MOST

Media Oriented Systems Transport

Multimedia and Control
Networking Technology

MOST Specification
Rev 2.5
10/2006

MOST

COOPERATION

© Copyright 1999 - 2006 MOST Cooperation

MOST® MOST

Specification COOPERATION

Legal Notice
COPYRIGHT
© Copyright 1999 - 2006 MOST Cooperation. All rights reserved.

LICENSE DISCLAIMER

Nothing on any MOST Cooperation Web Site, or in any MOST Cooperation document, shall be
construed as conferring any license under any of the MOST Cooperation or its members or any third
party's intellectual property rights, whether by estoppel, implication, or otherwise.

CONTENT AND LIABILITY DISCLAIMER

MOST Cooperation or its members shall not be responsible for any errors or omissions contained at
any MOST Cooperation Web Site, or in any MOST Cooperation document, and reserves the right to
make changes without notice. Accordingly, all MOST Cooperation and third party information is
provided "AS IS". In addition, MOST Cooperation or its members are not responsible for the content of
any other Web Site linked to any MOST Cooperation Web Site. Links are provided as Internet
navigation tools only.

MOST COOPERATION AND ITS MEMBERS DISCLAIM ALL WARRANTIES WITH REGARD TO
THE INFORMATION (INCLUDING ANY SOFTWARE) PROVIDED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

In no event shall MOST Cooperation or its members be liable for any damages whatsoever, and in
particular MOST Cooperation or its members shall not be liable for special, indirect, consequential, or
incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or
related to any MOST Cooperation Web Site, any MOST Cooperation document, or the information
contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at
law or otherwise.

FEEDBACK INFORMATION

Any information provided to MOST Cooperation in connection with any MOST Cooperation Web Site,
or any MOST Cooperation document, shall be provided by the submitter and received by MOST
Cooperation on a non-confidential basis. MOST Cooperation shall be free to use such information on
an unrestricted basis.

TRADEMARKS

MOST Cooperation and its members prohibit the unauthorized use of any of their trademarks. MOST
Cooperation specifically prohibits the use of the MOST Cooperation LOGO unless the use is approved
by the Steering Committee of MOST Cooperation.

SUPPORT AND FURTHER INFORMATION
For more information on the MOST technology, please contact:

MOST Cooperation
Administration
D-76185 Karlsruhe
Germany

Tel: (+49) (0) 721 966 50 00

Fax: (+49) (0) 721 966 50 01

E-mail: contact@mostcooperation.com
Web: www.mostcooperation.com

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 2

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

© Copyright 1999 - 2006 MOST Cooperation
All rights reserved

MOST is a registered trademark

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 3

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
Contents
LTI I 3T AN = /2 14
R NI 0 15 1 L I [15
Rt U 1 0T 1= PP 15
I S Yoo] o[USRI 15
1.3 MOST DOCUMENT STTUCTUIEuue e e e e e e e e e et e e e e e e et e e e et e e e sann e e e et e eeeannans 15
S o (= (=] 01T 16
S O 1V =T V11 T 16
2 APPLICATION SECTION ...ttt ettt e e e s et e et e et e e s e et e st s s et e e ba e ranessbans 17
2.1 Overview Of Data ChannEIS........coooeuuiiiiiie et e e e e e e e e e e e e e e erabe s e e e s eeeenes 17
2.1.1 (O00] 01 1o] O F= 1] o 1= TR 17
2.1.2 Streaming Data Channel...........ouuiiiiiiiii e e 17
2.1.3 Packet Data ChamnnEloouuiiiiiieiieecc et et e e e e e e e e aa b 18
2.1.4 Managing Streaming/Packet Bandwidth ... 18
2.2 LOQICAl DEVICE MOUEL.....uueiiiie it e e e e e e s e st e e e e e e e e e snnraaeaaeeas 19
221 [T et [T g I =] (o od PPNt 19
A N R Y = AV ST @ o] a1 (0] | [T g 11, T 20
2.2.1.2 First Introduction t0 MOST FUNCLONSccoiiiiiiiieee et e e e e e e e e e e e e eeaaan e e eanas 20
2.2.2 FUNCHIONS ettt e e e e e e et e e e e e e e eeas bt e e eeeeeees bt e seeeseesresranan 21
2.2.3 L= i Lo E PR RRRRRRRRPPPPIR 21
A S o (o] = 4 111 SRR 22
P S R ST~ 11 o To = W o o] =T 1 YT PUPUT P RRPTNE 22
A S A & =T Vo 110 1o = W (0] o 1= 1 oYU PUP P TUUURPTNE 23
2.2.5 V7]] £ TN 23
2.2.6 FUNCHON INEEITACESoiiiieieeeeeeeeeeeeeeeeee ettt b aa e bebabebebebebebebababebebaberessrararnres 24
2.2.7 DEfiNItIoN EXAMPIE .oooii e e e s e e e e e s et e e e e e e e e e s arnrraaeeaeaaan 25
2.2.8 MOST NEIWOIK SEIVICEevviviiiieeieereeeteteseresereseresssererereaererererer.—.—.—.r.—.—.—.———.—.—.—.—.—.—.—.....—.———. 27
2 T = (o] (o Yo o £ 28
231 PrOTOCOI BASICS......eeiiiiiiiiiiiiiiiieeeeeteseseseeeterererereretesebebebsbebebebebebsbabebebebsbebabsssbasssssesssnsssssnsnreres 28
2.3.2 Structure Of MOST PrOtOCOIS ..vuvvvuriiiiiiiiiiiiii s e s e e s s e e s e s e s e e e s e e e e e e e aeaeas 28
2.3.2. 1 DEVICEID ..o, 28
2.3.2.2 FBIOCKID ... 29
2.3.2.3 INSHD e 31
2.3.2.3.1 RESPONSIDIILY ...ttt ettt e e e e et e e e e e e e nne e e e e e e e e e nnaeaaaeeaan 31
2.3.2.3.2 ASSIGNING INSTID ...ttt e e e ettt e e e e e et be et e e e e e e aannreeeeaeeeeaannnaaaaeeann 31
2.3.2.3.3 INSLID Of NEIBIOCKoeieiii ettt e e e e e e e e e e e e e e e e st eeeaaeeas 31
2.3.2.3.4 INStID Of NEIWOIKIMASTEToiiiieeiie e et e e e e e et e e e e e e e ea e e e e e eeaaaneeeaeeaes 31
2.3.2.3.5 InstID of Function Block EnhancedTestabilitycccccoiiiiiiii i 31
2.3.2.3.6 INSHD WIIACAIASceiiiiiiiiiiiiieeeeeeeeeee ettt et e e e ee e e aaaasaseesasasasssassssasesssassssssssssssrsrrenseenes 32
2.3.24 FKUD oo 33
PR T S T O | = Y/ o 1= PSR R 35
D T T R = ¢ (o] PP 36
P T YA - 1 PO = o) 41
2.3.2.5.3 StartResult, Result, Processing, EITOrcoui it 41
2.3.25.4 StartAck, StartResultAck, ProcessingAck, ReSUltACK, ErfOrACKccccvvvveeeriiiiiiiiece e 44
2.3.2.5.5 Gt StALUS, EITOr ...ttt ettt e e e e et e e et e e e et e e e et e e esan e esaaaeesta e eerenns 44
2.3.2.5.6 Set, STAtUS, EITOI ...t e e et e e e e e e e e e e e e e e e e e aas 44
2.3.2.5.7 SetGet, StAUS, ETTOruuiii e et e e e s e e e e e e et b e e e e e e eeasaa s e eeesesataneaaaaaeas 44
2.3.2.5.8 Getlnterface, INTEITACE, BEITON ...t e e e e e et e s e e e e eaaans 45
2.3.2.5.9 Increment and Decrement, StatusS, EITOCouuiiiiiiiiii e e e e 45
DR T T O T Y o 1o) AR Y 1 (o] 45
B T T I R Y o 1o) o 7o G = (o Vo3 45
2.3.2.8 LENGEN ...t e e h e e e et e n e s 46
2.3.2.7 Data and BaSiC DAt@ TYPES ...eceiuiiiie ittt ettt e et e st s e 46
D T % R = 1o To] =Y T o DO PP OPOPPPPPPPPPPPRS 48
A T N = 111 1= (o (PO PP PPN 48
L T A T = o TV o o PSS 48
2.3.2.7.4 UNSIGNEA BYLE... .ttt ettt e ettt e e e e e et e e e e e e e e e bbb e et e e e e e e nnaae e e e 48
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 4

