decentral Registries have to be cleared if

the Central Registry is not stored.
5. Nodepos is incremented for each node.
6. Number of times a node has caused a Configuration.Status(NotOk).
7. All nodes will be requested.
8. Number of Complementary scans performed since startup.
9. Run configuration request of nodes.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 18

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2.4 Requesting Configuration
General MSC: NM_Gen_RequestConfiguration

Description: This process requests the configuration from nodes that have their “request_nodepos” set.

Prior Condition: doRequest = True

Initiator: NetworkMaster whenever doRequest = True

Communication
Partners:

All NetBlocks that have their respective “request_nodepos” set. Please refer to section 3.2.1.

Events NCE

Timers/Timing
constraints

- tDelayCfgRequest
- tWaitAfterNCE
- tWaitForAnswer

Remarks: - An NCE interrupts this process.
- Note that tDelayCfgRequest and tWaitAfterNCE never run simultaneously. Please refer to section 3.2.7.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 19

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Gen_RequestConf iguration

Netw orkMaster Netw orkSlave

1

par

w hen (doRequest = true)

doRequest := false

alt 2

w hen (tWaitAf terNCE is running)

tWaitAf terNCE

w hen (tDelayCf gRequest is running)

tDelayCfgRequest

increment numCompScans 3

numNodes := Number of nodes to
scan

4

loop <1,
numNodes>

5

FBlockIDs.Get 6

tnodepos 7
[tWaitForAnsw er]

exc 8

B NCE
Event

NCE
NM_Gen_ProcessNCE

 MSC 3: NM_Gen_RequestConfiguration

1. All nodes in the network, treated individually.
2. Only wait if an appropriate timer is running.
3. Number of scans determines the timer value.
4. Nodes that has request_nodepos = true.
5. Request is sent by physical addressing. An appropriate delay can be used between each

single request.
6. To each nodepos that should be requested.
7. nodepos is replaced by currently requested nodeposition.
8. The whole MSC will be aborted on a NCE.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 20

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2.5 Receiving Registrations
General MSC: NM_Gen_ReceiveConfiguration

Description: This process handles the reception of registration messages from the network slaves. If a node
registration is correct, it will always be entered into the Central Registry no matter the state of the
network.

Prior Condition:

Initiator: Any NetworkSlave

Communication
Partners:

All NetBlocks that send registrations

Events

Timers/Timing
constraints

- tWaitForAnswer
- tDelayCfgRequest

Remarks: This process is not affected by an NCE.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 21

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Gen_ReceiveConfiguration page 1 of 3

Netw orkMaster NetworkSlave

1

alt

alt

FBlockIDs.Status
(FBlockIDList=_)

FBlockIDs.Error
(ErrorCode=_, ErrorInf o=_)

tnodepos 2

alt

w hen (Error in registration) 3

exc

w hen (numErr_nodepos < 3) 4

Increment numErr_nodepos 5

NM_Gen_SystemConfigurationUpdate
(variables 'ConfigUpdate' = 'Error')

SystemState NotOk

Delete CentralRegistry and derive
NodeAddress Delete DecentralRegistry and

der ive NodeAddress

loop <1,
nodes_in_netw ork>

tnodepos

request_nodepos := true

doRequest := true

Ignore this node until next NCE or
startup

w hen (any InstID is invalid or
duplicate)

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 22

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

page 2 of 3

Netw orkMaster NetworkSlave

FBlockIDs.SetGet
(FBlockID=_, OldIns tID=_, New InstID=_)tnodepos

[tWaitForAnsw er]

Update registry 6

request_nodepos := false 7

numErr_nodepos := 0 8

tnodepos 9

alt

w hen Sy stemState NotOk

opt

w hen (All nodes have answ ered OR
all tnodepos have run out)

NM_Gen_SystemConfigurationUpdate
(variables 'ConfigUpdate' = 'Success ') 10

SystemState Ok

w hen Sy stemState Ok

opt

w hen (registry w as updated)

NM_Gen_SystemConfigurationUpdate
(variables 'ConfigUpdate' = 'Success ') 11

opt

w hen (All tnodepos have run out AND any
request_nodepos = true) 12

alt 13

w hen (numCompScans < 20)

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 23

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

page 3 of 3

Netw orkMaster NetworkSlave

tDelayCfgRequest
[tDelayCf g
Request1]

otherw ise

tDelayCfgRequest
[tDelayCf g
Request2]

doRequest := true 14

 MSC 4: NM_Gen_ReceiveConfiguration

1. A node in the network.
2. nodepos is position of the node that sent the message.
3. Duplicate or invalid NodeAddress.
4. Since last NCE or startup.
5. Reset on NCE, startup, or accepted answer.
6. If any new useable information was obtained.
7. This node needs not to be requested in the next request run.
8. This is cleared since it only counts successive errors that generate a

Configuration.Status(NotOk).
9. The node will be requested again in the next complementary scan.
10. Go to SystemState Ok.
11. Broadcast new information.
12. There is at least one node that has not answered.
13. Set timeout for the complementary scan.
14. Complementary scan is started when tDelayCfgRequest has run out.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 24

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2.6 Updating SystemState

General MSC: NM_Gen_SystemConfigurationUpdate

Description: This MSC shows how the NetworkMaster determines the value of the ConfigurationControl parameter
of the Configuration.Status() message. The value of the ConfigurationControl parameter depends on
the current SystemState and the value of ConfigUpdate.

Prior Condition:

Initiator:

Communication
Partners:

All NetBlocks

Events

Timers/Timing
constraints

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 25

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Gen_SystemConfigurationUpdate(variables 'Conf igUpdate': 'enumeration';)

Netw orkMaster Netw orkSlave

1

alt

w hen (ConfigUpdate = Success) 2

alt

w hen SystemState NotOk

B Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

SystemState Ok

w hen SystemState Ok

opt

w hen (FBlocks w ere removed)

B Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

opt

w hen (FBlocks w ere added OR
node w ithout FBlocks

registered)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

w hen (ConfigUpdate = Error) 3

B Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Conf iguration.Status
(Conf igurationControl='NotOk', ...)

SystemState NotOk

 MSC 5: NM_Gen_SystemConfigurationUpdate

1. All nodes in the network, treated individually.
2. Scan or single request generated no error.
3. Scan generated a fatal error.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 26

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.2.7 Processing NCEs

General MSC: NM_Gen_ProcessNCE

Description: When a NCE is detected, the whole network will be rescanned. This MSC shows how the
NetworkMaster resets and sets the relevant properties.

Prior Condition:

Initiator: Any node switching its bypass.

Communication
Partners:

Events NCE

Timers/Timing
constraints

- tDelayCfgRequest
- tWaitAfterNCE
- tWaitForAnswer (t_nodepos)

Remarks:

msc NM_Gen_ProcessNCE

Netw orkMaster

B NCE

tWaitAf terNCE
[]

opt

w hen (tDelayCf gRequest is running)

tDelayCfgRequest 1

loop <1,
nodes_in_netw ork>

tnodepos

numErr_nodepos := 0 2

request_nodepos := true 3

doRequest := true 4

 MSC 6: NM_Gen_ProcessNCE

1. Not necessary to wait for after a NCE.
2. Reset since a node may have changed position.
3. Rescan all nodes.
4. Restart requesting.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 27

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3 NetworkMaster Scenario MSCs
This section contains a selection of scenarios that describe the basic behavior of the NetworkMaster.

3.3.1 Scan Types

There are two types of scans used in the scenarios:

• Initial Scan - An Initial Scan follows an Init Ready event and continues until the transmission of
the first Configuration.Status() message.

• Regular Scan - Regular Scans refer to all scans following a Configuration.Status() message.

That is, a Regular Scan does not directly follow an Init Ready event.

Performing
Initial Scan

Configuration.Status() message
transmitted

Start

Performing
Regular Scans

End

NetOff

Init
Ready

Figure 3-3: Difference between an Initial Scan and Regular Scans.

There is a need to make this differentiation because the Initial Scan has no tolerance for differences to
the Central Registry (missing nodes are tolerated). If a Network Slave makes a registration that does
not exactly match the Central Registry, a Configuration.Status(NotOk) will be broadcast and a Regular
Scan is started. When performing a Regular Scan, the NetworkMaster has the ability to correct errors
and mismatches in Network Slave registrations.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 28

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.2 Setting the SystemState to NotOk

This scenario is used in the other scenarios whenever the system is reset from a network point of
view.
Scenario MSC: NM_Sc_Set_SystemState_NotOk

Description: This scenario shows what happens in the network when the NetworkMaster broadcasts
Configuration.Status(NotOk).
- The Central Registry is cleared.
- All Decentral Registries are cleared.
- All nodes recalculate their NodeAddress.
- The SystemState is set to NotOk.

Prior Condition:

Initiator: NetworkMaster after a scan error

Communication
Partners:

All NetworkSlaves

Events

Timers/Timing
constraints

tWaitBeforeScan

Remarks: This scenario is valid for all SystemStates.

msc NM_Sc_Set_SystemState_NotOk

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

B Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Conf iguration.Status
(Conf igurationControl='NotOk', ...)

SystemState NotOk

tWaitBeforeScan
[]

Delete the Central Registry
Delete any Decentral Registry

Delete any Decentral Registry
Delete any Decentral Registry

Derive NodeAddress 1
Derive NodeAddress

Derive NodeAddress
Derive NodeAddress

tWatiBeforeScan

doRequest := true

MSC 7: NM_Sc_Set_SystemState_NotOk

1. The address should be static, stored, or calculated.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 29

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.3 Initial Scan

Initial scans follow directly after an Init Ready event until a Configuration.Status() message is
transmitted.

3.3.3.1 Initial Scan without Node Address

Scenario MSC: NM_Sc_Initial_Scan_NoNodeAddress_SystemState_NotOk

Description: This scenario is started by the Init Ready event.

When the Init Ready event is detected, the NetworkMaster checks if it has a NodeAddress stored from
last run. In this scenario, it does not have a NodeAddress stored so it broadcasts
Configuration.Status(NotOk) to clear any Decentral Registries in the network. The NetworkMaster then
starts a Regular scan.

Prior Condition:

Initiator: NetworkMaster following an Init Ready event

Communication
Partners:

All NetworkSlaves

Events Init Ready

Timers/Timing
constraints

Remarks:

msc NM_Sc_Initial_Scan_NoNodeAddress_SystemState_NotOk

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen (Init Ready detected)

SystemState NotOk 1

NodeAddress is NOT stored

NM_Sc_Set_SystemState_NotOk

A Regular Scan w ill now be performed in SystemState NotOk

 MSC 8: NM_Sc_Initial_Scan_NoNodeAddress_SystemState_NotOk

1. The SystemState is always NotOk directly after the Init Ready event.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 30

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.3.2 Initial Scan System State NotOK to OK

Scenario MSC: NM_Sc_Initial_Scan_SystemState_NotOk_To_Ok

Description: This scenario is started by the Init Ready event. NetworkSlave_2 has a Decentral Registry stored from
last run.

When the Init Ready event is detected, the NetworkMaster checks if it has a NodeAddress stored from
last run. In this scenario, it has a NodeAddress stored so it starts to scan the network. All nodes register
correctly and the NetworkMaster broadcasts Configuration.Status(Ok).

Prior Condition:

Initiator: NetworkMaster after Init Ready

Communication
Partners:

All NetworkSlaves

Events Init Ready

Timers/Timing
constraints

- tWaitBeforeScan

Remarks:

msc NM_Sc_Initial_Scan_SystemState_NotOk_To_Ok

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen (Init Ready detected)

SystemState NotOk 1

t_WaitBeforeScan
[]

NodeAddress is stored from last run

Set NodeAddress

t_WaitBeforeScan

par 2

FBlockIDs.Get 3

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

B Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

SystemState Ok

 MSC 9: NM_Sc_Initial_Scan_SystemState_NotOk_To_Ok

1. The SystemState is always NotOk directly after the Init Ready event.
2. This parallel part can also be done sequentially or a mixture of both.
3. Addressing is done by using NodePositionAddress.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 31

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.3.3 Initial Scan with Node Not Responding

This MSC has become obsolete because the notion of a stored Central Registry no longer
exists.

Scenario MSC: NM_Sc_Initial_Scan_CR_Stored_Node_Not_Responding

3.3.3.4 Error during Initial Scan with a stored Central Registry

This MSC has become obsolete because the notion of a stored Central Registry no longer
exists.

Scenario MSC: NM_Sc_Initial_Scan_CR_Stored_Registration_Error

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 32

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4 Regular Scan

3.3.4.1 Normal Scan without implications

Scenario MSC: NM_Sc_Scan_ConfigStatus_To_Ok

Description: The NetworkMaster initiates a scan.

Prior Condition:

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events Application request (optional) or SystemState(NotOK)

Timers/Timing
constraints

Remarks: - This scenario is valid for all SystemStates.
- All nodes respond correctly and on time.

msc NM_Sc_Scan_Conf igStatus_To_Ok

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

par 1

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

All nodes have registered w ithout errors.

opt

w hen SystemState NotOk

B Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

SystemState Ok

 MSC 10: NM_Sc_Scan_ConfigStatus_To_Ok

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 33

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.2 Normal Scan with Secondary Node

Scenario MSC: NM_Sc_Scan_Secondary_Node_Registration_To_Ok

Description: The NetworkMaster scans a system where NetworkSlave_2 is a secondary node that registers
correctly.

Prior Condition: Init Ready

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events Application request (optional) or SystemState(NotOK)

Timers/Timing
constraints

Remarks: This scenario is valid for all SystemStates.

msc NM_Sc_Scan_Secondary_Node_Registration_To_Ok

Note: Secondary Nodes are not supported by MOST50.

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

par 1

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

Netw orkSlave_2 is a secondary node.

FBlockIDs.Get

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID')

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

All nodes have registered w ithout errors.

opt

w hen SystemState NotOk

B Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

SystemState Ok

 MSC 11: NM_Sc_Scan_Secondary_Node_Registration_To_Ok

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 34

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.3 Mismatch in InstID in SystemState Ok

Scenario MSC: NM_Sc_Scan_InstID_Mismatch_ConfigStatus_Ok

Description: NetworkSlave_1 submits a registration with an InstID mismatch from a previous registration. The
NetworkMaster will accept the new registration and broadcast Configuration.Status(Invalid) and
Configuration.Status(New). Other nodes register with an FBlockIDList identical to the previous scan.