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.2.7.5 Signed Byte..........ccccenueee.
2.3.2.7.6 Unsigned Word
2.3.2.7.7 Signed Word
2.3.2.7.8 Unsigned Long..............
2.3.2.7.9 Signed Long..................
2.3.2.7.10 StriNG ..coccveieeieeeieins
2.3.2.7. 11 SEIBAIM etiiiiiiiiiiiieeee ettt ettt ettt ettt ettt ettt ettt ettt et e e ettt ettt et ettt e sttt ettt e s 5t st st st s sttt et et it e e e e et nennnnneeeeeeeeen
2.3.2.7.12 ClaSSIfied SIrEAIMcii ittt e e e e ettt e e e e e s et bee e e e e e e e eannreeeeaaeeaaannenneeaaann

A B 0 T S 1o 1 1S 1=V o PSPPI
2.3.3 Function Formats in DOCUMENTALIONooiiiiiiiiiiiii ettt e e
ARSI S o (o) (o oo I @2 7= 1 (oo L3 UU PRSP PURT
2.3.5 Application Functions on MOST Network (INtroduction)cccuueeeiieiiiiiiiiiiiieeee e
2.3.6 Controller / Slave COMMUNICALION.........cuiiiiuiiiieiiiieee ittt e sieeee s eeesnebeeeessneeeeessneeeesssseeas
2.3.6.1 Communication with Properties USINg ShadOWScocuiiiiiiiiiiiiiiee e
2.3.6.2 Communication With MENOAS.........coi it e e et e e e e e e e e e e e e e e neaee
AR N T R S - T o F= T o O T PP PRPRN
2.3.6.2.2 Special Case USING ROULINGceviiiiiiiiiiiiieiiee ettt e e e
2.3.7 Seeking CommUNICALION PaINET........c.uuiiiiiiiiie it
2.3.8 Requesting Function Block Information from a DeViCecoocvviiiiiiiiiiiiiiiee e
2.3.9 Requesting Functions from a FUNCtion BIOCK..............ooiiiiiiiiiiiiiieeeiiieeee e
2.3.10 Transmitting the FUNCON INtEIACE.........ooiueiiieiie e
2.3.10.1 L] o] o[T PO PP PP UPTPUPRT P
2.3.10.2 Realization of the Ability to Extract the Function Interface
2.3. 11 FUNCLON ClIASSES .. .iiiiiiiieiiie e ettt e ettt et e e e e e e e bt et e e e e e e e s s saabb e et e e e e e s e e anbbeaeeaaeeeaannnneeas
23111 Properties with a Single Parameter

2.3.11.1.1 Function Class Switch.......................

2.3.11.1.2 Function Class Number

2.3.11.1.3 Function Class Textcceevvvvunnn...

2.3.11.1.4 Function Class Enumeration.............

2.3.11.1.5 Function Class BoolField

2.3.11.1.6 Function Class BitSet........................

2.3.11.1.7 FUNCLION ClaSS CONTAINETceuiuiee et e et e e e et e e e e e e e e et e e e e e e sessbaseeeeesesabaaeaeeeens
2.3.11.2 Properties with MUltiple Parameterscoccueviiiiiieeiiie e

2.3.11.2.1 Function Class Record

2.3.11.2.2 FUNCHON ClASS AITAYcciiiitiiietie et eeeittet e e e e e e ettae et e e e e e s st e e e eaeeessastbaaeeeaeessassrsreeaeeesaansaaeeeeesns
2.3.11.2.3 FUNCLON ClaSS DYNAMICAITAYcciiiiuiriiieeeeee ittt e e e e s sttt e e e e e e s staaaaeaaeeesassarsaeaaeeesasnnanereaaens
2.3.11.2.4 Function Class LongArray.................
2.3.11.25 Function Class Mapccccvveeeeeennne
2.3.11.2.6 Function Class Sequence Property...
2.3.11.3 Function Classes for Methods
2.3.11.3.1 Function Class Trigger Method.........
2.3.11.3.2 Function Class Sequence MEthOdoviiiiiiiiiiiie e
2.3.12 Handling Message NOHICAtION..........ccuiiiiiiiiiie e

3 NETWORK SECTION ...ttt ittt e e e sn e e e s nnne e e e s nnne e e e s annneeesnnnneeenns

3.1 MOST Network Interface Controller and its Internal Services
311 Y] 012 LT RTPROR
3.1.2 = TS = S = 1Y PR
3.1.3 (D F- 1= B I =1] 010 o S P PUPPPPTPRN

G 700 0 0 I = T o0 1=
B 700 0 Tt 0 = == T2 o = TP
3.1.3.1.2 BOUNUAIY DESCIIPIOLeeeiiiiiiieiiiite st ee ettt ettt ettt e ekt e e s st e e s e e s nnne e e anbreeennnas
3.1.3.1.3 MOST System Control Bits

3.1.3.2 Control Data Transport

3.1.3.3 SoUrce Data.......ccovvviiiiiiiiiii
3.1.3.3.1 Distinction between Source Data and Control Data
3.1.3.3.2 Differentiating Streaming and Packet Data....................
3.1.3.3.3 SOUICE DAtA INTEITACEuuueieeeeeeeee ettt et e e e e e e e e e e e e e e e e e eraaeens
3.1.3.3.4 Transparent ChanneISoooiiii it e e e e e e e e e e nnaeeeas
3.1.3.3.5 Streaming Data
T O T T T o= Tor (= A D | - PP PPPPPPPNS
e T I 20 A @7o 4 {0 D T - PP PPPRTRN
3.1.3.4.1 Control Data Interface...
L0 I 20 S B 11 Tox 1 o (o] PSP PPPT P POPTPP
Specification Document © Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
3.14 INEEINAL SEIVICESttt et e e e e st e e e e e e e s abb e e e e e e e e e e e nnnneaeas
LT 0 3 R Yo [0 [257 o o (TP PP UUPPPPPPPION
3.1.4.2 SUPPOIt At SYSTEM STAMUD.......eeiieiieeeieiiirie e e e e e e e e e e e e s e e e e e e e e aennreee e e
3.1.4.3 Automatic AllOCatioN MECHANISIMcoiuuiiiiiiiiie ittt e e
3.2 Dynamic Behavior Of @ DEVICEccooiiiiiiiiiiiei ettt
3.21 L@ YT 1 SRS
3.2.2 N[=] o = Lo =TT PP PPPRTTN
3.2.2.1 NetlnNterfaCcePOWEIOot e e e st e e e e e e st e e e e e e e e annnreeeeeans
3.2.2.2 NEHNEITACEINIT ..ottt et bt e e st e e e bbe e e e nre e e nnreeeeas
3.2.2.3 NetInterfaceNormalOperation........................
3.2.2.4 Netinterface Ring Break Diagnosis
1 72 T 1= Yoo 1 o =T Y20 \\ o o - SRR
I T 0 R S Tt~ o - 1 o T TSP UPPTOPPPPPRTPN
T S 1ot = o - 1 o 1O PP TOPPPPPRTPN
B T JRC T S Tt = o - T4 o T PP PPRTR
3.24 POWET MANAGEMENT ...ttt e e et e e e e e e e e b e e e e e e e ea b reaeaeeeeeenen
3.24.1 WakKing Of the NEWOIK.......coiieeieie et e e e e st e e e e e e e e nnneeaa e e nn
3.2.4.2 NEtWOIrK SNULAOWN. ...ttt e e e e e e st e e e e e e s e nnaeeeeeaaeeeanneeaaeeann
3.2.4.3 Device Shutdown..........ccccceeeiiiiiiiiiiienenen.
3.2.4.3.1 Performing Device Shutdown..............
3.2.4.3.2 Waking from Device Shutdown...........