Prior Condition: SystemState Ok

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events NCE or an application request (optional)

Timers/Timing
constraints

Remarks: - This scenario assumes that the InstID of NetworkSlave_2 does not collide with another FBlock.
- This scenario shows the behavior during a scan but the behavior is also applicable on a single node
making a registration in SystemState Ok.

msc NM_Sc_Scan_InstID_Mismatch_Conf igStatus_Ok

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState Ok

par 1

Previously stored info regarding
Netw orkSlave_1:

FBlockID=0x22,InstID=0x02

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=

0x01')

Mismatch in InstID

Update the Central Registry 3

B Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

opt

w hen (NWM_supports_immediate_
notif ication = true)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

opt

w hen
(NWM_supports_immediate_notif ication =

false)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

 MSC 12: NM_Sc_Scan_InstID_Mismatch_ConfigStatus_Ok

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.
3. If the new InstID collides with a previously registered FBlock, the NetworkMaster may resolve

this by assigning a new InstID. Please refer to section 3.3.4.4.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 35

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.4 Collision between InstIDs

Scenario MSC: NM_Sc_Scan_InstID_Collision_ConfigStatus_To_Ok

Description: The NetworkMaster scans the network and NetworkSlave_2 registers an FBlock with an InstID that
collides with an FBlock instance in NetworkSlave_1. In case there is a collision between two InstIDs,
the NetworkMaster can set a new InstID for the colliding FBlock. The NetworkMaster reports the
changes to the network differently depending on the current SystemState.

Prior Condition:

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events: NCE, application request (optional), or SystemState(NotOK)

Timers/Timing
constraints:

Remarks: This scenario is valid for all SystemStates.
msc NM_Sc_Scan_InstID_Collision_ConfigStatus_To_Ok

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

FBlockIDs.Get 1

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=

0x01')

Update the Central Registry

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=0x01')

Collision w ith InstID of FBlock in Netw orkSlave_1

Decide new InstID

FBlockIDs.SetGet
(FBlockID='0x22', OldInstID='0x01', New InstID='0x02')

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=0x02')

Update the Central Registry

opt

w hen SystemState Ok

w hen
(NWM_supports_immediate_notif ication =

true)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

All nodes have registered w ithout errors.
Broadcast Conf iguration.Status(Ok).

alt

w hen SystemState Ok

opt

w hen (NWM_supports_immediate_
notif ication = true)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlockID=0x22,
InstID=0x02')

Otherw ise 2

B Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

SystemState Ok

 MSC 13: NM_Sc_Scan_InstID_Collision_ConfigStatus_To_Ok

1. Addressing is done by using NodePositionAddress.
2. SystemState NotOk

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 36

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.5 Error when Node Registers an Invalid NodeAddress

Scenario MSC: NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress

Description: In this scenario, NetworkSlave_2 makes a registration with an invalid NodeAddress.

Prior Condition: SystemState NotOk

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events

Timers/Timing
constraints

Remarks: This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover
sequential scanning.

msc NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState NotOk

FBlockIDs.Get 1

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList='FBlockID=0x22,InstID=0x01')

2

The registered NodeAddress is illegal. Set SystemState to NotOk.

opt 3

FBlockIDs.Status
(FBlockIDList=_)

Response ignored

NM_Sc_Set_SystemState_NotOk

SystemState NotOk

Netw orkSlave_2 has recalculated its
NodePosition.

 MSC 14: NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress

1. Addressing is done by using NodePositionAddress.
2. NodeAddress = 0xFFFF
3. A registration of a NetworkSlave can be ignored if it is received after the detection of an error.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 37

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.6 Node Not Responding in SystemState NotOk

Scenario MSC: NM_Sc_Scan_Node_Not_Responding_In_NotOk

Description: The NetworkMaster scans the system in SystemState NotOk. NetworkSlave_2 does not answer the
request in time. The NetworkMaster will allow this node and continue to request its configuration.

Prior Condition: SystemState NotOk

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events

Timers/Timing
constraints

- tWaitForAnswer
- tDelayCfgRequest

Remarks: - Compare to a similar scenario during an Initial Scan in section 3.3.3.3.
- See also scenario is section 3.3.4.7.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 38

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Sc_Scan_Node_Not_Responding_In_NotOk

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState NotOk

par 1

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get
tWaitForAnsw er

[] FBlockIDs.Status
(FBlockIDList=_)

3

tWaitForAnsw er

Allow missing node

tDelayCfgRequest 4
[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

No errors occured during scan. Broadcast
Conf iguration.Status(Ok).

B Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

SystemState Ok

loop

w hen (Netw orkSlave_2 has not responded)

tDelayCfgRequest 5

FBlockIDs.Get
tWaitForAnsw er

[]

alt

FBlockIDs.Status
(FBlockIDList=_)

6

Update the Central Registry

B Conf iguration.Status
(ConfigurationControl='New ', ...)

Conf iguration.Status
(Conf igurationControl='New ', ...)

Conf iguration.Status
(ConfigurationControl='New ', ...)

Conf iguration.Status
(ConfigurationControl='New ', ...)

FBlockIDs.Status
(FBlockIDList=_)tWaitForAnsw er

alt

w hen
(ScansWithoutAnsw er < 20) 7

tDelayCfgRequest
[tDelayCfg
Request1]

otherw ise

tDelayCfgRequest
[tDelayCfg
Request2]

Allow missing node

 MSC 15: NM_Sc_Scan_Node_Not_Responding_In_NotOk

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.
3. Message lost or not sent.
4. Use tDelayCfgRequest1 since it is the first time this scan that the node is scanned.
5. Wait for tDelayCfgRequest to expire.
6. NetworkSlave_2 registers new FBlocks correctly.
7. Node has not answered during 20 system scans since the network entered the state

NormalOperation.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 39

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.7 Node Not Responding in SystemState Ok

Scenario MSC: NM_Sc_Scan_Node_Not_Responding_In_Ok

Description: The NetworkMaster scans the system in SystemState Ok. NetworkSlave_2 does not answer the
request in time. The NetworkMaster will allow this node and continue to request its configuration but it
will inform the network of the invalid FBlocks that were previously registered in NetworkSlave_2.

Prior Condition: SystemState Ok

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events NCE or an application request (optional)

Timers/Timing
constraints

- tWaitForAnswer
- tDelayCfgRequest

Remarks: - Compare to a similar scenario during an Initial Scan in section 3.3.3.3.
- See also scenario is section 3.3.4.6.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 40

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Sc_Scan_Node_Not_Responding_In_Ok

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState Ok

par 1

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

Netw orkSlave_2 is registered in the Central Registry as having NodeAddress = 0x102, FBlockID = 0x22 InstID = 0x01.

FBlockIDs.Get
tWaitForAnsw er

[] FBlockIDs.Status
(FBlockIDList=_)

3

tWaitForAnsw er
B Conf iguration.Status

(Conf igurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Conf iguration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Conf iguration.Status
(Conf igurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Conf iguration.Status
(Conf igurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

tDelayCfgRequest 4
[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

loop

w hen (Netw orkSlave_2 has not responded)

tDelayCfgRequest 5

FBlockIDs.Get
tWaitForAnsw er

[]

alt

FBlockIDs.Status
(FBlockIDList='FBlock=0x22,InstID=0x01')

6

Update the Central Registry

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

FBlockIDs.Status
(FBlockIDList=_)tWaitForAnsw er

alt

w hen
(ScansWithoutAnsw er < 20) 7

tDelayCfgRequest
[tDelayCfg
Request1]

otherw ise

tDelayCfgRequest
[tDelayCfg
Request2]

Allow missing node

 MSC 16: NM_Sc_Scan_Node_Not_Responding_In_Ok

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.
3. Message lost or not sent.
4. Use tDelayCfgRequest1 since it is the first scan the node disappeared.
5. Wait for tDelayCfgRequest to expire.
6. NetworkSlave_2 registers new FBlocks correctly.
7. Node has not answered during 20 system scans since the network entered the state

NormalOperation.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 41

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.8 Node Reporting Error (not 2ndary) in SystemState NotOk

Scenario MSC: NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_NotOk

Description: The NetworkMaster scans the system in SystemState NotOk. NetworkSlave_2 reports Error when the
NetworkMaster requests its configuration. The NetworkMaster will treat this node as a non-responding
node, and continue requesting FBlockIDs from this node. After 20 retries timer tDelayCfgRequest will change
value.

Prior Condition: SystemState NotOk

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events

Timers/Timing
constraints

tDelayCfgRequest

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 42

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_NotOk

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState NotOk

par 1

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Error
(...)

Allow node, treat as not
responding.

tDelayCfgRequest 3
[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

No errors occured during scan. Broadcast
Conf iguration.Status(Ok).

B Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

SystemState Ok

loop

w hen (Netw orkSlave_2 has not responded)

tDelayCfgRequest 4

FBlockIDs.Get

alt

FBlockIDs.Status
(FBlockIDList=_)

5

Update the Central Registry

B Conf iguration.Status
(ConfigurationControl='New ', ...)

Conf iguration.Status
(Conf igurationControl='New ', ...)

Conf iguration.Status
(ConfigurationControl='New ', ...)

Conf iguration.Status
(ConfigurationControl='New ', ...)

FBlockIDs.Error
(...)

alt

w hen
(ScansWithoutAnsw er < 20) 6

tDelayCfgRequest
[tDelayCfg
Request1]

otherw ise

tDelayCfgRequest
[tDelayCfg
Request2]

Allow node, treat as not
responding.

 MSC 17: NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_NotOk

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.
3. Use tDelayCfgRequest1 since it is the first time this scan that the node is scanned.
4. Wait for tDelayCfgRequest to expire.
5. NetworkSlave_2 registers new FBlocks correctly.
6. Node has not answered during 20 system scans since the network entered the state

NormalOperation.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 43

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.9 Node Reporting Error (not 2ndary) in SystemState Ok

Scenario MSC: NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_Ok

Description: The NetworkMaster scans the system in SystemState Ok. NetworkSlave_2 reports FBlockIDs.Error()
(not ErrorCode 0xA0) when the NetworkMaster requests its configuration. Since NetworkSlave_2 is
registered in the Central Registry, the NetworkMaster has to inform the other NetworkSlaves that the
FBlock in NetworkSlave_2 is invalid. The NetworkMaster will treat this node as a non-responding node,
and continue requesting FBlockIDs from this node. After 20 retries timer tDelayCfgRequest will change value.

Prior Condition: SystemState Ok

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events NCE or an application request (optional)

Timers/Timing
constraints

tDelayCfgRequest

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 44

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_Ok

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState Ok

par 1

FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

Netw orkSlave_2 is registered in the Central Registry as having NodeAddress = 0x102, FBlockID = 0x22 InstID = 0x01.

FBlockIDs.Get

FBlockIDs.Error
(...)

B Conf iguration.Status
(Conf igurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Conf iguration.Status
(ConfigurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Conf iguration.Status
(Conf igurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Conf iguration.Status
(Conf igurationControl='Invalid',
DeltaFBlockList='FBlock=0x22,

InstID=0x01')

Allow node, treat as not
responding.

tDelayCfgRequest 3
[tDelayCfg
Request1]

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

loop

w hen (Netw orkSlave_2 has not responded)

tDelayCfgRequest 4

FBlockIDs.Get

alt

FBlockIDs.Status
(FBlockIDList='FBlock=0x22,InstID=0x01')

5

Update the Central Registry

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='FBlock=0x22,
InstID=0x01')

FBlockIDs.Error
(...)

alt

w hen
(ScansWithoutAnsw er < 20) 6

tDelayCfgRequest
[tDelayCfg
Request1]

otherw ise

tDelayCfgRequest
[tDelayCfg
Request2]

Allow node, treat as not
responding.

 MSC 18: NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_Ok

1. This parallel part can also be done sequentially or a mixture of both.
2. Addressing is done by using NodePositionAddress.
3. Use tDelayCfgRequest1 since it is the first time this scan that the node has reported error this

time around.
4. Wait for tDelayCfgRequest to expire.
5. NetworkSlave_2 registers new FBlocks correctly.
6. Node has not answered during 20 system scans since the network entered the state

NormalOperation.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 45

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.10 Node causing NotOk three times in succession

Scenario: NM_Sc_Scan_Node_Causes_NotOk_Three_Times_In_Succession

Description: NetworkSlave_2 causes SystemState NotOk three times in succession. The node will be ignored until
the next system start or NCE.

Prior Condition:

Initiator: NetworkMaster

Communication
Partners:

All NetworkSlaves

Events NCE

Timers/Timing
constraints

Remarks: This scenario is valid for all SystemStates.
This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover
sequential scanning.

msc NM_Sc_Scan_Node_Causes_NotOk_Three_Times_In_Succession

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

loop <3, 3>

FBlockIDs.Get 1

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList=_)

2

Error in registration

NM_Sc_Set_SystemState_NotOk

Netw orkSlave_2 has caused Conf iguration.Status(NotOk) three times in succession. Ignore this node until Init Ready or NCE.

par

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

B Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

SystemState Ok

 MSC 19: NM_Sc_Scan_Node_Causes_NotOk_Three_Times_In_Succession

1. Addressing is done by using NodePositionAddress.
2. NodeAddress = 0xFFFF

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 46

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.11 Scan Interrupted by NCE

Scenario MSC: NM_Sc_Scan_NCE_Interruption

Description: A scan is interrupted by a NCE. Any current scan is restarted when it is interrupted by a NCE
regardless of SystemState.

Prior Condition:

Initiator: Any node switching its All-Bypass

Communication
Partners:

All NetworkSlaves

Events NCE

Timers/Timing
constraints

tWaitAfterNCE

Remarks: This scenario is valid for all SystemStates
This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover
sequential scanning.

msc NM_Sc_Scan_NCE_Interruption

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

FBlockIDs.Get 1

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

B NCE NCE NCE NCE 2

tWaitAfterNCE
[]

opt

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry 3

tWaitAfterNCE

Restart scan 4

 MSC 20: NM_Sc_Scan_NCE_Interruption

1. Addressing is done by using NodePositionAddress.
2. The NCE occurs during the scanning process.
3. The Central Registry is still maintained.
4. Note that the SystemState is not affected by the NCE.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 47

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.12 NCE in SystemState NotOk Resulting in SystemState Ok

Scenario MSC: NM_Sc_NCE_SystemStateNotOk_To_Ok

Description: When an NCE occurs, the NetworkMaster has to scan the network (after tWaitAfterNCE has expired). In this
scenario, all nodes respond correctly.

Prior Condition: SystemState NotOk

Initiator: Any node switching its All-Bypass

Communication
Partners:

All NetworkSlaves

Events NCE

Timers/Timing
constraints

tWaitAfterNCE

Remarks:

msc NM_Sc_NCE_SystemStateNotOk_To_Ok

When entering this MSC, the SystemState is assumed to be NotOk.

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

B NCE NCE NCE NCE 1

tWaitAfterNCE
[]

tWaitAfterNCE

par 2

FBlockIDs.Get 3

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

B Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

SystemState_Ok

 MSC 21: NM_Sc_NCE_SystemStateNotOk_To_Ok

1. When a NCE is detected, the network has to be scanned.
2. This parallel part can also be done sequentially or a mixture of both.
3. Addressing is done by using NodePositionAddress.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 48

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.13 NCE in SystemState Ok Resulting in SystemState Ok

Scenario MSC: NM_Sc_NCE_SystemStateOk_To_Ok

Description: When an NCE occurs, the NetworkMaster has to scan the network (after tWaitAfterNCE has expired). In this
scenario, all nodes respond correctly.