3.2.4.3.3 Persistence of Device Shutdown
3.2.4.3.4 Response when Device Shutdown is Unsupported
3.25 o] G =T = o = 10T o
L A = r= L = 1 (o] PP PP PR OPPPR PP
3.25.1.1 Handling of Modulated Signal Off
3.25.1.2 Waking.....cooooeeeeeinuinnnnn.

3.25.1.3 Operationccuuveee.
3.25.2 UnlocK......cccocoviniiini.
3.2.5.3 Network Change Event
3.2.5.4 Failure of a Network Slave Device...........cccccceernieeernnnenn.

3.2.5.4.1 Failure of the Network Interface Controller
3.25.4.2 Failure of an APPLICALIONeeiiiiiiiiiiiiee e e e e e e e e
3.2.5.5 SUPPIY VOIAGE. ...ttt e ettt e e e e e e et e e e e e e s e nabb b et e e e e e eareeeeaeeaeas
3.25.6 Over-Temperature Management
3.25.6.1 Levels of Temperature Alert
3.2.5.6.2 RE-STArt BENAVIOTeiiieiiiiie ettt
3.3 NetWOork ManagEmMENLeeiiiiieiiie ettt e e st e e e e e e e e e raabbeae e e e e e e e e anneees
3.3.1 General Description of Network Managementccuuveiiiiieiiiiiiiiiiee e e
TR Tt 0 R Y1 (=] 1 IS =L (1 o TSP P PP P PP P O PO POPOPPPPPPPPPIRY
3.3.1.1.1 Initialization of the Network
3.3.1.1.2 Initialization on APPlICAtION LEVELcooiiiiiiiiiie et
3.3.1.2 GENEIAl OPEIALION .. .uviiiiiie e i ieiiiie et e e e e ettt e e e e e et e e e e e s e et e et e e e e e s satb e et eaeeesaantbaaeeeaeeeeaaareeaeeaaans
3.3.1.2.1 Finding Communication Partners
3.3.1.2.2 NEtWOIrK MONITOMINGeeeieieeeiiiiittiee ettt e e e e et b et e e e e e s e bbb e e e e e e e e annbbbeeeeeeeeaannnneeas
3.3.1.2.3 Dynamic Function BIOCK ReQISIratiONS..........ccoiiuuiiiiiiiiiiiiiiiiiee e
3.3.2 SYSIEIM SEALES ..ttt e e e ettt e e e e e e
3.3.2. 1 System State NOLOKociiiiiiiiiiiiii ittt b b eeees
3.3.2.2 SYSIEM STALE OKoeiiiiiiiiiiiiiieiie ettt te ettt eeeeteeatees et ee e et e ettt e et ettt e ettt sttt ne s e b ne e e et e e e
3.3.3 NEIWOIKIMASTE ..ttt b et e e s e e b e e b e s bn e e snneesnneas
3.3.3.1 Setting the SYSIEM STALEcoii ettt e e e e st e e e e e e s et e e e e e e e e anneeee e e ns
3.3.3.1.1 Setting the System State to OK
3.3.3.1.2 Setting the System State to NotOK (Network Reset).....
B TR I A O1= 14 i = L = =T 1)1 YOO PPPRTR
3.3.3.2.1 Purpose
3.3.3.2.2 Contents
3.3.3.2.3 Responsibility
3.3.3.2.4 Responding to Requests for Information from the Central RegiStryccccoevuvvievieeiiiiiinnnn. 160
3.3.3.3 Specific Behavior During System Startupc.ooocveeeeereeeriiiiieeeee e
3.3.3.3.1 Valid Logical Node Address Not Available
3.3.3.3.2 Valid Logical Node Address Available
3.3.3.4 Scanning the System (System Scan)
3.3.3.4.1 Configuration Request Description
3.3.3.4.2 AdAressiNg....c.cccccoevurreiieeeeeiiiiiiieeaeeenn

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 6

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.3.4.3 Non Responding Network Slavescccccevineenne
3.3.3.4.4 Retries of Non Responding Network Slaves
3.3.3.4.5 Network Slave Continuous cause for System State NotOK

3.3.3.4.6 Duration of System SCanNiNg............cccccvrrreeeeiiiiiiiiieeeeeeiiireree e

3.3.3.4.7 Reporting the Results of a System Scan without Errors
3.3.3.5 Invalid Registration DeSCrPLiONS.occuuriiiieeiiiiiiiecee e

3.3.3.5.1 Un-initialized Logical NOAE AAAIrESSeiiiiiiiiiiiiiiiee ettt e e e eeee s

3.3.3.5.2 Invalid LOGiCal NOAE AGAIESS......coiiiiiiiitiiiiiee ettt e e et e e e e e e e et e e e e e e e e nneeeeas

3.3.3.5.3 Duplicate Logical Node Addresses

3.3.3.5.4 Duplicate INStID REGISITALIONScciitiiieiiiiie ittt

TR T T T T =l (o] g 2 (=TS oo £ PP PPPPPPPPPPPPPPPPNS
3.3.3.6 Updates to the Central REQISIIY.........oocuuuiiiiieiiiciiiiiee e

3.3.3.6.1 Disappearing Function Blocks in System State OK

3.3.3.6.2 Appearing Function Blocks in System State OKccccceveeerenne

3.3.3.6.3 System scan without any change in Central Registry

3.3.3.6.4 Large Updates to the Central Registry in System State OK...........oocouiieiieiiiiiiiiieieee e 166

3.3.3.6.5 Non-responding Devices in System State OK..........ccoeiiiiiiiiiiiieeiiiiiiiiee e 166
3.3.3.7 Miscellaneous NetworkMaster REQUIFEMENTS..........coiiriiiiiiieeiiiie et 166

3.3.3.7.1 Network Change EVENE (NCE)c.cccoiiiiiiiiiiee ettt e e e saae e e e e e s s snabaer e e e e e e snnnaeees 166

3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network..........cccccoeeveivvnnen.. 166

3.314 NEIWOIK SIAVE ...ttt nn e 167

3.3.4. 1 DECENIIAI REGISIIY . .uiiiiiiiiie i ittt ettt e e e e e et e e e e e e st b b st e e e e e e sasaabreeaaeessasaeeeaeeasans 167

3.3.4.1.1 Building @ Decentral REGISIIYccuiuiiiiiiiiiiiiee ettt e e e e e e eneeeas 167

3.3.4.1.2 Updating the Decentral REGISIIYooouuiiiiiieiiiiiieiee ettt e e 167

3.3.4.1.3 Deleting the Decentral REQISIIYccuiiuiiiiiiiee et e e e e e e e e 167
3.3.4.2 Specific Startup BERNAVIONeeeiiiiie et e e e e e e e e e e e e e ee e e an 168

3.3.4.2.1 Behavior When a Valid Logical Node Address is not Available at System Startup 168

3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup

3.3.4.2.3 Deriving the Logical Node Address of the NetworkMaster.............occvvvveieeeiiiiiiieeee e,
3.3.4.3 Normal Operation of the Network Slave

3.3.4.3.1 Behavior in System State OK..............

3.3.4.3.2 Behavior in System State NotOK
3.3.4.3.3 Responding to Configuration Requests by the NetworkMaster
3.3.4.3.4 Reporting Configuration Changes to the NetworkMaster.................
3.3.4.3.5 Failure of a Function Block in a Network Slave...............cccccovvneenne
3.3.4.3.6 Failure of a Network SIave DEVICEcccuiiiiiiiieiiiiie et
3.3.4.3.7 UNKNOWN SYSEEM SEALE.....cciiiuiiiiiiii e e i iiiiiiie it e e e ettt e e e e e sttt e e e e e e s st r e e e aeessasttaareeaeeessnsrnees
3.3.4.3.8 Determining the System State
3.3.4.3.9 Finding ComMmMUNICAtION PartNerS..........uuiiiiiieiiiiiieie et e e e e e e e e s
3.3.4.3.10 Reaction to Configuration.Status(OK) when in System State NOtOK............ccccceveeeiiiiiinnnen.
3.3.4.3.11 Reaction to Configuration.Status(OK) when in System State OK
3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOKc.c.oeuieeee.
3.3.4.3.13 Reaction to Configuration.Status(NotOK) when in System State OK...........cccocoeeeviiirennnnen.
3.3.4.3.14 Reaction to Configuration.StatUS(NEW)ccvviiiiiiieiiiiieerie e
3.3.4.3.15 Reaction to Configuration.Status(Invalid)
3.4 Accessing Control ChanNelooeiiiiiii e
o R Yo (o | 1T] o F PP PP PP PPPUPRN
3.4.2 ASSIgNING PriOMty LEVEIScooiiiiie e
3.4.3 LOW LEVEI REITIES ...ttt ettt e et e e et e e s et e s s et e s s saa e ssabaeeassbnsaaees
3.4.4 Basics for Automatic Adding of Device AdAreSsS........cccuuveeiiiieiiiiiiiiiiieeee e
3.4.5 Handling Overload in @ MeSSAge SiNKccuuiiiiiii et
3.4.6 MOST MESSAQJE SEIVICES...cciiiiiiiiiiiiiiiiiieee e e i eiitre e e e e e e s s s stbaaeeeeee e s e asstaaaeeeaeessssarrrrereaaaeaas
3.4.6.1 CONIrOl MESSAQE SEIVICE. .. . uueeiiiiiie e ettt e e e e ettt e e e e e e ettt et e e e e e s antbeeeeaaeasaansnteeeeaaeeeaannnnneeeaann
3.4.6.2 Application Message Service (AMS) and Application ProtOCOIScoveeeiiiiiiiiiiiee e
3.5 Handling Stre@ming DAtacoouiiuiiiiiiiieaaiiie et e e e e e e e e e e e e anneees
3.5.1 MOST NetWOrk SErviCe APlcuei it
3.5.2 FUNCtion BIOCK FUNCLONSeiiiiiiiiiie ettt
TS0 R (=1 =1 (o o3 QOO PPPPPRTPN
3.5.2.2 General Source / Sink Information.............
3.5.2.2.1 Streaming Source
3.5.2.2.2 Streaming SinK.........coocoveiriieeeiniiieens
3.5.2.2.3 Handling of Double Commands..........
3.5.2.2.4 Order of Streaming Channel Lists
3.5.2.3 Compensating Network Delay

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 7

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
3.6 HaNdling PACKEE DALA..........euiiiiiiiiiiiiiiii ettt e et e e e e e e e s anb b e e e e e e e e e e e aanneeas 188
3.6.1 MOST NEWOIK SEIVICEeeeiiiiie ettt ettt e e e e et a e e e e e e e anbabaeeeaaeeeaanns 188
7GR 1Yo U [o D - = PP PRTR 188
3.6.1.2 MOST Asynchronous Medium Access Control (MAMALC)cccuviieiiiiieiiiiee e 189

o T A O] o] o 1= Tox 1o o - TSP PPTT TP 190
3.7.1 Bandwidth ManagemENt..........ooi it e e e e e e s e e e e e e an 190
3.7.2 Streaming CONNECHIONSutiiia ittt e e ettt e e e e e e et ate e e e e e e e s sanbareeeeaaeaesanbeaaeeeaaeaeaanns 190
3.7.2.1 CONNECHONMASTEL ...ttt e oottt e e e e e et bttt e e e e e e s ntbee e e e e e e e aanbaeeeeeaeeeaannneaaaeaann 190
3.7.2.2 Establishing Streaming CONNECLIONScoiuiiiiiiiiiieiiiie et 192
3.7.2.3 Removing Streaming CONNECHIONSuviiiiiiieiiiiie ettt e et e e anneee s 194
3.7.2.4 Supervising Streaming CONNECHONS.........uuuiiiieiiiiiiiiit et e e a e e e s r e e e e e s sstarraeaeeeaan 196
3.7.2.4.1 Enabling Streaming OULPUL.........coiieiiiiiiiiiiieee s et e e e e s e e e e e s s e e e e e s s s ssssbaereaeeessnnreeees 196
B.7.2.4.2 SOUICE DIIOPS ..ceiiiiiiiiiiiitiiiititttett ettt ettt ettt ettt ettt ettt ettt ettt ettt e e st et s e e s e s st s st s s s s s s ssss s s st s s s nennnsnnnnneeeees 196

70 T 1o o1 o 0 LT 111 o S 197
4 HARDWARE SECTIONcottiiiiiiitiiiiietieeeeeeeseesesetsseeebeeebessrssesssssses e eeass s eesssesssensass s s s nas 202
o R = - 1ol o VAV A] g Tod = o | O OO PRSP PP PPPROPPN 202
N Y (@ 1S 3 I ¥ Tox (o AN - R SPURRRN 203
T U O Y £ PO PPR P TPPRRPTPP 203
O N o] o] o= 14 (o] g I Y (=7 VPP PP RRTN 204
I o TS 0] o] o]V AN Y- PP PRP T UUUPPPRPN 204
O Y o] = To [T I TP EEPT R TUUPRPTN 209
5 APPENDIX A: NETWORK INITIALIZATION ... 211
5.1 NetWOrKIMASIEr SECLON.cciiiiiiie ittt et e et e e e st e e e antbe e e e s ssbeeeesasbeeeessnreeeenes 211
5.1.1 Flow of System Initialization Process by the NetworkMaster............cccccccoviviiiiieenieeeinnns 211
5.2 NetWOIK SIAVE SECHONooiiiiiiiie ittt e st e e e s sbbeee e s snbeeeees 214

6 APPENDIX B: TYPICAL DATA RATES OF CURRENT IMPLEMENTATIONS (INFORMATIVE)215

7 APPENDIX C: LIST OF FIGUREScoiiiii e 216
8 APPENDIX D: LIST OF TABLES.ot 218
INDIEX ettt e aae 219
DOCUMENT HISTORY (PREVIOUS REVISIONS)oiiiiiiiiiieiriie et 230
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 8

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Document History

In general, “Section” refers to the current document, unless deletions are referred to. Sections that
were deleted and not replaced by others are marked strikethrough. If deleted sections were replaced
by others, details about the substitution can be found in the change description.

Changes MOST Specification 2V5-00 (08/2006) to MOST Specification 2V5-00 (10/2006)

Change Section Changes

Ref.

2V5_2_001 | General Fixed minor clerical errors.

2V5 2 002 | 1.3 Removed superfluous “Note 1” in MOST Document Structure diagram.

2V5 2 003 | 2.3.2.2 Corrected ranges in FBlockIDs table: Supplier Specific FBlockiDs range from 0xFO to OxFB

(previously 0xFO to OXFE); OxFD and OxFE are in the reserved range.

2V5_2 004 (3.8 Removed inequality twaitroranswer < tpelaycigrequestl-
Max. Value for twaitroranswer increased from 500 to 700 ms.

Changes MOST Specification 2V4-00 to MOST Specification 2V5-00

Change Section Changes

Ref.