Prior Condition: SystemState Ok

Initiator: Any node switching its All-Bypass

Communication
Partners:

All NetworkSlaves

Events NCE

Timers/Timing
constraints

tWaitAfterNCE

Remarks:

msc NM_Sc_NCE_SystemStateOk_To_Ok

When entering this MSC, the SystemState is assumed to be OK.

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

B NCE NCE NCE NCE 1

tWaitAfterNCE
[]

tWaitAfterNCE

par 2

FBlockIDs.Get 3

FBlockIDs.Status
(FBlockIDList=_)

One or more FBlocks removed

Update the Central Registry

opt

w hen (FBlocksRemoved = true)

B Conf iguration.Status
(Conf igurationControl='Invalid', ...)

Conf iguration.Status
(Conf igurationControl='Invalid', ...)

Conf iguration.Status
(Conf igurationControl='Invalid', ...)

Conf iguration.Status
(Conf igurationControl='Invalid', ...)

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

New FBlocks or no FBlocks at all.

Update the Central Registry

opt

w hen (New FBlocksRegistered = true
and NWM_supports_immediate_

notif ication = true)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

alt

w hen (New FBlocksRegistered = true and
NWM_supports_immediate_notif ication =

false)

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

w hen (NoChangesToCentralRegistry =
true) 4

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='empty')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='empty')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='empty')

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList='empty')

otherw ise 5

 MSC 22: NM_Sc_NCE_SystemStateOk_To_Ok

1. When an NCE is detected, the network has to be scanned.
2. This parallel part can also be done sequentially or a mixture of both.
3. Addressing is done by using NodePositionAddress.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 49

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4. The reason could be, for example, a new node registration without FBlocks.
5. Due to immediate notification, Configuration.Status(New) was sent straightaway after the

update to the Central Registry. Thus, no message is sent after the System Scan is complete.

3.3.4.14 NCE Resulting in SystemState NotOk

Scenario: NM_Sc_NCE_SystemState_To_NotOk

Description: When an NCE occurs, the NetworkMaster has to scan the network (after tWaitAfterNCE has expired). In this
scenario, NetworkSlave_2 makes an invalid registration.

Prior Condition:

Initiator: Any node switching its All-Bypass

Communication
Partners:

All NetworkSlaves

Events NCE

Timers/Timing
constraints

tWaitAfterNCE

Remarks: This scenario is valid for all SystemStates.
This scenario is only valid for the mechanism of parallel scanning of the system. It does not cover
sequential scanning.

msc NM_Sc_NCE_SystemState_To_NotOk

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

B NCE NCE NCE NCE 1

tWaitAfterNCE
[]

tWaitAfterNCE
FBlockIDs.Get 2

FBlockIDs.Get

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

Update the Central Registry

FBlockIDs.Status
(FBlockIDList=_)

3

Invalid registration

opt 4

FBlockIDs.Status
(FBlockIDList=_)

Response ignored

NM_Sc_Set_SystemState_NotOk

SystemState NotOk

MSC 23: NM_Sc_NCE_SystemState_To_NotOk

1. When an NCE is detected, the network has to be scanned.
2. Addressing is done by using NodePositionAddress.
3. NodeAddress=0x0FFD
4. A registration of a NetworkSlave can be ignored if it is received after the detection of an error.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 50

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.3.4.15 Spontaneous Registration of Node

Scenario MSC: NM_Sc_Spontaneous_Reg_New_And_Invalid

Description: NetworkSlave_1 makes a spontaneous registration. If new FBlocks are added, a
Configuration.Status(New) will be broadcast. If FBlocks are removed, a Configuration.Status(Invalid)
will be broadcast. If the registration is invalid, the system will change state to NotOk.

Prior Condition: SystemState Ok

Initiator: NetworkSlave_1

Communication
Partners:

All NetworkSlaves

Events

Timers/Timing
constraints

Remarks:

msc NM_Sc_Spontaneous_Reg_New _And_Invalid

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2 Netw orkSlave_N

w hen SystemState Ok

FBlockIDs.Status
(FBlockIDList='FBlockID=_, InstID=_')

1

Check registration

alt

w hen (registration Ok)

Update Central Registry

opt

w hen (new FBlocks w ere added)

B Conf iguration.Status
(ConfigurationControl='New ', ...)

Conf iguration.Status
(Conf igurationControl='New ', ...)

Conf iguration.Status
(ConfigurationControl='New ', ...)

Conf iguration.Status
(ConfigurationControl='New ', ...)

opt

w hen (FBlocks w ere removed)

B Conf iguration.Status
(ConfigurationControl='Invalid', ...)

Conf iguration.Status
(Conf igurationControl='Invalid', ...)

Conf iguration.Status
(ConfigurationControl='Invalid', ...)

Conf iguration.Status
(ConfigurationControl='Invalid', ...)

w hen (Error in registration) 2

NM_Sc_Set_SystemState_NotOk

SystemState NotOk

 MSC 24: NM_Sc_Spontaneous_Reg_New_And_Invalid

1. A registration of a node after the network is in SystemState Ok.
2. Note that a mismatch in InstIDs of FBlocks is not considered an error. Please refer to section

3.3.4.3.

3.3.4.16 Network Slave changes NodeAddress in SystemState OK

This MSC has been removed from the collection due to lack of compliance with the MOST
Specification. A network slave is not allowed to change its NodeAddress during runtime. The
NetworkMaster would signal a transition to NotOK in such an error case, as soon as the inconsistency
is noticed.

Scenario MSC: NM_Sc_NS_Change_Of_NodeAddress

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 51

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.4 Network Slave General MSCs
The general MSCs in this section describe the complete startup sequence, from initialization to normal
operation, from the perspective of a Network Slave. The high-level MSC shows how the general MSCs
are combined to describe the complete flow from startup to normal (running) operation in a Network
Slave.

3.4.1 High-level Network Slave MSC

General MSC: NS_Gen_Startup

Description: High-level MSC of Network Slave startup process. The startup sequence for both “Primary Node” and
“Secondary Node” is described in this high-level MSC.

Prior Condition: -

Initiator: -

Communication
Partners:

-

Events: -Init Ready

Timers/Timing
constraints:

-

Remarks: The term “Primary Node” is used regardless of the occurrence of a “Secondary Node” in the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 52

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NS_Gen_Startup

Note: Secondary Nodes are not
supported by MOST50.

NS_Gen_Init

w hen (nodeState
= System

Communication
Init)

w hen (node =
PrimaryNode)

w hen (node =
SecondaryNode)

NS_Gen_RunningPrimary NS_Gen_RunningSecondary

 MSC 25: NS_Gen_Startup

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 53

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.4.2 Initializing the Network Slave

General MSC: NS_Gen_Init

Description: Describes the initialization and startup sequence of a Network Slave after Init Ready. Both “Primary
Node” and “Secondary Node” is described in this MSC.

Prior Condition: -

Initiator: -

Communication
Partners:

- NetworkMaster

Events: -Init Ready

Timers/Timing
constraints:

- tAnswer

Remarks: The term “Primary Node” is used regardless of the occurrence of a “Secondary Node” in the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 54

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NS_Gen_Init

Netw orkMaster Netw orkSlave

InitReady_event

Derive NodeAddress 1

loop <1, inf>

w hen (Conf iguration.Status message has
not been received)

alt

FBlockIDs.Get

alt

w hen (node = PrimaryNode) 2

FBlockIDs.Status
(FBlockIDList=_)

3

otherw ise 4

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID of

primary node')

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, New InstID=_)

alt

w hen (node = PrimaryNode)

FBlockIDs.Status
(FBlockIDList=_)

5

otherw ise

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID of

primary node')

B Conf iguration.Status
(Conf igurationControl='Ok', ...)

Conf iguration.Status
(Conf igurationControl='Ok', ...)

Store NodeAddress of
Netw orkMaster

B Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Conf iguration.Status
(Conf igurationControl='NotOk', ...)

NS_Gen_Reset

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

6

Store NodeAddress of
Netw orkMaster

B Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList=_)

7

Store NodeAddress of
Netw orkMaster

nodeState :=
SystemCommunicationInit

8

[0,tAnsw er]

[0,tAnsw er]

[0,tAnsw er]

[0,tAnsw er]

 MSC 26: NS_Gen_Init

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 55

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

1. The address should be static or stored. If no address can be obtained in the required time,

0xFFFF should be used.
2. The term "PrimaryNode" is used regardless of an occurrence of a "SecondaryNode" in the

system.
3. NetworkSlave must reply within t_Answer after the request has been received.
4. The node is a Secondary Node.
5. NetworkSlave must reply within t_Answer after the request has been received.
6. SystemState is Ok when Configuration.Status(New) is received.
7. SystemState is Ok when Configuration.Status(Invalid) is received.
8. Initialization of the application with respect to communication has completed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 56

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.4.3 Running Operation - Primary Node

General MSC: NS_Gen_RunningPrimary

Description: Describes the running (normal) operation of a Network Slave (Primary Node) after the startup sequence
has been completed.

Prior Condition: - SystemCommunicationInit (Startup sequence) has completed.

Initiator: -

Communication
Partners:

- NetworkMaster

Events: -

Timers/Timing
constraints:

- tAnswer

Remarks: - The term “Primary Node” is used regardless of the occurrence of a “Secondary Node” in the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 57

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NS_Gen_RunningPrimary

Netw orkMaster Netw orkSlave

w hen ((node = PrimaryNode) AND (nodeState
= SystemCommunicationInit)) 1

alt

w hen SystemState Ok

alt
B Conf iguration.Status

(Conf igurationControl='Ok', ...)
Conf iguration.Status

(ConfigurationControl='Ok', ...)

Update decentral registry

B Conf iguration.Status
(Conf igurationControl='NotOk', ...)

Conf iguration.Status
(ConfigurationControl='NotOk', ...)

NS_Gen_Reset

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(ConfigurationControl='New ',

DeltaFBlockList=_)

Update decentral registry

B Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList=_)

Update decentral registry

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

2

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, New InstID=_)

FBlockIDs.Status
(FBlockIDList=_)

w hen SystemState NotOk

alt
B Conf iguration.Status

(Conf igurationControl='Ok', ...)
Conf iguration.Status

(ConfigurationControl='Ok', ...)

If not already stored the address
of the Netw orkMaster should be

stored.

(Re-)initialize applications

Update decentral registry

B Conf iguration.Status
(Conf igurationControl='NotOk', ...)

Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Clear decentral registry

Derive NodeAddress 3

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, New InstID=_)

FBlockIDs.Status
(FBlockIDList=_)

[0,tAnsw er]

[0,tAnsw er]

[0,tAnsw er]

[0,tAnsw er]

 MSC 27: NS_Gen_RunningPrimary

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 58

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

1. The term "PrimaryNode" is used here regardless of an occurrence of a "SecondaryNode" in

the system.
2. NetworkSlave must reply within tAnswer after the request has been received.
3. The address should be static, stored, or calculated from position. If no address can be

obtained in required time, 0xFFFF should be used.

3.4.4 Running Operation - Secondary Node

General MSC: NS_Gen_RunningSecondary

Description: Describes the running (normal) operation of a Secondary Node after the startup sequence has been
completed.

Prior Condition: - SystemCommunicationInit (Startup sequence) has completed.

Initiator: -

Communication
Partners:

- NetworkMaster

Events: -

Timers/Timing
constraints:

- tAnswer

Remarks: - The term “Primary Node” is used regardless of the occurrence of a “Secondary Node” in the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 59

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc NS_Gen_RunningSecondary

Netw orkMaster Netw orkSlave

w hen ((node = SecondaryNode) AND (
nodeState = SystemCommunicationInit)) 1

alt

w hen SystemState Ok

alt
B Conf iguration.Status

(Conf igurationControl='Ok', ...)
Conf iguration.Status

(Conf igurationControl='Ok', ...)

B Conf iguration.Status
(Conf igurationControl='NotOk', ...)

Conf iguration.Status
(Conf igurationControl='NotOk', ...)

Derive NodeAddress 2

B Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='New ',

DeltaFBlockList=_)

B Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList=_)

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList=_)

FBlockIDs.Get 3

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID of

primary node')

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, New InstID=_)

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID of

primary node')

w hen SystemState NotOk

alt
B Conf iguration.Status

(Conf igurationControl='Ok', ...)
Conf iguration.Status

(Conf igurationControl='Ok', ...)

B Conf iguration.Status
(Conf igurationControl='NotOk', ...)

Conf iguration.Status
(Conf igurationControl='NotOk', ...)

Derive NodeAddress

FBlockIDs.Get

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID of

primary node')

FBlockIDs.SetGet
(FBlockID=_, OldInstID=_, New InstID=_)

FBlockIDs.Error
(ErrorCode='0x0A', ErrorInfo='DeviceID of

primary node')

[0,tAnsw er]

[0,tAnsw er]

[0,tAnsw er]

[0,tAnsw er]

 MSC 28: NS_Gen_RunningSecondary

1. The address should be static, stored, or calculated from position. If no address can be
obtained in the required time, 0xFFFF should be used.

2. NetworkSlave must reply within tAnswer after the request has been received.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 60

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.4.5 Reset

General MSC: NS_Gen_Reset

Description: Action taken when Configuration.Status(NotOk) is received.

Prior Condition: -

Initiator: -

Communication
Partners:

-

Events: -

Timers/Timing
constraints:

-

Remarks: The Network Slave must service requests from the NetworkMaster while waiting for the System State to
be set to OK.

msc NS_Gen_Reset

Netw orkSlave

Mute 1

Clear any decentral registry

Set the new logical node address 2

Empty notif ication lists

Destroy all w indow s on
LongArrays

 MSC 29: NS_Gen_Reset

1. Mute and disconnect all synchronous sinks. All synchronous sources must route zeros (signal
mute) for a time tCleanChannels, before de-allocate.

2. The address should be static, stored, or dynamic (calculated from position).

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 61

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.4.6 Communicate

General MSC: NS_Gen_Communicate

Description: Describes how a Network Slave uses its decentral registry or the central registry to find the logical
address of its communication partner.

Prior Condition: - SystemState Ok

Initiator: -

Communication
Partners:

- NetworkMaster
- NetworkSlave_1

Events: -

Timers/Timing
constraints:

-

Remarks: -

msc NS_Gen_Communicate

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2

Netw orkSlave_2 w ants to communicate w ith FBlock 0x0n in Netw orkSlave_1

w hen SystemState Ok

alt

w hen (RxTxLog of partner is in Decentral
Registry)

Msg

otherw ise

CentralRegistry.Get
(FBlockID='0x0n', InstID='0x01')

exc

CentralRegistry.Error
(ErrorCode='0x07', ErrorInfo='0x01, 0x0n.01')

Partner not found in Central
Registry. Report error to

application.

CentralRegistry.Status
(FBlockInfoList='RxTxLog=Netw orkSlave_1,FBlockID=0x0n,InstID=0x01')

Msg

 MSC 30: NS_Gen_Communicate

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 62

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.5 Network Slave Scenario MSCs

3.5.1 Startup scenarios

3.5.1.1 Startup - Ok

Scenario MSC NS_Sc_StartupOk

Description: Describes the startup sequence of a Network Slave when Configuration.Status(Ok) is received during
startup.

Prior Condition: -

Initiator: -

Communication
Partners:

- NetworkMaster

Events: -Init Ready

Timers/Timing
constraints:

- tAnswer

Remarks: -

msc NS_Sc_StartupOk

Netw orkMaster Netw orkSlave

InitReady_event

Derive NodeAddress 1

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

2

B Conf iguration.Status
(ConfigurationControl='Ok', ...)

Conf iguration.Status
(ConfigurationControl='Ok', ...)

Store NodeAddress of
Netw orkMaster

nodeState :=
SystemCommunicationInit

3

[0,tAnsw er]

 MSC 31: NS_Sc_StartupOk

1. The address should be static or stored. If no address can be obtained in required time,
0xFFFF should be used.

2. NetworkSlave must reply within tAnswer after the request has been received.
3. Initialization of the application with respect to communication has completed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 63

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.5.1.2 Startup - NotOk

Scenario MSC NS_Sc_StartupNotOk

Description: Describes the startup sequence of a Network Slave when Configuration.Status(NotOk) is received
during startup.

Prior Condition: -

Initiator: -

Communication
Partners:

- NetworkMaster

Events: -Init Ready

Timers/Timing
constraints:

- tAnswer

Remarks: -

msc NS_Sc_StartupNotOk

Netw orkMaster Netw orkSlave

InitReady_event

Derive NodeAddress 1

FBlockIDs.Get

FBlockIDs.Status
(FBlockIDList=_)

2

B Conf iguration.Status
(ConfigurationControl='NotOk', ...)

Conf iguration.Status
(ConfigurationControl='NotOk', ...)

NS_Gen_Reset

nodeState :=
SystemCommunicationInit

3

[0,tAnsw er]

 MSC 32: NS_Sc_StartupNotOk

1. The address should be static or stored. If no address can be obtained in the required time,
0xFFFF should be used.

2. NetworkSlave must reply within tAnswer after the request has been received.
3. Initialization of the application with respect to communication has completed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 64

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

3.5.2 Communication Scenarios

3.5.2.1 Communicate with partner

Scenario MSC NS_Sc_Communicate

Description: Describes how a Network Slave uses its decentral registry or the central registry to find the logical
address of its communication partner.

Prior Condition: - SystemState Ok

Initiator: -

Communication
Partners:

- NetworkMaster
- NetworkSlave_2

Events: -

Timers/Timing
constraints:

-

Remarks: - As an example, HMI and AudioDiskPlayer are used as communication partners.

msc NS_Sc_Communicate

Netw orkMaster Netw orkSlave_1 Netw orkSlave_2

HMI in Netw orkSlave_1 w ants to communicate w ith AudioDiskPlayer in Netw orkSlave_2

w hen SystemState Ok

alt

w hen (Decentral Registry is updated)

Netw orkSlave_2 is registered in Decentral
Registry w ith NodeAddress = 0x102

FBlockID=0x31 InstID=0x01.

DeckStatus.Set
(DeckStatus='Stop')

otherw ise

Netw orkSlave_2 is registered in Central
Registry w ith NodeAddress = 0x102

FBlockID=0x31 InstID=0x01.

CentralRegistry.Get
(FBlockID='0x31', InstID='0x01')

CentralRegistry.Status
(FBlockInfoList='RxTxLog=0x102,

FBlockID=0x31,InstID=0x01')

Update Decentral Registry.

DeckStatus.Set
(DeckStatus='Stop')

 MSC 33: NS_Sc_Communicate

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 65

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4 Connection Management

4.1 Introduction
This description of Connection Management takes into account both the older Allocate method as well
as the newer Source Connect method. In addition, mixed systems, where some slaves support
Allocate and some support Source Connect, are shown.

4.2 Logical Model of Connection Management
In this logical model of Connection Management (please refer to Figure 4-1) the priority and clustered
connection handler is added, though not being a part of the specification. The concept is not new;
most car manufacturers use the concept of priority handler and clustered connection handler in their
proprietary part of the specification. By extending the existing Connection Management with this
functionality, the description of the dynamic behavior of the system is simplified.

The extended functionality of the Connection Management is not a description of a specific
implementation, but rather a description of its general behavior.

In this specification, the working names used for these two types of Connection Management will be
Connection Management (as defined in the MOST Specification of today) and Extended Connection
Management.

The dynamics of the Extended Connection Management are not specified here, but the logical name
is introduced in order to avoid confusion with different interpretations of the Connection Management.
Note that the Extended Connection Management could be implemented in the same node as the
Connection Management, or implemented in other nodes (e.g., HMI).

Figure 4-1: Logical Model of Connection Management

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 66

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.3 Variables used in Connection Management MSCs
The general MSCs use variables to simplify the MSCs, as well as reducing the total number of MSCs.
Table 4-1 shows a list of the variables used in the general ConnectionMaster MSCs.

Variable Range Explanation
Error False, True Indicates if something fails during connection management.
Progress None, SourceInfo_Received,

Source_Connected, Sink_Connected,
SourceActivity_On, Functions_Received

This variable is used to keep track of how far the procedure has
progressed.

SourceType Unknown, SourceConnect, Allocate Holds information of which method that shall be used.

Table 4-1: Variables used in the general Connection Management MSCs

4.4 Normal Behavior
In this section, MSCs are used to describe Connection Management in normal behavior. The
OPTypes of the functions are given in non-Ack format. If desired, the Ack format of the function
OPType can also be used.

When building a connection, the following issues are important for the Connection Management:

• Is the system mixed or homogenous? That is, are all sources of the same type
(Allocate/SourceConnect)?

• Is the Connection Management familiar with the nodes?

In a familiar system, the Connection Management does not have to ask the sources which type of
nodes they are. It does not have to ask how many channels different sources need. The Connection
Management may be familiar with the nodes either by previously having asked them or by having the
information already provided by the system developers.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 67

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1 Connection Management General MSCs

4.4.1.1 BuildSyncConnection in a SourceConnect System

General MSC: CM_Gen_SC_BuildSyncConnection

Description: A connection is built between GeneralSource and GeneralSink. The flow is as follows: If information
regarding the source is needed, this is collected first. Then the source is connected to the network and
the sink is also connected. When the connection is established, SourceActivity may be turned on.
A timer is started when the Connection Manager starts this process. If it takes more than the
tCM_DeadlockPrev to do this, the process is aborted. The Connection Management will have to tidy up by
removing everything that has been done so far, which is done in the CleanUp MSC.

Prior Condition:

Initiator: Any controller

Communication
Partners:

Initiator, a source, and a sink.

Events: -

Timers / Timing
Constraints:

tCM_DeadlockPrev

Remarks: - All sources in the system support the SourceConnect method.
- The allocation table of the Timing Master is not used.
- Note that the source activity is optional.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 68

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc CM_Gen_SC_BuildSyncConnection

Note: The SourceConnect approach is not supported by MOST50.

ConnectionManagement GeneralSource GeneralSink Initiator

BuildSyncConnection.StartResult
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock=_, ..., SinkNr='GeneralSink')tCM_DeadlockPrev

[]

Error := false
Progress := none

1

par

tCM_DeadlockPrev

Error := true

opt 2

w hen (No_Information_Of_Source)

CM_Gen_SC_SourceInf o_Get
3

opt

w hen (Error = false)

CM_Gen_SC_SourceConnect_StartResult
4

opt

w hen (Error = false)

CM_Gen_Connect_StartResult
5

opt

w hen (Error = false)

CM_Gen_SourceActivity_StartResult
6

alt

w hen (Error = false)

BuildSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

7

otherw ise 8

CM_Gen_SC_CleanUp
9

BuildSyncConnection.Error
(ErrorCode=_, ErrorInf o=_)

10

 MSC 34: CM_Gen_SC_BuildSyncConnection

1. Initialization of variables. Error is set, if an error occurs, to see where it occurs. Progress is

used to keep track of how far the procedure has progressed.
2. If no prior information regarding the channels needed by the source is available.
3. Collect source information.
4. Connect the source to the network.
5. Connect the sink to the network.
6. Turn source activity on.
7. The procedure was carried out successfully.
8. An error was received during the procedure.
9. Clean up all that was made before.
10. Error message contains accumulated error information.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 69

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.1.1 Retrieving SourceInfo

General MSC: CM_Gen_SC_SourceInfo_Get

Description: The Connection Management retrieves information regarding the number of channels that is needed by
the source. The result of this MSC is saved for the higher level MSC that uses this one.

Prior Condition: The Connection Management does not know the requirements of this particular source.

Initiator: Connection Management

Communication
Partners:

A source

Events: -

Timers / Timing
Constraints:

-

Remarks: -

msc CM_Gen_SC_SourceInfo_Get

ConnectionManagement GeneralSource

SourceInfo.Get
(SourceNr=_)

alt

SourceInfo.Status
(SourceNr=_, DataType=_,

DataDescription=_)

Progress := SourceInfo_Received

SourceInfo.Error
(ErrorCode=_, ErrorInf o=_)

Error := true

 MSC 35: CM_Gen_SC_SourceInfo_Get

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 70

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.1.2 Connecting a Source with SourceConnect

General MSC: CM_Gen_SC_SourceConnect_StartResult

Description: The Connection Management commands the source to connect to the specified channels. The result of
this MSC is saved for the higher level MSC that uses this one.

Prior Condition: Connection Management has reserved channels for the source to use.

Initiator: Connection Management

Communication
Partners:

Initiator and a source

Events -

Timers / Timing
Constraints:

-

Remarks: -

msc CM_Gen_SC_SourceConnect_StartResult

Note: The SourceConnect approach is not
supported by MOST50.

ConnectionManagement GeneralSource

SourceConnect.StartResult
(SourceNr=_, ChannelList='Channel=_')

alt

SourceConnect.Result
(SourceNr=_, SrcDelay=_)

Progress := Source_Connected

SourceConnect.Error
(ErrorCode=_, ErrorInf o=_)

Error := true

 MSC 36: CM_Gen_SC_SourceConnect_StartResult

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 71

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.1.3 Connecting a Sink

General MSC: CM_Gen_Connect_StartResult

Description: The Connection Management commands the sink to connect to the specified channels. The result of
this MSC is saved for the higher level MSC that uses this one.

Prior Condition: The channels that the sink is connecting to are in use by a source.

Initiator: Connection Management

Communication
Partners:

A sink

Events -

Timers / Timing
Constraints:

-

Remarks: -

msc CM_Gen_Connect_StartResult

ConnectionManagement GeneralSink

Connect.StartResult
(SinkNr=_, SrcDelay=_,

ChannelList='Channel=_')

alt

Connect.Result
(SinkNr=_)

Progress := Sink_Connected

Connect.Error
(ErrorCode=_, ErrorInf o=_)

Error := true

 MSC 37: CM_Gen_Connect_StartResult

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 72

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.1.4 SourceActivity turned on

General MSC: CM_Gen_SourceActivity_StartResult

Description: The Connection Management commands the source to turn the SourceActivity on. The result of this
MSC is saved for the higher level MSC that uses this one.

Prior Condition: A connection to a sink has been established.

Initiator: Connection Management

Communication
Partners:

A source

Events -

Timers / Timing
Constraints:

-

Remarks: - Note that the source activity is optional.

msc CM_Gen_SourceActivity_StartResult

ConnectionManagement GeneralSource

SourceActivity.StartResult
(SourceNr=_, Activity='On')

alt

SourceActivity.Result
(SourceNr=_, Activity='On')

Progress := SourceActivity_On

SourceActivity.Error
(ErrorCode=_, ErrorInf o=_)

Error := true

 MSC 38: CM_Gen_SourceActivity_StartResult

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 73

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.2 BuildSyncConnection in a Mixed System

General MSC: CM_Gen_M_BuildSyncConnection

Description: A connection is built between GeneralSource and GeneralSink. The flow is as follows: If unknown, the
Connection Management first determines if it is dealing with a node using only Allocate or if it supports
SourceConnect. If in a SourceConnect connection information regarding the source is needed, this is
collected first. Then the source is connected to the network and the sink is also connected. When the
connection is established, SourceActivity may be turned on. A timer is started when the Connection
Manager starts this process. If it takes more than the tCM_DeadlockPrev to do this, the process is aborted.
The Connection Management will have to tidy up after itself by removing everything that has been done
so far, which is done in the CleanUp MSC.

Prior Condition: Some sources in the system support only Allocate.

Initiator: Any controller

Communication
Partners:

Initiator, a source, and a sink

Events -

Timers / Timing
Constraints:

tCM_DeadlockPrev

Remarks: - While running CleanUp, there is no reaction to an incoming Abort. The same applies after
SourceActivity has been turned on.
- Note that the source activity is optional.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 74

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc CM_Gen_M_BuildSyncConnection

ConnectionManagement GeneralSource GeneralSink Initiator

BuildSyncConnection.StartResult
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock=_, ..., SinkNr='GeneralSink')tCM_DeadlockPrev

[]

Error := false
Progress := none

SourceType := unknow n

1

par

tCM_DeadlockPrev

Error := true

opt

w hen (SourceType = unknow n)

CM_Gen_M_Get_SourceType
2

alt

w hen (SourceType = SourceConnect) 3

opt 4

w hen
(No_Information_Of_Source)

CM_Gen_SC_SourceInfo_Get
5

opt

w hen (Error = false)

CM_Gen_SC_SourceConnect_StartResult
6

otherw ise 7

opt

w hen (Error = false)

CM_Gen_M_Allocate_StartResult
8

opt

w hen (Error = false)

CM_Gen_Connect_StartResult
9

opt

w hen (Error = false)

CM_Gen_SourceActivity_StartResult
10

alt

w hen (Error = false)

BuildSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

11

otherw ise 12

CM_Gen_M_CleanUp
13

BuildSyncConnection.Error
(ErrorCode=_, ErrorInf o=_)

14

 MSC 39: CM_Gen_M_BuildSyncConnection

1. Error is set if an error occurs.

SourceType tells if it is a SourceConnect or Allocate node. It might be set in advance.
2. Determine the source type, Allocate or SourceConnect.
3. If no prior information regarding the channels needed by the source is available.
4. Collect source information.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 75

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5. Connect the source to the network.
6. Tell the source to allocate channels and connect to the network.
7. Connect the sink to the network.
8. Turn source activity on.
9. The procedure was carried out successfully.
10. An error was received during the procedure.
11. Clean up all that was made before.
12. Error message contains accumulated error information.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 76

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.2.1 Establishing the Source Type

General MSC: CM_Gen_M_Get_SourceType

Description: Connection Management asks the source for its function IDs. From this it is deduced whether the
source uses SourceConnect or Allocate as its method for connecting to the network. The result of this
MSC is saved for the higher level MSC that uses this one.

Prior Condition: Connection Management does not know if this particular node supports SourceConnect or Allocate.