2V5_001 General Optical Interface changed to Physical Interface.
2V5_002 General Removed old section 3.1.2 ‘Source Data Bypass’

MOST25 (up to MOST Specification Rev2.4) permitted that each MOST device could be
switched from active (source data bypass disabled) to passive (source data bypass enabled)
to reduce the source data delay in the network. Disabling the source data bypass in a
MOST25 device adds a delay of 2 network frames to streaming source data.

Therefore network delay compensation is useful for noise canceling, speech recognition, and
multi-channel sound applications.

The bypass to reduce the network delay, as well as the delay compensation is not necessary
when using MOST50. The effective delay is negligible (approx. 300 ns per node).

Starting with MOST Specification Rev2.5 all devices are assumed to be “active”.

This section was removed because the Source Data Bypass was not used with MOST25 and
it is no longer applicable for MOST50.

2V5_003 General “light” changed to “modulated signal”
2V5_004 General “FOT” changed to “Physical Interface”
2V5_005 General Corrected grammar and spelling mistakes.

Fixed cross-references for diagrams that were moved to other chapters (3-13, 3-14, 3-15).
Unified timer names (e.g. occurrences of t_Diag_Slave were replaced by tpiagsiave)-

2V5_006 General Unified spelling of MOST terms like NetworkMaster, ConnectionMaster, etc.
Replaced “NetOn event” with “Init Ready event”; For MOST50, the “System Lock flag” was
introduced.

2V5_007 General Harmonized terminology: Source data, streaming data, packet data vs.

synchronous/asynchronous data/area.
Substituted “all-bypass” with “bypass”.

2V5_008 Glossary Added Glossary chapter for introduction and definition of frequently used terms.

2V5_009 1.1 Revised introduction.

2V5 010 1.4 Rephrased remark about references to improve intelligibility.
Added HTTP 1.1 RFC to referenced documents.

2V5_011 15 Added speed grade and physical interface differentiations.

2V5_012 2.1,2.1.2, Improved wording, eliminated redundancies.

213,223

2V5 013 2.14 Removed "60 bytes". Refer to the Boundary Descriptor rather than description here. Added
reference to bandwidth management section.

2V5_014 221 Added remark about support for different physical interfaces.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 9

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V5_015 2211 Substituted description of “Slave, Controller, HMI” with a more precise explanation.

2V5_016 225 Rephrased paragraph on notifications to promote clarity and consistent use of terminology.

2V5_017 2.2.6 Removed statement on use of functions that did not exist during development.

2V5_018 229 Deleted sections on delegation, heredity and device hierarchy.

2V5 019 231 Removed duplicate introductory part (FBlock grouping and access) that is already contained
2.2.1.2 and referenced from this section.

2V5_020 2.3.2.2 Changed reserved and proprietary FBlockID ranges, added table “Responsibilities for
FBlockID and FktID ranges”.
Added remark that Secondary Nodes apply to MOST25 only.
Added note that Supplier specific FBlocks are not reported in NetBlock.FBlockIDs.Status.

2V5_021 2324 Added the following: Supplier specific functions are not reported in <FBlockID>.FktIDs.Status.
Notification.Set(SetAll) does not affect Supplier specific functions while on the other hand
Notification.Set(ClearAll) clears Notification for Supplier specific functions.
Added table “Responsibilities for FBlockID and FktID ranges”

2V5_022 2.3.2.3.6 Added description of the exceptional cases when wildcards can be used in replies.
Limited “Secondary Node” error to MOST25.

2V5_023 2.3.25 Correction in OPType table (ErrorAck is not available for Properties and was removed).

2V5_024 23251 Note added about segmented error messages.
Added ErrorCode and Errorinfo ranges for use by System Integrators and Suppliers. Added
remark that “Method Aborted” must be sent, even if a method is not executed anymore.
Moved example for sensor failure (Error Code 0x41) to section 2.3.12.
Added remark that “Segmentation Error” might also occur in single telegram context.
Added explanation of different ErrorCode and Errorinfo positions for Error and ErrorAck.
Differentiated between “Secondary Node” error for MOST25 and MOST50.
Removed reference to “generally broken device” for the “Device Malfunction” error.

2V5_025 2.3.2.7.10 Added ranges for System Integrators and Suppliers in String identifier table.
Added string type SHIFT_JIS (code 0x07). Reserved range therefore now starts with 0x08.

2V5_026 2.3.6.1 Substituted the abstract description of involved devices with an explanation of the setup for
the example.

2V5_027 2.3.11 Entire section: Reordered OPType tables so that OPTypes appear in order of OPType ID.
Removed common description (for methods and properties) from single parameter properties
section (2.3.11.1) and inserted it here. Also added Trigger Method, Sequence Method,
Sequence Property and Map to list of function classes.

2V5_028 231111 Added footnote that parameters marked boldface are explained in detail.

2V5_029 23.111.2 Added new category “Data” to unit table. Added constants for Byte, kByte, and MByte.
Renamed category “Volume” to “Miscelleaneous”. Added “%” (percent).
Redefined category “Temperature” as “ Temperature and Pressure”. Added K, bar, and psi.
Redefined category “Speed” as “Speed and Acceleration”. Added cm/s, °/s, and m/s’.

2V5_030 231115 Added description of DataType parameter.

2V5 031 231117 Removed “Classified Stream” Parameter for Get OPType.

2V5_032 2.3.11.2.1, Added function class Container to IntDesc Table.

23.11.2.2 Removed reference to “internal OPTypes”.

2V5 033 2.3.11.2.3 Entire Function Class DynamicArray section exchanged.

2V5 034 2.3.11.2.4 Entire Function Class LongArray section exchanged.

2V5_035 2.3.11.25 Added new section: Function Class Map.

2V5_036 2.3.11.2.6 Corrected list of OPTypes in description of IntDescX.

2V5_037 2.3.11.3 Explained Sequence Method more precisely.

2V5_038 2.3.11.3.2 Added AbortAck OPType and SenderHandle parameter, which was missing for some

OPTypes.

Specification Document

Page 10

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V5_039 2.3.12 Described double registration more precisely: No second entry is generated in the Notification
Matrix.
Added description of behavior for invalid target addresses and effect in combination with
groupcast addresses.
Added list of reactions on system events.
Added sensor failure example, previously under 2.3.2.5.1, and made it more generic (i.e.,
removed references to CAN).
2V5_040 3.11 Removed 2™ paragraph.
Added bypass differentiation for oPhy and ePhy.
2V5_041 3.1.2 Removed 2™ paragraph.
2V5_042 3.1.3 Revised section.
2V5_043 3.131 Replaced section with modified MOST25 frame description and new MOST50 parts.
2V5_044 3.1.3.1.2 Added MOST50 Dynamic Boundary description, revised MOST25 description and added
comparison table.
Added note that streaming connections must be re-built after Boundary Descriptor change.
2V5_045 3.1.3.2 New section heading is “Control Data Transport”.
Added minimum/maximum number of frames for MOST50.
2V5_046 3.1.33.1 Renamed section to “Distinction between Source Data and Control Data”.
2V5_047 3.1.3.34 Rephrased to match both MOST25 and MOST50.
2V5_048 3.1.3.35 Changed heading from “Synchronous Area” to “Streaming Data”.
Added MOST50 description.
2V5_049 3.1.3.3.6 Changed heading from “Asynchronous (Packet Data) Area” to “Packet Data”.
Added note on limited applicability for MOST50.
2V5_050 3.1.34.2 Restructured and separated MOST25 part from general description.
Added paragraph on MOST50 frame rate and message rate.
2V5 051 3.1.4.1 Added address range 0x1000...0xFFFE “Reserved for future use”
Changed range 0x440...0x4FF to “Reserved”.
Removed last row in Address range table (“highest nibble reserved for future use”).
Substituted “Unigue node address” with “Logical node address” for consistency.
Added distinction between dynamic and static logical node addresses.
2V5_052 3.1.4.3 New section ‘Automatic Allocation Mechanism’.
Merged former sections 3.1.5.4 ‘Automatic Channel Allocation’ and 3.1.5.5 ‘Detection of
Unused Channels’ into this section.
Added MOST50 description, separated from MOST25 part.
2V5_053 3.21 Added description of Primary and Secondary Nodes concept.
Removed names of application states; they are not relevant to the specification.
2V5 054 |3.2.2.2 Revised the 2" bullet.
Included more general description of Init Ready event and System Lock flag.
2V5_055 3.2.2.2 Changed diagrams so that MOST25 and MOST50 are covered.
2V5_056 3.2.2.3 Moved and revised parts of sections ‘Netinterface Normal Operation’ and ‘Unlock’.
3.25.2
2V5_057 3.2.24 Added ring break diagnosis results table.
Separated paragraph with applicability limited to MOST25.
Improved diagrams and distinguished between MOST25 and MOST50.
Removed remark on evaluation of signal during NetOn.NetInterfaceNormalOperation.
2V5_058 3.2.3 Merged former sections 3.10 and 3.3.3.2.6 ‘Secondary Nodes’ into this section.
Tagged entire section as “MOST25 only” because MOST50 does not support Secondary
Nodes.
2V5_059 3.24.1 Replaced AbilityToWake by PermissionToWake and CapabilityToWake.
2V5_060 3.25 Revised whole section ‘Error Management'.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 11