Initiator: Connection Management

Communication
Partners:

A source

Events

Timers / Timing
Constraints:

Remarks: -

msc CM_Gen_M_Get_SourceType

ConnectionManagement GeneralSource

FktIDs.Get

alt

FktIDs.Status
(BitField=_)

Progress := Functions_Received

alt

w hen (SourceConnect w as in Status
message)

SourceType := SourceConnect

w hen (Allocate w as in Status
message)

SourceType := Allocate

otherw ise

Error := true 1

FktIDs.Error
(ErrorCode=_, ErrorInfo=_)

Error := true

 MSC 40: CM_Gen_M_Get_SourceType

1. The result is seen as an error if there are no functions for connecting the source.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 77

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.2.2 Allocate in a Mixed System

General MSC: CM_Gen_M_Allocate_StartResult

Description: The Connection Management tells the source to allocate channels and to connect to them. The result of
this MSC is saved for the higher level MSC that uses this one.

Prior Condition: The source uses Allocate as its method for connection to the network.

Initiator: Connection Management

Communication
Partners:

A source

Events:

Timer / Timing
Constraints:

Remarks: -

msc CM_Gen_M_Allocate_StartResult

ConnectionManagement GeneralSource

Allocate.StartResult
(SourceNr=_)

alt

Allocate.Result
(SourceNr=_, SrcDelay=_,
ChannelList='Channel=_')

Progress := Source_Connected

Allocate.Error
(ErrorCode=_, ErrorInf o=_)

Error := true

 MSC 41: CM_Gen_M_Allocate_StartResult

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 78

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.3 Removing a Synchronous Connection

General MSC: CM_Gen_RemoveSyncConnection

Description: The Connection Management removes a connection. First, the sink is disconnected (and muted). Then
depending on whether the source uses SourceConnect or Allocate it is disconnected with
SourceDisConnect or DeAllocate. When sending this command, SourceActivity is turned off (if used).

Prior Condition: A connection between the source and sink exists.

Initiator: Any controller

Communication
Partners:

Initiator, a source, and a sink

Events -

Timer / Timing
Constraints:

-

Remarks: - There is no way of aborting this procedure.
- Note that the source activity is optional.

msc CM_Gen_RemoveSyncConnection

ConnectionManagement GeneralSource GeneralSink Initiator

RemoveSyncConnection.StartResult
(SourceFBlock='GeneralSource', SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

CM_Gen_DisConnect_StartResult
1

opt

w hen (SourceActivity is used)

SourceActivity.StartResult
(SourceNr=_, Activity='Off ')

SourceActivity.Result
(SourceNr=_, Activity='Off ')

alt 2

w hen (Source_Node_Uses_SourceConnect) 3

CM_Gen_SC_SourceDisConnect_StartResult

otherw ise

CM_Gen_M_DeAllocate_StartResult

alt

w hen (No_Error_Information_Exists)

RemoveSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

4

otherw ise

RemoveSyncConnection.Error
(ErrorCode=_, ErrorInf o=_)

5

 MSC 42: CM_Gen_RemoveSyncConnection

1. Note: The SourceConnect approach is not supported by MOST50.
2. The connection manager remembers if it used SourceConnect or Allocate to create the

connection and can remove it accordingly.
3. Note: The SourceConnect approach is not supported by MOST50.
4. The procedure was carried out successfully.
5. Parameter contains accumulated error information.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 79

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.3.1 Disconnecting a Sink

General MSC: CM_Gen_DisConnect_StartResult

Description: Connection Management tells the sink to disconnect the specified sink. Error information is saved for
the MSC that uses this one.

Prior Condition: The sink is connected to the network.

Initiator: Connection Management

Communication
Partners:

A sink

Events -

Timer / Timing
Constraints:

-

Remarks: -

msc CM_Gen_DisConnect_StartResult

Note: The SourceConnect approach is not
supported by MOST50.

ConnectionManagement GeneralSink

DisConnect.StartResult
(SinkNr=_)

alt

DisConnect.Result
(SinkNr=_)

DisConnect.Error
(ErrorCode=_, ErrorInf o=_)

Store error information. 1

 MSC 43: CM_Gen_DisConnect_StartResult

1. Will be reported in BuildSyncConnection.Error or RemoveSyncConnection.Error

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 80

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.3.2 Disconnecting a Source using SourceDisConnect

General MSC: CM_Gen_SC_SourceDisConnect_StartResult

Description: Connection Management tells the source to disconnect the specified source. Error information is saved
for the MSC that uses this one.

Prior Condition: The source is connected to the network.

Initiator: Connection Management

Communication
Partners:

A source

Events -

Timer / Timing
Constraints:

-

Remarks:

msc CM_Gen_SC_SourceDisConnect_StartResult

Note: The SourceConnect approach is not
supported by MOST50.

ConnectionManagement GeneralSource

SourceDisConnect.StartResult
(SourceNr=_)

alt

SourceDisConnect.Result
(SourceNr=_)

SourceDisConnect.Error
(ErrorCode=_, ErrorInf o=_)

Store error information. 1

 MSC 44: CM_Gen_SC_SourceDisConnect_StartResult

1. Will be reported in BuildSyncConnection.Error or RemoveSyncConnection.Error.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 81

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.1.3.3 Deallocation Procedure

General MSC: CM_Gen_M_DeAllocate_StartResult

Description: Connection Management tells the source to deallocate the specified channels and to disconnect. Error
information is saved for the MSC that uses this one.

Prior Condition: The source is connected to the network and uses the specified channels.

Initiator: Connection Management

Communication
Partners:

A source

Events -

Timer / Timing
Constraints:

-

Remarks:

msc CM_Gen_M_DeAllocate_StartResult

ConnectionManagement GeneralSource

DeAllocate.StartResult
(SourceNr=_)

alt

DeAllocate.Result
(SourceNr=_)

DeAllocate.Error
(ErrorCode=_, ErrorInf o=_)

Store error information. 1

 MSC 45: CM_Gen_M_DeAllocate_StartResult

1. Will be reported in BuildSyncConnection.Error or RemoveSyncConnection.Error.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 82

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.2 Connection Management Scenario MSCs

4.4.2.1 Building a Connection with a Known Source

Scenario: CM_Sc_SC_Known

Description: Connection Management is familiar with the Source and knows that it uses SourceConnect and it also
knows how many channels it needs. Hence, SourceInfo.Get can be skipped.

Prior Condition: All sources in the system support the SourceConnect method. The allocation table of the Timing Master
is not used.

Initiator: Any controller

Communication
Partners:

Initiator, a source, and a sink

Events -

Remarks: - This is the fastest way of building a connection.
- Note that the source activity is optional.

msc CM_Sc_SC_Know n

Note: The SourceConnect approach is not supported by MOST50.

ConnectionManagement GeneralSource GeneralSink Initiator

BuildSyncConnection.StartResult
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock=_, ..., SinkNr='GeneralSink')

SourceConnect.StartResult
(SourceNr=_, ChannelList='Channel=_')

SourceConnect.Result
(SourceNr=_, SrcDelay=_)

Connect.StartResult
(SinkNr=_, SrcDelay=_, ChannelList='Channel=_')

Connect.Result
(SinkNr=_)

SourceActivity.StartResult
(SourceNr=_, Activity='On')

SourceActivity.Result
(SourceNr=_, Activity='On')

BuildSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

 MSC 46: CM_Sc_SC_Known

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 83

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.2.2 SourceConnect with an Unknown Source

Scenario: CM_Sc_SC_Unknown

Description: Connection Management knows that the source uses SourceConnect, but it does not know how many
channels it needs.

Prior Condition: All sources in the system support the SourceConnect method. The allocation table of the Timing Master
is not used.

Initiator: Any controller

Communication
Partners:

Controller, a source, and a sink

Events -

Remarks: - The SourceInfo information may be kept to speed up connections in the future.
- Note that the source activity is optional.

msc CM_Sc_SC_Unknow n

Note: The SourceConnect approach is not supported by MOST50.

ConnectionManagement GeneralSource GeneralSink Initiator

BuildSyncConnection.StartResult
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock=_, ..., SinkNr='GeneralSink')

SourceInfo.Get
(SourceNr=_)

SourceInfo.Status
(SourceNr=_, DataType=_,

DataDescription=_)

SourceConnect.StartResult
(SourceNr='Channel=_', ...)

SourceConnect.Result
(SourceNr=_, SrcDelay=_)

Connect.StartResult
(SinkNr=_, SrcDelay=_, ChannelList='Channel=_')

Connect.Result
(SinkNr=_)

SourceActivity.StartResult
(SourceNr=_, Activity='On')

SourceActivity.Result
(SourceNr=_, Activity='On')

BuildSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

 MSC 47: CM_Sc_SC_Unknown

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 84

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.2.3 Building a Connection in a Mixed System with Unknown Sources

Scenario: CM_Sc_MixedSystem

Description: The Connection Management is in a Mixed System with no knowledge of the sources. It finds a
SourceConnect node.

Prior Condition: -

Initiator: Any controller

Communication
Partners:

Controller, a source, and a sink

Events -

Remarks: - This is the slowest way of building a connection.
- Note that the source activity is optional.

msc CM_Sc_Mixed_System

Note: The SourceConnect approach is not supported by MOST50.

ConnectionManagement GeneralSource GeneralSink Initiator

BuildSyncConnection.StartResult
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock=_, ..., SinkNr='GeneralSink')

FktIDs.Get

FktIDs.Status
(BitField=_)

1

SourceInfo.Get
(SourceNr=_)

SourceInfo.Status
(SourceNr=_, DataType=_,

DataDescription=_)

SourceConnect.StartResult
(SourceNr=_, ChannelList='Channel=_')

SourceConnect.Result
(SourceNr=_, SrcDelay=_)

Connect.StartResult
(SinkNr=_, SrcDelay=_, ChannelList='Channel=_')

Connect.Result
(SinkNr=_)

SourceActivity.StartResult
(SourceNr=_, Activity='On')

SourceActivity.Result
(SourceNr=_, Activity='On')

BuildSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

 MSC 48: CM_Sc_MixedSystem

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 85

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.4.2.4 Removing a Synchronous Connection

Scenario: CM_Sc_RemoveSyncConnection

Description: The Connection Management is removing a connection and therefore knows what kind of nodes it
uses. It finds a SourceConnect node.

Prior Condition: -

Initiator: Any controller

Communication
Partners:

Controller, a source, and a sink

Events -

Remarks: - Nodes are required to mute when receiving a DisConnect command and to turn SourceActivity off
when receiving DeAllocate or SourceDisConnect.
- Note that the source activity is optional.

msc CM_Sc_RemoveSyncConnection

ConnectionManagement GeneralSource GeneralSink Initiator

RemoveSyncConnection.StartResult
(SourceFBlock='GeneralSource', SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

DisConnect.StartResult
(SinkNr=_)

DisConnect.Result
(SinkNr=_)

SourceDisConnect.StartResult
(SourceNr=_)

SourceDisConnect.Result
(SourceNr=_)

RemoveSyncConnection.Result
(SourceFBlock='GeneralSource', ..., SourceNr=_, SinkFBlock='GeneralSink', ..., SinkNr=_)

 MSC 49: CM_Sc_RemoveSyncConnection

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 86

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.5 Error Handling
This section describes the behavior of the Connection Management when dealing with error cases.

The function OPTypes within this chapter are given in non-Ack format. If desired, the Ack form of the
function OPTypes can be used.

4.5.1 Error Handling General MSCs

4.5.1.1 CleanUp in a SourceConnect System

General MSC: CM_Gen_SC_CleanUp

Description: Connection Management unmakes everything that has been made in the connection procedure.

Prior Condition: An error or a timeout has interrupted the BuildSyncConnection procedure. The system consists only of
sources using method SourceConnect to connect to the network.

Initiator: This MSC is initiated after an abort or error within BuildSyncConnection.

Communication
Partners:

A source and a sink

Events -

Timer / Timing
Constraints:

-

Remarks: There is no way of aborting the CleanUp process.

msc CM_Gen_SC_CleanUp

Note: The SourceConnect approach is not supported by MOST50.

ConnectionManagement GeneralSource GeneralSink

alt

w hen (Progress = Sink_Connected OR
Progress = SourceActivity_On) 1

CM_Gen_DisConnect_StartResult

Progress := Source_Connected

opt

w hen (Progress = Source_Connected) 2

CM_Gen_SC_SourceDisConnect_StartResult

Progress := none 3

 MSC 50: CM_Gen_SC_CleanUp

1. Sink has to be disconnected.
2. Source has to be disconnected.
3. CleanUp finished.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 87

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.5.1.2 CleanUp in a Mixed System

General MSC: CM_Gen_M_CleanUp

Description: Connection Management unmakes everything that has been made in the connection procedure.

Prior Condition: An error or abort has interrupted the BuildSyncConnection procedure. The source is disconnected in
different ways depending on if it was connected using Allocate or SourceConnect.

Initiator: This MSC is initiated after an abort or error within BuildSyncConnection.

Communication
Partners:

A source and a sink

Events -

Timer / Timing
Constraints:

-

Remarks: There is no way of aborting the CleanUp process.

msc CM_Gen_M_CleanUp

ConnectionManagement GeneralSource GeneralSink

alt

w hen (Progress = Sink_Connected OR
Progress = SourceActivity_On) 1

CM_Gen_DisConnect_StartResult

Progress := Source_Connected 2

alt 3

w hen (SourceType = SourceConnect) 4

alt

w hen (Progress =
Source_Connected) 5

CM_Gen_SC_SourceDisConnect_StartResult

Progress := none 6

otherw ise 7

alt

w hen (Progress =
Source_Connected) 8

CM_M_DeAllocate_StartResult

Progress := none 9

 MSC 51: CM_Gen_M_CleanUp

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 88

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

1. Sink has to be disconnected.
2. Continue cleanup.
3. Nodes using SourceConnect and nodes using Allocate are handled differently.
4. Note: The SourceConnect approach is not supported by MOST50.
5. Source has to be disconnected.
6. CleanUp finished.
7. SourceType is Allocate.
8. Source has to be disconnected.
9. CleanUp finished.

4.5.2 Error Handling Scenario MSCs

4.5.2.1 Source drop

General MSC: CM_Sc_SourceDrop

Description: General Source drops out due to an unlikely internal error.

Prior Condition: -

Initiator: Any failing General Source

Communication
Partners:

-

Events -

Timer / Timing
Constraints:

- tCleanChannels

Remarks: The deallocation of channels for GeneralSource is not possible, since the GeneralSource already is
disconnected (dropped out).

msc CM_Sc_SourceDrop

Note: Not applicable for MOST50.

ConnectionManagement GeneralSink.0x01 GeneralSink.0x0n GeneralSource Netw orkMaster

Source FBlock malf unctions.

alt

w hen (Source Device can handle
malfuncitons)

Device routes zeros on the
affected channels.

tCleanChannels
[]

tCleanChannels

The source is disconnected.

FBlockIDs.Status
(FBlockIDList='RemainingFBlockList')

otherw ise

The device closes its bypass and
generates an NCE.The sourcedrop is detected and

the sink mutes. The sourcedrop is detected and
the sink mutes. Missing device detected.