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V5_061 3.255 Changed heading from ‘Low Voltage’ to ‘Supply Voltage’
2V5_062 3.25.6 Replaced “This recommendation is applicable...” with “This section applies...”
2V5_063 3.25.6.2 Mentioned twaiafteroverempshutown @S relevant timer for restart attempts.
Added note that the PowerMaster must support either re-start by its own decision or by user
request.
2V5_064 3.3.1.1.1, Removed parts that refer to a stored Central Registry.
3.3.3.2.3,
3.3.3.3,
3.3.3.3.2
2V5_065 3.3.1.2.3 Deleted parts of the section (device failure handling).
2V5_066 3.3.2 Added Shutdown.Start(Execute) transition from System State OK to NotOK.
Added footnote stating that logical node addresses will not be recalculated for that transition.
2V5_067 3.3.3.3.2 Content of “Stable Network” section included here because it is was not relevant to 3.3.3.3.1,
where a similar description is already referenced.
2V5_068 3.3.35.4 Clarification: New InstID is set by using the logical node address.
2V5_069 3.3.36.1 Added remark that Configuration.Status(NotOk) must be sent after ConnectionMaster
becomes unregistered.
2V5_070 3.3.3.6.3 Added remark that Configuration.Status(New) with an empty list can only be sent after
completion of the scan.
2V5 071 3:3:3.8 Removed “Verification Scan” and “Missing Devices” sections because the concept of a stored
Central Registry was abandoned.
2V5_072 3.34.13 Changed description of conditions under which the Decentral Registry is cleared.
2V5_073 33414 Removed “Persistence of the Decentral Registry” section.
2V5_074 3.3.4.33 Added recommendation not to include FBlocks with InstIDs derived from position in
NetBlock.FlockIDs.Status or Central Registry.
2V5_075 3.3.4.3.7 Added note stating that the device also assumes System State NotOk when the NetInterface
enters normal operation.
2V5_076 3.3.4.3.8 Removed Configuration.Status(Invalid, <empty>) from the list of examples.
2V5_077 3.3.4.3.15 Added description of reinitialization behavior regarding streaming/packet connections and
notifications.
2V5_078 3.4.1 Emphasized that the example where address ranges are assigned according to device
functionality relies on the static address range.
Added remark that group address can be stored optionally.
Improved the description of group address handling in case of device power loss.
2V5_079 343 Removed reference to “Register” to make the description more generic.
2V5_080 3.4.4 Removed section on High Level Retries. These are implemented according to the System
Integrator’'s own policy.
As a result of the deletion, previous section 3.4.5 “Basics for Automatic Adding of Device
Address” has become 3.4.4. Heading numbers of the following level 3 headings under 3.4
have decreased by one.
2V5_081 3.4.6.2 Added remark that telegram length has to be exact.
2V5_082 35.1 Revised section to a more general description regarding data and channels.
2V5_083 35221, Revised to better differentiate between MOST25 and MOST50.
3.5.2.2.3
2V5_084 3.5.224 New section “Order of Streaming Channel Lists” created.
2V5_085 3.5.2.3 Revised section.
2V5_086 3.5.221 Added footnote about SourceConnect.
Added footnote that SourceActivity is optional.
Revised section to a more general description.
2V5_087 3.6 More generalized description for MOST 25 priorities, previously under 3.6.1.1.

Specification Document

Page 12

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V5_088 3.6.1 Removed previous section 3.6.1 on “Direct Access to the MOST Network Interface
Controller”.
Revised section (previously 3.6.2) to a more general description regarding different types of
telegrams.

2V5_089 3.6.1.1 Added examples for different telegram types.

2V5_090 3.7 Former section 3.7 Managing Synchronous/Asynchronous Data removed. The content was
already covered under the ConnectionMaster section.
Previous section 3.8 “Connections” now resides under 3.7.

2V5_091 3.7.1 New section “Bandwidth Management”, containing description of Boundary Descriptor
adjustment.

2V5_092 3.7.2.2 Specified that a source shall perform 20 retries before Allocate is considered failed by the
ConnectionMaster.

2V5_093 3.7.24.2 Slightly restructured and rephrased.

2V5_094 3.7.21 Revised.

2V5_095 3.8 Updated description of timer tgypass.
Changed description of tsjaveshutdown 10 improve intelligibility.
Revised description of tDelay(:ngequestl and tsiaveshutdown-
Added timer tWaitAfterOvertempShutDown, tWaitForNextSegment and tMngesponse--
Renamed tpiag_Light tO tpiag_signal-
Added twairorproperty NOte 0N overwriting default maximum value by FBlocks.

2V5_096 4 Replaced entire chapter with content from WG Phys. Layer.

2V5_097 5.1.1 Previous section 5.1.1 “System Startup when a Central Registry is Available” removed
because the concept of a stored Central Registry has been abandoned.
Section 5.1.1 now contains “Flow of System Initialization Process by the NetworkMaster”.
Replaced “old registry” with “existing registry” in Figure A-5-2.

2V5_098 Appendix B Removed previous Appendix B “Synchronous Data Types”. The contained information is now
part of the “MOST Multimedia Streaming Specification”.
Examples for typical data rates for MOST25 and MOST50 are now contained in Appendix B.

2V5_099 Document Added remark to emphasize that section references are based on the current document.

History

Moved document history for versions prior to 2.5 to the end of the document.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 13

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Glossary

Term Definition
Boundary The Boundary Descriptor determines the amount of bandwidth available between Streaming Data and
Descriptor Packet Data.

Central Registry

Contains a lookup-table for cross-referencing logical and functional addresses. Implemented in the
NetworkMaster.

ConnectionMaster

Streaming connections are managed by the ConnectionMaster.

Connection Label

In MOST50 Connection Labels are used to identify streaming connections.

Control Data

Data packets containing control information.

Decentral Registry

Contains a lookup table for cross -referencing logical and functional addresses. Implemented in each
node.

Device A MOST device is a physical unit, which can be connected to a MOST network via a MOST Network
Interface Controller.

DevicelD The DevicelD stands for a physical device or a group of devices in the network. The DevicelD
(RXTxAdr) can represent a node position address (RxTxPos), a logical address (RxTxLog) or a group
address.

FBlock A function block. Function blocks group functions that are particular to a specific application, for

example radio or telephone.

FBlock Shadow

The FBlock Shadow is an implementation concept where an FBlock is controlled through a proxy for
that particular FBlock.

Frame

Data transfer is organized in frames. Frames consist of administrative data and payload.

Function

A function is a part of a function block through which it communicates with the external world.

Init Ready event

When the system is in a stable lock state (i.e., operational), the Init Ready event is fired.

Method

Function that can be started and which leads to a result after a certain period of time.

NetlInterface

The expression NetInterface stands for the entire communication section of a node: the physical
interface, the MOST Network Interface Controller, and the Network Service.

NetOn State

The NetOn state corresponds to the “Netinterface normal operation” state.

NetworkMaster

The NetworkMaster controls the System State and administrates the Central Registry.

Node

A node is characterized by the existence of one Netinterface.

Packet Data

Asynchronous data packets, such as IP packets.

PowerMaster The PowerMaster is responsible for power management throughout the MOST system.

Property Function for determining or changing the status of a device.

RXTxAdr Either a logical node address (RxTxLog), a node position address (RxTxPos), or a group address. For
receiving nodes, it is called RxAdr, for sending nodes TxAdr.

RxTxLog A logical node address. It must be unique in the system and is called RxLog for receiving nodes and
TxLog for transmitting nodes.

RxTxPos A node position address. The node position address is called RxPos for a receiving node and TxPos for

a transmitting node. The node position address depends on the physical position of the MOST Network
Interface Controller.

Source Data

The term Source Data combines Streaming Data and Packet Data.

Streaming Data

Content, such as audio or video data, which has to be transmitted synchronously or isochronously, is
referred to as Streaming Data.

System Lock flag

This flag is only available for MOST50 and indicates that the TimingMaster has detected a stable lock of
the system.

System Scan

The process of collecting information from the Network Slaves, performed by the NetworkMaster.

System State

There are two System States: OK and NotOK. In OK, the system is in normal operation mode, in NotOK
it is being initialized or updated.

TimingMaster

The TimingMaster provides generation and transport of the system clock, frames, and blocks.

Specification Document

Page 14

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

1 Introduction

1.1 Purpose

This document, which all other MOST specifications relate to, is the main specification of MOST
(Media Oriented System Transport).

1.2 Scope

This document contains the specification of the application layer, the network layer, and the MOST
Hardware.

1.3 MOST Document Structure

This document structure reflects the documents published by the MOST Cooperation and their internal
dependencies. This structure is subject to changes as new documents are published.

MOST Framework

MOST Specification
A
r— — - - — 7 A A
MOST FBLOCK#Pls:
| MOSTFBLOCK APIs: MOST Physical Layer MOST High MAMAC
| Arls: Specification Specification Specification

|
| A

| MOST Dynamic Specification

MOST Electrical Physical
Layer Specification

|
|
| A
|
|

| A

o MOST Compliance Specifications:
MOST Guidelines: MOST Core Compliance
MOST MSC CookBook Specification

Other documents

Figure 1-1: MOST Document Structure

The MOST Specification is a main specification within the MOST Framework. The arrows show the
direction of references.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 15

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

1.4 References

All documents, which are referenced by this MOST document, are listed here along with their versions.

Document Revision
RFC 2616 - Hypertext Transfer | June 1999
Protocol -- HTTP/1.1

Comment: The MOST Specification does not depend on other documents. All other documents that
are part of the MOST Specification Framework can be accessed through the MOST Cooperation
website.

1.5 Overview

This specification consists of three sections, namely the application section, the network section, and
the hardware section. There are different possible physical layers described in respective
documentations. In those cases when optical physical layer is mentioned in this specification, it has to
be seen as an example.

In some cases a differentiation between specific implementations (speed grade, physical interface) is
necessary. The following terms are used to mark corresponding passages.

Term Description

MOST?25 25 MBit/s speed grade

MOST50 50 MBit/s speed grade

ePhy Electrical Physical Layer

oPhy Optical Physical Layer
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 16

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2 Application Section

2.1 Overview of Data Channels

For transmitting data, a MOST network provides the following types of data channels with different
characteristic properties.

2.1.1 Control Channel

On the Control Channel, data packets are transported to specific addresses, as they are on the Packet
Data Channel. Both channels are secured by CRC.

The Control Channel also has an ACK/NAK mechanism with automatic retry. It is generally specified
for event-oriented transmissions at low bandwidth and short packet length. It is usable for connections
with a bandwidth of approximately 10KBps, even for short periods of time.

In contrast to that, the packet data area is specified for transmissions requiring high bandwidth in a
burst-like manner.

2.1.2 Streaming Data Channel

Continuous data streams that demand high bandwidth (typically multimedia data, such as audio or
video) are transported over the Streaming Data Channels. The connections are administered
dynamically via the Control Channel.

Although streaming connections can be built directly by node containing sources and sinks, it is
recommended that the available bandwidth on the Streaming Data Channel be administered in a
central manner, particularly in larger networks. Administration of the streaming resources is in this
case handled by a Connection Manager that is responsible for all requests for establishing
connections.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 17

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.1.3 Packet Data Channel

In contrast to the Control Channel, the Packet Data Channel is specified for transmissions requiring
high bandwidth in a burst-like manner. It is mainly used for transmitting data with large block size (e.g.,
graphics, picture formats, and navigation maps).

2.1.4 Managing Streaming/Packet Bandwidth

In a MOST Network the overall available bandwidth can be divided between the Streaming Channel
and the Packet Data Channel in a flexible way by setting the Boundary Descriptor. The Boundary
Descriptor can be modified by using the mechanism provided by the MOST Network Service.

The value of the Boundary Descriptor depends on the requirements of the system and can be
changed dynamically. Supervision and changing of the bandwidth or position of the Boundary is done
in the TimingMaster. The TimingMaster is responsible for forwarding the information about the
Boundary’s position to all nodes in the network. This task is handled automatically on the MOST
Network Interface Controller level.

Please refer to 3.7.1 Bandwidth Management for a detailed description.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 18

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.2 Logical Device Model

The following sections describe different kinds of devices. A MOST device is a physical unit that can
be connected to a MOST network via a MOST Network Interface Controller.

2.2.1 Function Block

On the application level, a MOST device contains multiple components that are called function blocks
(FBlocks), for example, tuner, amplifier, or CD player. It is possible that there are multiple FBlocks in a
single MOST device, such as a tuner and an amplifier combined in one case and connected to the
MOST network via a common MOST Network Interface Controller. In addition to the FBlocks, which
represent applications, each MOST device has a special FBlock called the NetBlock. The NetBlock
provides functions related to the entire device. Between the FBlocks and the MOST Network Interface
Controller, the Network Service forms an intermediate layer providing routines to simplify the handling
of the MOST Network Interface Controller.

MOST Device
Function Function Function
Block Block
Block
NetBlock App"1°at'°” Apph(z:atlon

™ ' Val

’ Network Service ‘

'

’ MOST Network Interface Controller ‘

—4% Physical Interface ’—*

Figure 2-1: Model of a MOST device

The MOST standard supports different physical interfaces. These are described in the respective
physical layer specifications.

Each FBlock contains a number of single functions. For example, a CD player possesses functions
such as Play, Stop, Eject, and Time Played. To make a function accessible from outside, the FBlock
provides a function interface (FI), which represents the interface between the function in an FBlock
and its usage in another FBlock.

Function Block Function Block

FI - > Function

Figure 2-2: Communication with a function via its function interface (FI)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 19

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.2.1.1 Slave, Controller, HMI

Interaction with an FBlock requires two partners which are distributed over the MOST network: The
Controller and the Slave.

The FBlock functionality resides in the Slave. The Controller sends commands to a Slave and in return
receives reports from the Slave. The Slave executes the commands issued by a Controller and sends
status reports to the Controller.

In a device, Controllers and Slaves can coexist. This means that a device which contains Controllers
can also contain FBlocks and therefore be controlled by other devices. A Slave may be associated
with more than one Controller.

Controllers that have an interface to the user are called Human Machine Interfaces (HMIs).

Devices are commonly classified as HMI, Controller, or Slave. However, a device may contain a
combination of HMI, Controller and Slave functionality. Therefore, devices are often classified with
respect to their primary function.