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='GeneralSource')

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='GeneralSource')

B Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='GeneralSource')

All sinks connected to the missing source are disconnected.

DisConnect.StartResult
(SinkNr='Sink')

DisConnect.Result
(SinkNr='Sink')

DisConnect.StartResult
(SinkNr='Sink')

DisConnect.Result
(SinkNr='Sink')

All resources associated w ith the
source are released.

 MSC 52: CM_Sc_SourceDrop

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 89

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.5.2.2 Sink drop

General MSC: CM_Sc_SinkDrop

Description: General Sink drops out due to an unlikely internal error.

Prior Condition: -

Initiator: Any failing General Sink

Communication
Partners:

-

Events -

Timer / Timing
Constraints:

-

Remarks: - Note that the source activity is optional.

msc CM_Sc_SinkDrop

ConnectionManagement GeneralSink GeneralSource Netw orkMaster

Sink FBlock malfunctions.

alt

w hen (Sink Device can handle
malfunctions)

The sink is disconnected.

FBlockIDs.Status
(FBlockIDList='RemainingFBlockList')

otherw ise

The device closes its bypass and
generates an NCE. Missing device detected.

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='GeneralSource')

Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='GeneralSource')

B Conf iguration.Status
(Conf igurationControl='Invalid',

DeltaFBlockList='GeneralSource')

opt

w hen (Source is not connected to other
sinks)

opt

w hen (SourceActivity is used)

SourceActivity.StartResult
(SourceNr=_, Activity='Off ')

SourceActivity.Result
(SourceNr=_, Activity='Off ')

alt

w hen (Source w as connected by an
Allocate command)

DeAllocate.StartResult
(SourceNr='Source')

DeAllocate.Result
(SourceNr='Source')

otherw ise 1

SourceDisConnect.StartResult
(SourceNr='Source')

SourceDisConnect.Result
(SourceNr='Source')

All resources associated w ith the
source are released.

 MSC 53: CM_Sc_SinkDrop

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 90

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.6 Extended ConnectionMaster General MSCs
TBD

4.7 Extended ConnectionMaster Scenarios
TBD

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 91

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.8 General Sink MSCs

4.8.1 Connect

Use Case: GSI_Ge_Connect

Description: Request a sink to connect to channels.

Prior Condition: -

Initiator: -

Communication
Partners:

Initiator

Events: -

Remarks: The sink needs to be demuted after it is connected and sourcerouting started.

msc GSI_Ge_Connect

Note: The SourceConnect approach is not
available for MOST50.

GeneralSink

Any

Initiator

Connect.StartResult
(SinkNr='X', SrcDelay='Y ', ChannelList=_)

Start Connect 1

alt

w hen (Connect OK)

Connect.Result
(SinkNr='X')

otherw ise 2

Connect.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 54: GSI_Ge_Connect

1. Performed regardless of earlier connect status. If already connected to same channels, no
action has to be performed; this is a Connect OK.

2. For example, erroneous SinkNr.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 92

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.8.2 Disconnect

Use Case: GSI_Ge_Disconnect

Description: Request a sink to disconnect from channels.

Prior Condition: -

Initiator: -

Communication
Partners:

Initiator

Events: -

Remarks: -

msc GSI_Ge_Disconnect

Note: The SourceConnect approach is not
available for MOST50.

GeneralSink

Any

Initiator

DisConnect.StartResult
(SinkNr='X')

Mute sink & start disconnect 1

alt

w hen (Disconnect OK)

DisConnect.Result
(SinkNr='X')

otherw ise 2

DisConnect.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 55: GSI_Ge_Disconnect

1. No action needed if not connected at all; this is treated as a successful disconnect.
2. For example, erroneous SinkNr.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 93

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.9 General Source MSCs

4.9.1 Allocate

Use Case: GSO_Ge_Allocate

Description: Request a source to perform allocate.

Prior Condition: -

Initiator: -

Communication
Partners:

Initiator

Events: -

Remarks: - The source should not start routing data until SourceActivity.StartResult(On) is called.
- Note that the source activity is optional.

msc GSO_Ge_Allocate

GeneralSource

Any

Initiator

Allocate.StartResult
(SourceNr='X')

Start A llocate 1

alt

w hen (Allocate OK)

Allocate.Result
(SourceNr='X', SrcDelay=_,

ChannelList=_)

otherw ise

Allocate.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 56: GSO_Ge_Allocate

1. If SourceNr already is allocated, it is treated as a successful Allocate.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 94

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.9.2 Deallocate

Use Case: GSO_Ge_Deallocate

Description: Request a source to deallocate.

Prior Condition: -

Initiator: -

Communication
Partners:

Initiator

Events: -

Remarks: The source stops routing and removes its channels.

msc GSO_Ge_Deallocate

GeneralSource

Any

Initiator

DeAllocate.StartResult
(SourceNr='X')

Perform SourceActivity(Of f) and
start Deallocate

1

alt

w hen (Deallocate OK)

DeAllocate.Result
(SourceNr='X')

otherw ise

DeAllocate.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 57: GSO_Ge_Deallocate

1. No action needed if not allocated at all; this is treated as a successful deallocate.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 95

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.9.3 SourceConnect

Use Case: GSO_Ge_SourceConnect

Description: Request a source to connect itself to pre-allocated channels.

Prior Condition: -

Initiator: -

Communication
Partners:

Initiator

Events: -

Remarks: - The source should not start routing data until SourceActivity.StartResult(On) is called.
- Note that the source activity is optional.

msc GSO_Ge_SourceConnect

Note: The SourceConnect approach is not
available for MOST50.

GeneralSource

Any

Initiator

opt

SourceInfo.Get
(SourceNr='X')

SourceInfo.Status
(SourceNr='X', DataType=_,

DataDescription='Resolution=_,
AudioChannels=_, SrcDelay=_,

ChannelList=_')

SourceConnect.StartResult
(SourceNr='X', ChannelList=_)

Start SourceConnect 1

alt

w hen (SourceConnect OK)

SourceConnect.Result
(SourceNr='X', SrcDelay=_)

otherw ise

SourceConnect.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 58: GSO_Ge_SourceConnect

1. If SourceNr already is connected, it is treated as a successful SourceConnect.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 96

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.9.4 SourceDisconnect

Use Case: GSO_Ge_SourceDisconnect

Description: Request a source to disconnect from the pre-allocated channels.

Prior Condition: -

Initiator: -

Communication
Partners:

Initiator

Events: -

Remarks: The source stops routing.

msc GSO_Ge_SourceDisconnect

Note: The SourceConnect approach is not
available for MOST50.

GeneralSource

Any

Initiator

SourceDisConnect.StartResult
(SourceNr='X')

Perform SourceActivity(Of f) and
start SourceDisconnect

1

alt

w hen (SourceDisconnect OK)

SourceDisConnect.Result
(SourceNr='X')

otherw ise 2

SourceDisConnect.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 59: GSO_Ge_SourceDisconnect

1. If SourceNr is not connected at all, it is treated as a successful SourceDisconnect.
2. For example, faulty SourceNr.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 97

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

4.10 Boundary Change
Use Case: CM_Boundary_Change

Description: The initiator requests a Boundary change from the ConnectionMaster, which forwards the request to
the TimingMaster.

Prior Condition: Configuration Status OK

Initiator: -

Communication
Partners:

Initiator, ConnectionMaster, TimingMaster

Events: -

Remarks:

msc CM_Boundary_Change

NetBlock.0x00

1

ConnectionMaster Initiator

Conf igurationStatus OK

MoveBoundary.StartResult
(BoundaryDescriptor='new Boundary')

Lock(ConnectionMaster) 2

Announce start of boundary
shif ting process

3

Remove all streaming connections 4

opt

w hen (AllConnectionsRemoved = false)

MoveBoundary.Error
(...)

Announce end of boundary
shif ting process

5

Unlock(ConnectionMaster)

Boundary.SetGet
(BoundaryDescriptor='new Boundary')

Change boundary in
TimingMaster

alt

w hen (Boundary change OK)

Re-initialize low level allocation
mechanism on all devices in the

netw ork.

Boundary.Status
(...) MoveBoundary.Result

(...)

otherw ise 6

Boundary.Status
(...) MoveBoundary.Error

(...)

Announce end of boundary
shif ting process

Unlock ConnectionMaster

[tDelay]

 MSC 60: CM_Boundary_Change

1. NetBlock with InstID 0x00 = TimingMaster

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 98

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

2. Reject new Build/Remove requests
3. By setting the respective property, all notified devices informed about the forthcoming

boundary change and can take appropriate action before streaming connections are removed
and the boundary is physically changed. This can be done by implementing the optional
property "BoundaryChange" or any other OEM specific solution.

4. tDelay - Optional delay between announcing the start of the boundary change and starting to
remove streaming connections should be system configurable.

5. By clearing the respective property, all notified devices are informed that boundary change
process is completed. This can be done by implementing the optional property
"BoundaryChange" or any other OEM specific solution.

6. The allocation table is empty.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 99

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5 Power management

5.1 Introduction
Power management means that the administrative function, which is above the Network Service,
wakes and shuts down the MOST network or specific devices. The power management is handled
mainly by the PowerMaster that uses NetBlock functions for this purpose.

5.2 Network wake up
General MSC: PM_Gen_Network_WakeUp

Description: This process handles a waking of the network.

Prior Condition: The NetInterface of the device is in state “Off”.

Initiator:

Communication
Partners:

All NetBlocks

Events:

Timers / Timing
Constraints:

Remarks:

msc PM_Gen_Netw ork_WakeUp

Pow erMaster NetBlock

The application initiates a w akeup
of the netw ork.

opt

w hen (PermissionToWake = On)

Sw itch modulated signal on.

Sw itch state of NetInterface to
NetInterfaceInit.Sw itch state of NetInterface to

NetInterfaceInit.

 MSC 61: PM_Gen_Network_WakeUp

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 100

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5.3 Network shutdown
General MSC: PM_Gen_Network_Shutdown

Description: This process handles a shutdown of the network.

Prior Condition:

Initiator:

Communication
Partners:

All NetBlocks

Events:

Timers / Timing
Constraints:

- tSuspend
- tRetryShutDown
- tShutDownWait
- tSlaveShutDown

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 101

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc PM_Gen_Netw ork_Shutdow n

Pow erMaster NetBlock

B ShutDow n.Start
(Control='Query')

ShutDow n.Start
(Control='Query')tSuspend

[]

tRetryShutdow n
[]

loop

w hen (Timer tSuspend hasn't expired)

alt

ShutDow n.Result
(Control='Suspend')tRetryShutDow n

B ShutDow n.Start
(Control='Query')

ShutDow n.Start
(Control='Query')tSuspend

[]

tRetryShutdow n
[]

tSuspend

B ShutDow n.Start
(Control='Execute')

ShutDow n.Start
(Control='Execute')

tSlaveShutdow n
[]tShutDow nWait

[]

tShutDow nWait

Sw itch of f modulated signal

opt 1

w hen (modulated signal on input)

tSlaveShutdow n

Sw itch off modulated signal

 MSC 62: PM_Gen_Network_Shutdown

1. A slave device still receiving a modulated signal on its input may switch off its own modulated

signal after tSlaveShutdown.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 102

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5.4 Device shutdown
General MSC: PM_Gen_Device_Shutdown

Description: This process handles a shutdown of a device that is initiated by the PowerMaster.

Prior Condition:

Initiator: PowerMaster

Communication
Partners:

All NetBlocks

Events:

Timers / Timing
Constraints:

- tSuspend
- tRetryShutDown

Remarks:

msc PM_Gen_Device_Shutdow n

Pow erMaster Netw orkSlave Netw orkMaster

ShutDow n.Start
(Control='Query')tSuspend

[]

tRetryShutDow n
[]

loop

w hen (Timer tSuspend hasn't as expired)

alt

ShutDow n.Result
(Control='Suspend')tRetryShutDow n

ShutDow n.Start
(Control='Query')tSuspend

[]

tRetryShutDow n
[]

tSuspend

ShutDow n.Start
(Control='Device Shutdow n')

alt

w hen (DeviceShutdow n is supported)

Mute streaming outputs.

opt

w hen (Netw orkSlave is a source)

CM_Gen_
RemoveSyncConnection 1

FBlockIDs.Status
(FBlockIDList=_)

Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

B Conf iguration.Status
(ConfigurationControl='Invalid',

DeltaFBlockList=_)

Shutdow n application

ShutDow n.Error
(ErrorCode='0x07', ...)

 MSC 63: PM_Gen_Device_Shutdown

1. This MSC describes how a connection is removed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 103

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5.5 Device wake up
General MSC: PM_Gen_Device_WakeUp

Description: This process handles a wake up of a device that is initiated by the PowerMaster.

Prior Condition:

Initiator: PowerMaster

Communication
Partners:

NetBlock in device that has been shutdown.

Events:

Timers / Timing
Constraints:

Remarks:

msc PM_Gen_Device_WakeUp

Pow erMaster NetBlock Netw orkMaster

w hen (Pow erMaster has performed a device shutdow n on the NetBlock)

ShutDow n.Start
(Control='Wake from Device Shutdow n')

Start application

FBlockIDs.Status
(FBlockIDList=_)

Conf iguration.Status
(Conf igurationControl='New ', ...)

Conf iguration.Status
(Conf igurationControl='New ', ...)

B Conf iguration.Status
(Conf igurationControl='New ', ...)

 MSC 64: PM_Gen_Device_WakeUp

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 104

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5.6 Network shutdown due to over temperature
General MSC: PM_Gen_Overtemp_Shutdown

Description: This process handles a shutdown of the network due to over temperature.

Prior Condition:

Initiator: NetBlock in device that is overheated.

Communication
Partners:

All NetBlocks

Events:

Timers / Timing
Constraints:

Remarks:

msc PM_Gen_Overtemp_Shutdow n

Pow erMaster NetBlock.0x01 NetBlock.0x02 NetBlock.0x03

w hen (theta > theta_Shutdow n) 1

ShutDow n.Result
(Control='Temperature Shutdow n')

B ShutDow n.Result
(Control='Temperature Shutdow n')

ShutDow n.Result
(Control='Temperature Shutdow n')

ShutDow n.Result
(Control='Temperature Shutdow n')

par

PermissionToWake.Set
(WakeStatus='On (Default for w aking

device)')

PermissionToWake.Set
(WakeStatus='Off (Default for non w aking device)')

PermissionToWake.Set
(WakeStatus='Off (Default for non w aking device)')

par

exc

w hen (theta > theta_Dead) 2

Sw itch the modulated signal of f

PM_Gen_Netw ork_Shutdow n

 MSC 65: PM_Gen_Overtemp_Shutdown

1. Temperature near critical limit.
2. Critical temperature reached.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 105

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5.7 Network restart after over-temperature shutdown
General MSC: PM_Gen_Restart_After_Overtemp_Shutdown

Description: This process handles a network restart after a shutdown of the network due to over-temperature.

Prior Condition:

Initiator: PowerMaster

Communication
Partners:

All NetBlocks

Events:

Timers / Timing
Constraints:

- tWaitAfterOvertempShutdown

Remarks:

msc PM_Gen_Restart_Af ter_Overtemp_Shutdow n

Pow erMaster NetBlock.0x01 NetBlock.0x02 NetBlock

Pow erMaster shuts dow n system
due to high temperature in device

w ith NetBlock 0x01.

tWaitAf ter
Overtemp
Shutdow n

[]

loop

w hen (Overtemperature_Condition = true) 1

alt

w hen (theta < theta_AppOff and
PermissionToWake = On) 2

Sw itch modulated signal on.

otherw isetWaitAf ter
Overtemp
Shutdow n

opt

w hen (AutomaticStartup = false) 3

User_Restart_Request

Restart Netw ork 4

opt

w hen (theta > theta_Shutdow n)

ShutDow n.Result
(Control='Temperature Shutdow n')

B ShutDow n.Result
(Control='Temperature Shutdow n')

ShutDow n.Result
(Control='Temperature Shutdow n')

Shutdow n Netw ork

tWaitAf ter
Overtemp
Shutdow n

[]

w hen (SystemState = OK) 5

par

PermissionToWake.Set
(WakeStatus='Off (Default for non w aking

device)')

6

PermissionToWake.Set
(...)

7

 MSC 66: PM_Gen_Restart_After_Overtemp_Shutdown

1. Wait for network restart attempts until System State OK is reached and therefore the

overtemperature condition is over.
2. The device may wake up the network after cooling down.
3. After tWaitAfterOvertempShutdown, the PowerMaster may restart the network but is not

required to do so. This may depend on applicative requests or states.
 If the PowerMaster does not restart the system automatically, a user request may trigger the
restart.

4. This action triggers the NetworkMaster to scan the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 106

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

5. A successful network scan was performed by the NetworkMaster.
6. Resets the PermissionToWake property to original state.
7. Resets the PermissionToWake property to original state.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 107

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

6 Generic Management of Audio (Synchronous data)

6.1 Introduction
Audio or any Synchronous Management could be described being very complex. This has also been
experienced by many carmakers. Therefore, a concept of Audio Management is frequently used.
Here we show how introducing this concept as a part of the MOST Specification would simplify the
management of Synchronous connections. The concept is equally valid for Video Management or any
other Synchronous Management.

6.2 Example Architecture of Synchronous Management

Figure 6-1: Usage of a synchronous master in an advanced system.

The system in figure 6-1 is an example where several human interfaces can use the same
synchronous sources and sinks and also other devices that may have a need to interact. The gateway
in the example can be a simple node that only sends status notifications to the SyncMaster that, for
example, a door is open, which results in some warning signal.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 108

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

6.3 Logical Model of Streaming Management
Definition 1: Audio Management controls audio properties for one or more amplifiers in the system.

Definition 2: Video Management controls image properties for one or more videos and cameras.

These definitions apply to logical entities that could be implemented in many different ways.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 109

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7 Function Blocks

7.1 AudioAmplifier
The functions presented below are exemplary. Hence, the MSCs can be generalized when using
similar functions (e.g., replace Balance with Volume).

7.1.1 Methods

Scenario MSC: AMP_Sc_GraphEqualizerLinear

Description: Using the AudioAmplifier method GraphEqualizerLinear.

Prior Condition: -

Initiator: AudioManager

Communication
Partners:

AudioManager

Events -

Timers/Timing
constraints

-

Remarks: General for all methods. Processing is run according to what is specified for each function and any
result or error should be given within time limits, if specified.

msc AMP_GraphEqualizerLinear

AudioAmplif ier AudioManager

alt

GraphEqualizerLinear.Start

opt

GraphEqualizerLinear.Error
(ErrorCode=_, ErrorInf o=_)

GraphEqualizerLinear.StartResult

alt

GraphEqualizerLinear.Result

GraphEqualizerLinear.Error
(ErrorCode=_, ErrorInf o=_)

 MSC 67: AMP_Gen_GraphEqualizerLinear

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 110

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.1.2 Balance

Scenario MSC: AMP_Sc_Balance

Description: Using the function “Balance” or a general view of a property.

Prior Condition: -

Initiator: AudioManager

Communication
Partners:

AudioManager

Events -

Timers/Timing
constraints

tPropery

Remarks: General for all properties.

msc AMP_Balance

AudioAmplif ier AudioManager

alt

Balance.Set
(...)

opt

Balance.Error
(ErrorCode=_, ErrorInfo=_)

Balance.Get

Balance.Status
(Balance=_)

Balance.SetGet
(Balance=_)

alt

Balance.Status
(Balance=_)

Balance.Error
(ErrorCode=_, ErrorInfo=_)

Balance.Increment
(NSteps=_)

opt

Balance.Error
(ErrorCode=_, ErrorInfo=_)

Balance.Decrement
(...)

opt

Balance.Error
(ErrorCode=_, ErrorInfo=_)

[0,tProperty]

[0,tProperty]

[0,tProperty]

[0,tProperty]

[0,tProperty]

[0,tProperty]

 MSC 68: AMP_Gen_Balance

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 111

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2 AudioDiskPlayer

7.2.1 Notification

Scenario MSC: ADP_Sc_NotificationSetFunction

Description: The controller signs up for notification on different properties. It is up to the system integrator to decide
which properties will be signed up for notification.

Prior Condition: NetworkMaster has issued Configuration.Status(OK).

Initiator:

Communication
Partners:

Controlling device

Events

Remarks:

msc ADP_Sc_Notif icationSetFunction

AudioDiskPlayer Controller

Notif ication.Set
(Control='SetFunction',

DeviceID='0x0FFF', FktIDList='
0x200,0x201,0x202, 0x410, 0x413, 0x430,

0x431, 0x450, 0x451, 0x452')

DeckStatus.Status
(...)

TimePosition.Status
(...)

TrackPosition.Status
(...)

MediaInfo.Status
(...)

DeckEvent.Status
(...)

MediaEvent.Status
(...)

Random.Status
(...)

Scan.Status
(...)

Repeat.Status
(...)

 MSC 69: ADP_Sc_NotificationSetFunction

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 112

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.2 Loading a CD

Scenario MSC: ADP_Sc_CD_Loaded

Description: The user inserts a CD.

Prior Condition: The CD tray is empty.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks: This use case assumes that autoplay is to be used when a playable CD is found.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 113

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_CD_Loaded

AudioDiskPlayer Controller

w hen CD tray is empty

User_inserts_a_CD
DeckStatus.Status

(DeckStatus='Load')

alt

w hen Working CD inserted.

MediaInfo.Status
(Pos={x='x', y='0'} , ...)

MediaEvent.Status
(MediaEvent='Normal Operation')

AudioDiskInfo.Status
(Pos={x='x', y='0'} , ...)

TrackPosition.Status
(Track=_)

TimePosition.Status
(Pos={x='0'} , ...)

alt

w hen Autoplay

DeckStatus.Status
(DeckStatus='Play')

otherw ise

DeckStatus.Status
(DeckStatus='Stop')

w hen No CD inserted.

DeckStatus.Status
(DeckStatus='Unload')

MediaInfo.Status
(Pos={x='x', y='0'} , ...)

MediaEvent.Status
(MediaEvent='Disk not available')

w hen TOC unreadable.

MediaInfo.Status
(Pos={x='x', y='0'} , ...)

MediaEvent.Status
(MediaEvent='TOC Unreadable')

w hen Corrupted Disc.

MediaInfo.Status
(Pos={x='x', y='0'} , ...)

MediaEvent.Status
(MediaEvent='Corrupted File or Track')

w hen Corrupted ROM Table.

MediaInfo.Status
(Pos={x='x', y='0'} , ...)

MediaEvent.Status
(MediaEvent='TOC Unreadable')

 MSC 70: ADP_Sc_CD_Loaded

1. Autoplay is used and MMI is switched to CD on valid discs.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 114

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.3 Ejecting a Disc

Scenario MSC: ADP_Sc_Eject

Description: The CD is ejected.

Prior Condition: CD is playing. Notification registered as in 6.2.1.

Initiator: User or controller

Communication
Partners:

Controlling device

Events

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 115

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_Eject

AudioDiskPlayer Controller

CD is playng

alt

User_initiates_eject

DeckStatus.Set
(DeckStatus='Unload')

opt

DeckStatus.Status
(DeckStatus='Stop')

DeckStatus.Status
(DeckStatus='Unload')

MediaInfo.Status
(Pos={x='x', y='0'}, ...)

1

AudioDiskInfo.Status
(Pos={x='0', y='0'}, ...)

2

TrackPosition.Status
(Track='0')

TimePosition.Status
(Pos={x='2'}, Data={..., TrackTime='00',

...})

MediaEvent.Status
(MediaEvent='Disk not available')

alt

User_takes_the_CD
DeckStatus.Status

(DeckStatus='Empty')

opt

CD is retracted af ter a specif ied
time.

DeckStatus.Status
(DeckStatus='Retract')

DeckStatus.Status
(DeckStatus='Load')

 MSC 71: ADP_Sc_Eject

1. MediaInfo for a Single CD Player has a constant default value: Data is empty.
2. Data is empty.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 116

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.4 New Track Selected

Scenario MSC: ADP_Sc_NewTrackSelected

Description: The user selects another track.

Prior Condition: CD is playing.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 117

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_New TrackSelected

AudioDiskPlayer Controller

User_selects_another_track

alt

TrackPosition.Set
(Track='New Track')

TrackPosition.Increment
(NSteps='1')

TrackPosition.Decrement
(NSteps='1')

alt

w hen End of disc is reached.

alt

MediaEvent.Status
(MediaEvent='End of CD')

DeckStatus.Status
(DeckStatus='Stop')

MediaEvent.Status
(MediaEvent='End of CD')

TrackPosition.Status
(Track='1')

TimePosition.Status
(Pos={x='0'}, ...)

TrackPosition.Status
(Track=_)

TimePosition.Status
(Pos={x='0'}, ...)

New track is playing

 MSC 72: ADP_Sc_NewTrackSelected

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 118

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.5 Searching

Scenario MSC: ADP_Sc_Search

Description: The user searches forwards or backwards.

Prior Condition:

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 119

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_Search

AudioDiskPlayer Controller

The_user_searches_forwards_
or_backwards

alt

w hen CD is paused.

DeckStatus.Set
(DeckStatus='SearchDirection')

DeckStatus.Status
(DeckStatus='SearchDirection')

loop 1

w hen User keeps the search button pressed.

opt

w hen Track ends.

TrackPosition.Status
(Track=_)

TimePosition.Status
(Pos={x='0'}, ...)

DeckStatus.Set
(DeckStatus='Pause')

DeckStatus.Status
(DeckStatus='Pause')

w hen CD is playing.

DeckStatus.Set
(DeckStatus='SearchDirection')

DeckStatus.Status
(DeckStatus='SearchDirection')

loop 2

w hen User keeps the search button pressed.

opt

w hen Track ends

TrackPosition.Status
(Track=_)

TimePosition.Status
(Pos={x='0'}, ...)

DeckStatus.Set
(DeckStatus='Play')

DeckStatus.Status
(DeckStatus='Play')

 MSC 73: ADP_Sc_Search

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 120

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

1. Triggered for every second that is passed while searching.
2. Triggered for every second that is passed while searching.

7.2.6 New Track Unchanged

Scenario MSC: ADP_Sc_NewTrackUnchanged

Description: The user selects the same track that is playing.

Prior Condition: Track n is playing.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

msc ADP_Sc_New TrackUnchanged

AudioDiskPlayer Controller

User_selects_same_track
TrackPosition.Set

(Track='n')

TrackPosition.Status
(Track='n')

TimePosition.Status
(Pos={x='2'}, ...)

Playback from the beginning of
the track

 MSC 74: ADP_Sc_NewTrackUnchanged

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 121

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.7 Start Scan Disc

Scenario MSC: ADP_Sc_StartScanDisc

Description: The user presses Scan and scans the disc.

Prior Condition: Scan is off and track number 5 is playing.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 122

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_StartScanDisc

AudioDiskPlayer Controller

User_pushes_the_scan_button
Scan.Set

(ScanState='Disk')

Scan.Status
(ScanState='Disk')

TrackPosition.Status
(Track=_)

TimePosition.Status
(Pos={x='0'}, ...)

opt

Repeat disc is on.

Repeat.Status
(RepeatState='Off ')

1

opt

Random disc is on.

Random.Status
(RandomState='Off ')

2

loop <track_6,
track_5>

Timer3
[]

TrackPosition.Increment
(NSteps='1')

TrackPosition.Status
(Track='x')

TimePosition.Status
(Pos={x='0'}, ...) Timer

Scan.Status
(ScanState='Off ')

Track 5 is played

 MSC 75: ADP_Sc_StartScanDisc

1. If Repeat is on, it will be turned off.
2. If Random is on, it will be turned off.
3. Timer = each track will be played for a defined time; usually 10 seconds.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 123

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.8 Stop Scan Disc

Scenario MSC: ADP_Sc_StopScanDisc

Description: The user presses Scan and scans the disc.

Prior Condition: Scan is off and track number 5 is playing.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

msc ADP_Sc_StopScanDisc

AudioDiskPlayer Controller

alt

User_stops_scan_disc
Scan.Set

(ScanState='Off ')

Scan_disc_ends
Scan.Status

(ScanState='Off ')

TrackPosition.Status
(Track=_)

TimePosition.Status
(Pos={x='0'}, ...)

Current track is playing.

 MSC 76: ADP_Sc_StartScanDisc

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 124

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.9 Start Random

Scenario MSC: ADP_Sc_StartRandom

Description: The user selects random playback.

Prior Condition: Random is off and a track is being played.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 125

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_StartRandom

AudioDiskPlayer Controller

User_selects_random
Random.Set

(RandomState='Disk')

Random.Status
(RandomState='Disk')

opt

Scan is on

Scan.Status
(ScanState='Off ')

1

alt

w hen Repeat is on

loop
<until_stopped>

TrackPosition.Status
(Track='x')

TimePosition.Status
(Pos={x='0'}, ...)

otherw ise

loop

w hen Not all tracks are played.

TrackPosition.Status
(Track='x')

TimePosition.Status
(Pos={x='0'}, ...)

MediaEvent.Status
(MediaEvent=_)

DeckStatus.Status
(DeckStatus='Stop')

 MSC 77: ADP_Sc_StartRandom

1. If Scan is on, it will be turned off.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 126

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.10 Stop Random

Scenario MSC: ADP_Sc_StopRandom

Description: Random playback is stopped. The player assumes normal playback again.

Prior Condition: Random is on.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

msc ADP_Sc_StopRandom

AudioDiskPlayer Controller

User_stops_random
Random.Set

(RandomState='Off ')

Random.Status
(RandomState='Off ')

TrackPosition.Status
(Track='x')

TimePosition.Status
(Pos={x='0'}, ...)

DeckStatus.Status
(DeckStatus='Play')

 MSC 78: ADP_Sc_StopRandom

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 127

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.11 Start Repeat Track

Scenario MSC: ADP_Sc_StartRepeatTrack

Description: User selects repeat single track.

Prior Condition: Repeat track is off and a track is being played.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

msc ADP_Sc_StartRepeatTrack

AudioDiskPlayer Controller

User_selects_repeat_track
Repeat.Set

(RepeatState='Track')

Repeat.Status
(RepeatState='Track')

opt

Scan is on.

Scan.Status
(ScanState='Off ')

opt

Random is on.

Random.Status
(RandomState='Off ')

loop <1, INF>

TrackPosition.Status
(Track='x')

loop

w hen End of track not reached.

TimePosition.Status
(Pos={x='2'}, ...)

1

 MSC 79: ADP_Sc_StartRepeatTrack

1. Message is sent every second.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 128

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.12 Start Repeat Disc

Scenario MSC: ADP_Sc_StartRepeatDisc

Description: User selects repeat disc.

Prior Condition: Repeat disc is off and a track is being played.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 129

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

msc ADP_Sc_StartRepeatDisc

AudioDiskPlayer Controller

User_selects_repeat_disc
Repeat.Set

(RepeatState='Disk')

Repeat.Status
(RepeatState='Disk')

opt

Scan_is_on

Scan.Status
(ScanState='Off ')

opt

Random_is_on

Random.Status
(RandomState='Off ')

loop <1, INF>

loop <1,
max_track>

TrackPosition.Status
(Track='x')

loop

w hen End of track not reached.

TimePosition.Status
(Pos={x='2'}, ...)

1

Start over w ith f irst track.

 MSC 80: ADP_Sc_StartRepeatDisc

1. Message is sent every second.

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 130

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

7.2.13 Stop Repeat

Scenario MSC: ADP_Sc_StopRepeat

Description: User turns repetition off.

Prior Condition: Repeat disc or track is on.

Initiator: User

Communication
Partners:

Controlling device

Events

Remarks:

msc ADP_Sc_StopRepeat

AudioDiskPlayer Controller

User_turns_repeat_off
Repeat.Set

(RepeatState='Off ')

Repeat.Status
(RepeatState='Off ')

TrackPosition.Status
(Track='x')

TimePosition.Status
(Pos={x='0'}, ...)

Repeat is of f . Operation is the same as in the
beginning of the MSC.

 MSC 81: ADP_Sc_StopRepeat

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 131

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

8 Timers
The definition of timers can be found in the corresponding MOST Specification.

9 Naming Conventions
The names of the MSCs categorize them into different sections. Every name has a prefix that
differentiates it from MSCs dealing with other topics. Two parts make up the prefix. The first part
consists of an abbreviation or a characteristic name of the topic that the MSC focuses on. The
following names exist:

Topic Prefix Contents of the MSC

ADP AudioDiskPlayer MSC
AMP AudioAmplifier MSC
GSI GeneralSink MSC
GSO GeneralSource MSC
CM Connection Management MSC
NM NetworkMaster MSC
NS Network Slave MSC

The second part of the prefix is used to differentiate between General MSCs and Scenario MSCs.
Gen stands for general and _Sc_ for Scenario.

An example is ADP_Sc_CD_Loaded, which has ADP_Sc as a prefix. This means that the MSC is an
AudioDiskPlayer Scenario MSC. (It shows what happens when a CD is loaded).

9.1 Connection Management Naming Conventions
In addition to the above named prefixes of the MSC name, the Connection Management section also
uses _SC_ to denote that the MSC is only relevant in an all SourceConnect network. _M_ is used to
denote that this MSC is only used in Mixed System networks (networks that use the Timing Master’s
allocation table). MSC names that have neither _SC_ nor _M_ is used in both types of network.

An example is CM_Gen_M_BuildSyncConnection, which is a Connection Management general MSC.
It shows how the Connection Management builds a synchronous connection in a mixed system.

Warning: There are scenarios MSCs that deal only with SourceConnect networks giving them the
name CM_Sc_SC_....

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 132

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

10 Appendix A: Index of Figures
Figure 3-1: States of the network are shown, as well as the status of the Central Registry (CR). 13
Figure 3-2: An example of what a Central Registry may look like... 14
Figure 3-3: Difference between an Initial Scan and Regular Scans. .. 27
Figure 4-1: Logical Model of Connection Management .. 65
Figure 6-1: Usage of a synchronous master in an advanced system. .. 107

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 133

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

11 Appendix B: Index of Tables
Table 3-1: Variables used in the general Network Management MSCs ... 14
Table 4-1: Variables used in the general Connection Management MSCs .. 66

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 134

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

12 Appendix C: Index of MSCs
NM_Gen_Startup... 15
NM_Gen_Init ... 17
NM_Gen_RequestConfiguration ... 19
NM_Gen_ReceiveConfiguration.. 23
NM_Gen_SystemConfigurationUpdate ... 25
NM_Gen_ProcessNCE.. 26
NM_Sc_Set_SystemState_NotOk... 28
NM_Sc_Initial_Scan_NoNodeAddress_SystemState_NotOk... 29
NM_Sc_Initial_Scan_SystemState_NotOk_To_Ok .. 30
NM_Sc_Scan_ConfigStatus_To_Ok ... 32
NM_Sc_Scan_Secondary_Node_Registration_To_Ok .. 33
NM_Sc_Scan_InstID_Mismatch_ConfigStatus_Ok .. 34
NM_Sc_Scan_InstID_Collision_ConfigStatus_To_Ok.. 35
NM_Sc_Scan_Error_CR_Deleted_Illegal_NodeAddress ... 36
NM_Sc_Scan_Node_Not_Responding_In_NotOk.. 38
NM_Sc_Scan_Node_Not_Responding_In_Ok ... 40
NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_NotOk .. 42
NM_Sc_Scan_Node_Reporting_Error_Not_2ndary_In_Ok.. 44
NM_Sc_Scan_Node_Causes_NotOk_Three_Times_In_Succession .. 45
NM_Sc_Scan_NCE_Interruption... 46
NM_Sc_NCE_SystemStateNotOk_To_Ok.. 47
NM_Sc_NCE_SystemStateOk_To_Ok ... 48
NM_Sc_NCE_SystemState_To_NotOk .. 49
NM_Sc_Spontaneous_Reg_New_And_Invalid... 50
NS_Gen_Startup ... 52
NS_Gen_Init .. 54
NS_Gen_RunningPrimary ... 57
NS_Gen_RunningSecondary .. 59
NS_Gen_Reset ... 60
NS_Gen_Communicate... 61
NS_Sc_StartupOk ... 62
NS_Sc_StartupNotOk.. 63
NS_Sc_Communicate ... 64
CM_Gen_SC_BuildSyncConnection... 68
CM_Gen_SC_SourceInfo_Get.. 69
CM_Gen_SC_SourceConnect_StartResult .. 70
CM_Gen_Connect_StartResult... 71
CM_Gen_SourceActivity_StartResult ... 72
CM_Gen_M_BuildSyncConnection... 74
CM_Gen_M_Get_SourceType.. 76
CM_Gen_M_Allocate_StartResult .. 77
CM_Gen_RemoveSyncConnection .. 78
CM_Gen_DisConnect_StartResult.. 79
CM_Gen_SC_SourceDisConnect_StartResult ... 80
CM_Gen_M_DeAllocate_StartResult.. 81
CM_Sc_SC_Known... 82
CM_Sc_SC_Unknown... 83
CM_Sc_MixedSystem ... 84
CM_Sc_RemoveSyncConnection ... 85
CM_Gen_SC_CleanUp ... 86
CM_Gen_M_CleanUp ... 87
CM_Sc_SourceDrop.. 88
CM_Sc_SinkDrop .. 89
GSI_Ge_Connect .. 91
GSI_Ge_Disconnect.. 92
GSO_Ge_Allocate ... 93
GSO_Ge_Deallocate... 94

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 135

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

GSO_Ge_SourceConnect ... 95
GSO_Ge_SourceDisconnect .. 96
CM_Boundary_Change... 97
PM_Gen_Network_WakeUp ... 99
PM_Gen_Network_Shutdown ... 101
PM_Gen_Device_Shutdown ... 102
PM_Gen_Device_WakeUp.. 103
PM_Gen_Overtemp_Shutdown .. 104
PM_Gen_Restart_After_Overtemp_Shutdown ... 105
AMP_Gen_GraphEqualizerLinear... 109
AMP_Gen_Balance ... 110
ADP_Sc_NotificationSetFunction.. 111
ADP_Sc_CD_Loaded.. 113
ADP_Sc_Eject ... 115
ADP_Sc_NewTrackSelected... 117
ADP_Sc_Search.. 119
ADP_Sc_NewTrackUnchanged .. 120
ADP_Sc_StartScanDisc .. 122
ADP_Sc_StartScanDisc .. 123
ADP_Sc_StartRandom.. 125
ADP_Sc_StopRandom.. 126
ADP_Sc_StartRepeatTrack... 127
ADP_Sc_StartRepeatDisc... 129
ADP_Sc_StopRepeat .. 130

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
Page 136

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Notes:

Specification Document © Copyright 1999 - 2006 MOST Cooperation.
 Page 137

MOST®
DynamicSpecification

MOST Dynamic Specification Rev 1.3 12/2006

Notes:

	1 Introduction
	1.1 Purpose
	1.2 Scope

	2 MSC Structuring
	2.1 General MSCs vs. Scenario MSCs

	3 Network Management
	3.1 SystemStates
	3.2 NetworkMaster General MSCs
	3.2.1 Variables used in general NetworkMaster MSCs
	3.2.2 High-level NetworkMaster MSC
	3.2.3 Initializing the NetworkMaster
	3.2.4 Requesting Configuration
	3.2.5 Receiving Registrations
	3.2.6 Updating SystemState
	3.2.7 Processing NCEs

	3.3 NetworkMaster Scenario MSCs
	3.3.1 Scan Types
	3.3.2 Setting the SystemState to NotOk
	3.3.3 Initial Scan
	3.3.3.1 Initial Scan without Node Address
	3.3.3.2 Initial Scan System State NotOK to OK
	3.3.3.3 Initial Scan with Node Not Responding
	3.3.3.4 Error during Initial Scan with a stored Central Registry

	3.3.4 Regular Scan
	3.3.4.1 Normal Scan without implications
	3.3.4.2 Normal Scan with Secondary Node
	3.3.4.3 Mismatch in InstID in SystemState Ok
	3.3.4.4 Collision between InstIDs
	3.3.4.5 Error when Node Registers an Invalid NodeAddress
	3.3.4.6 Node Not Responding in SystemState NotOk
	3.3.4.7 Node Not Responding in SystemState Ok
	3.3.4.8 Node Reporting Error (not 2ndary) in SystemState NotOk
	3.3.4.9 Node Reporting Error (not 2ndary) in SystemState Ok
	3.3.4.10 Node causing NotOk three times in succession
	3.3.4.11 Scan Interrupted by NCE
	3.3.4.12 NCE in SystemState NotOk Resulting in SystemState Ok
	3.3.4.13 NCE in SystemState Ok Resulting in SystemState Ok
	3.3.4.14 NCE Resulting in SystemState NotOk
	3.3.4.15 Spontaneous Registration of Node
	3.3.4.16 Network Slave changes NodeAddress in SystemState OK

	3.4 Network Slave General MSCs
	3.4.1 High-level Network Slave MSC
	3.4.2 Initializing the Network Slave
	3.4.3 Running Operation - Primary Node
	3.4.4 Running Operation - Secondary Node
	3.4.5 Reset
	3.4.6 Communicate

	3.5 Network Slave Scenario MSCs
	3.5.1 Startup scenarios
	3.5.1.1 Startup - Ok
	3.5.1.2 Startup - NotOk

	3.5.2 Communication Scenarios
	3.5.2.1 Communicate with partner

	4 Connection Management
	4.1 Introduction
	4.2 Logical Model of Connection Management
	4.3 Variables used in Connection Management MSCs
	4.4 Normal Behavior
	4.4.1 Connection Management General MSCs
	4.4.1.1 BuildSyncConnection in a SourceConnect System
	4.4.1.1.1 Retrieving SourceInfo
	4.4.1.1.2 Connecting a Source with SourceConnect
	4.4.1.1.3 Connecting a Sink
	4.4.1.1.4 SourceActivity turned on

	4.4.1.2 BuildSyncConnection in a Mixed System
	4.4.1.2.1 Establishing the Source Type
	4.4.1.2.2 Allocate in a Mixed System

	4.4.1.3 Removing a Synchronous Connection
	4.4.1.3.1 Disconnecting a Sink
	4.4.1.3.2 Disconnecting a Source using SourceDisConnect
	4.4.1.3.3 Deallocation Procedure

	4.4.2 Connection Management Scenario MSCs
	4.4.2.1 Building a Connection with a Known Source
	4.4.2.2 SourceConnect with an Unknown Source
	4.4.2.3 Building a Connection in a Mixed System with Unknown Sources
	4.4.2.4 Removing a Synchronous Connection

	4.5 Error Handling
	4.5.1 Error Handling General MSCs
	4.5.1.1 CleanUp in a SourceConnect System
	4.5.1.2 CleanUp in a Mixed System

	4.5.2 Error Handling Scenario MSCs
	4.5.2.1 Source drop
	4.5.2.2 Sink drop

	4.6 Extended ConnectionMaster General MSCs
	4.7 Extended ConnectionMaster Scenarios
	4.8 General Sink MSCs
	4.8.1 Connect
	4.8.2 Disconnect

	4.9 General Source MSCs
	4.9.1 Allocate
	4.9.2 Deallocate
	4.9.3 SourceConnect
	4.9.4 SourceDisconnect

	4.10 Boundary Change

	5 Power management
	5.1 Introduction
	5.2 Network wake up
	5.3 Network shutdown
	5.4 Device shutdown
	5.5 Device wake up
	5.6 Network shutdown due to over temperature
	5.7 Network restart after over-temperature shutdown

	6 Generic Management of Audio (Synchronous data)
	6.1 Introduction
	6.2 Example Architecture of Synchronous Management
	6.3 Logical Model of Streaming Management

	7 Function Blocks
	7.1 AudioAmplifier
	7.1.1 Methods
	7.1.2 Balance

	7.2 AudioDiskPlayer
	7.2.1 Notification
	7.2.2 Loading a CD
	7.2.3 Ejecting a Disc
	7.2.4 New Track Selected
	7.2.5 Searching
	7.2.6 New Track Unchanged
	7.2.7 Start Scan Disc
	7.2.8 Stop Scan Disc
	7.2.9 Start Random
	7.2.10 Stop Random
	7.2.11 Start Repeat Track
	7.2.12 Start Repeat Disc
	7.2.13 Stop Repeat

	8 Timers
	9 Naming Conventions
	9.1 Connection Management Naming Conventions

	10 Appendix A: Index of Figures
	11 Appendix B: Index of Tables
	12 Appendix C: Index of MSCs