Note:
On application level, the Controller may use FBlock Shadows to control FBlocks.

2.2.1.2 First Introduction to MOST Functions

This section gives a brief introduction to the structure of MOST functions. This knowledge is necessary
to understand the following examples. Chapter 2.3 on page 28 explains the structure of MOST
functions in more detail.

On the application level, a function is addressed independently of the device it is implemented in.
Functions are grouped together in FBlocks with respect to their contents. Therefore, FBlocks are good
references for external applications to localize a certain function. A function is addressed in an FBlock.
In order to distinguish between the different FBlocks and functions (Fkts) of a device, each function
and FBlock has an identifier (ID):

FBlockID.FktID
When accessing functions, certain operations are applied to the respective function which is either a
property of the FBlock or a method it provides. The type of operation is specified by the OPType. The

parameters of the operation follow the OPType, resulting in the following structure:

FBlockID.FktID.OPType(Data)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 20

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.2.2 Functions

A function is a defined attribute of an FBlock through which it communicates with the external world.
Functions can be subdivided into two classes:

e Functions that can be started and which lead to a result after a certain period of time.
Functions of this class are called “methods”.

e Functions for determining or changing the status of a device, which refer to the current
properties of a device. Functions of this class are called “properties”.

In addition to that, there are events. Events result from changes of properties, if the properties are
requested to report these changes (Notification).

Function Block

Method

Property/Event

Figure 2-3: Structure of an FBlock consisting of functions classifiable as methods, properties and events

2.2.3 Methods

Methods can be used to control FBlocks. In general, a method is triggered only once at a certain point
of time, for example, starting the auto-scanning of a tuner. Methods can be defined without
parameters or with certain parameters that specify their behavior. For example, a method “auto-scan”
is possible without parameters or with a parameter that specifies the direction of the auto-scan.
Particularly in the case of tuners that possess automatic frequency optimization (RDS) it may be useful
to specify the starting frequency for the scanning process as an additional parameter, since the
currently displayed frequency may no longer match the frequency the receiver is tuned to.

After the reception of a method called by an FBlock, the respective process must be started. If this is
not possible, the FBlock has to return the respective error message to the sender of the method call.
This may happen if the addressed FBlock has no method of that kind, if a wrong parameter was found,
or if the current status of the FBlock prevents execution of the method.

After finishing the process, the controlled FBlock should report execution to the Controller. This report
may contain results of the process, for example, a frequency found by the tuner. If a process runs for a
long time, it may be useful to return intermediate results before finishing, such as informing the
Controller about the successful start of the process.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 21

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

For executing methods, the following kinds of messages are exchanged via the bus:

Controller Slave

Start of a method with parameters (Start/StartResult) Error with cause for error (Error)
Execution report with results (Result)
Intermediate result (Processing)

The respective MOST mechanisms needed for this messaging are described in depth in chapter 2.3
on page 28.

2.2.4 Properties

Properties can be read (e.g., temperature), written (e.g., passwords), or read and written (e.g., desired
value for speed control). For each property the allowed operations are specified.

Within an FBlock, a property is normally represented by a variable that represents something such as
a limit or a status.

2.2.4.1 Setting a Property

The process of setting a property is described by the example of the temperature setting of a heating
control.

Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Set(27)m===> Temp : 27
Max : 80

Figure 2-4: Setting a property (temperature setting of a heating)

Function Temp is a member of the FBlock Heating, so the HMI sends the instruction
Heating.Temp.Set(27) to FBlock Heating.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 22

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.2.4.2 Reading a Property

In order for the HMI to display the current temperature, the value of function Temp in FBlock Heating
must be read. Therefore, the HMI sends the instruction Heating.Temp.Get.

Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Get > Temp : 27
Max : 80

Figure 2-5: Reading a property (temperature setting of a heating)

Heating replies by sending the status message Heating.Temp.Status(27).

Heating Control Heating

Fl

Temp : Byte
Min : -40 ====Heating.Temp.Status(27)=
Max : 80

Figure 2-6: Status report of property temperature setting

For changing and reading of properties, the following types of messages are exchanged via the bus:

Controller Slave

Setting a property (Set/SetGet) Status of property (Status)

Reading a property (Get) Error message with cause of error (Error)
Incrementing / decrementing a property

The MOST functions needed for this messaging are described in depth in chapter 2.3 on page 28.

2.2.5 Events

Properties of an FBlock may change without an external influence, for example, the temperature in the
example above, or the current time of a CD player. To display current values using the functions
described up to now, a cyclical reading of the properties (polling) would be required.

To reduce communication with FBlocks, it would be useful if FBlocks could send status reports about
changes in properties without explicit requests. These are events that occur in a controlled FBlock,
which initiate the sending of a report (notification).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 23

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Notifications can be used to indicate reaching of limits, the change of measured values in FBlocks
(e.g., the play time of a CD player has changed), or in the HMI (e.g., reception of a new value of
mileage received via a CAN gateway). Notifications are sent only to those FBlocks that have
previously applied for the notification by sending an appropriate request to the Slave (and are
therefore included in the Slave’s Notification Matrix).

(Refer to chapter 2.3.12 on page 102).

2.2.6 Function Interfaces

A function interface (FI) represents the interface between a function in an FBlock and its use in
another FBlock.

To communicate with a function, a Controller or an HMI needs information about the available
parameters, their limits, and the allowed operations (=FI).

In general, this information is available in the control device, and is encoded in the control program.
The FI was passed on, for example, like a device specification. To simplify the exchange of Fls,
especially between different manufacturers, a formal description may be used that can be exchanged
between the developers of Slaves and Controllers, like the well-known header files in the C
programming language.

The contents of the Fls are usually known during implementation of a device (well known functions). It
is also possible that Fls are transported on the bus during runtime, making it possible to dynamically
reconfigure a HMIL.

Example:
Heating Control Heating
Fl Property
Temp : Byte
Min : -40 Heating.Temp.Set(27)====) Temp : 27
Max : 80

Figure 2-7: Example for a function interface (FI)

In this example, the FlI contains information about the data type of the function and about minimum
and maximum value. In real implementations, a FI contains more information.

During operation it is possible that a FI changes dynamically. In that case, all the FBlocks that have
subscribed to notification will get the new interface description through the notification mechanism. For
more information about notification, please refer to section 2.3.12 on page 102.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 24

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.2.7 Definition Example

This section contains the example of a formal definition of a MOST device, MyTuner, its FBlocks and
their methods and properties.

MyTuner = Device Device
Tuner : TTuner; {
NetBlock : TNetBlock; TTuner Tuner;
end; TNetBlock NetBlock;
} MyTuner
(Pascal Syntax) (C Syntax)

The definition specifies that MyTuner contains an FBlock Tuner of type TTuner and an FBlock
NetBlock of type TNetBlock.

TTuner is an FBlock and can be defined in the following way:

TTuner = Object Object
pStation > TStation; {
eTraffic : TTraffic; TStation pStation;
pSensitivity: TSensitivity; TTraffic eTraffic;
mSearch > TSearch; TSensitivity pSensitivity;
end; TSearch mSearch;
} TTuner

Here it is defined that FBlock TTuner contains the functions pStation (currently tuned station),
pSensitivity, and mSearch (auto scan). In addition to that, the event eTraffic can be generated.

A special character at the beginning of a name can indicate the type of function (p = property, m =
method, e = event).

Now property pStation will be defined as follows:

TStation = Property Property
Frequency : Long; {
TP : Bool; long Frequency;
Quality : Byte; Bool TP;
end; Byte Quality;

} TStation;

This describes pStation as a property with the parameters Frequency, TP, and Quality.

Now method mSearch will be defined:

TSearch = Method Method
Up : Bool;
Start : Long; Bool Up;
end; Long Start;

} Tsearch;

Method mSearch can be started with the parameters Up for direction and Start for the start frequency.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 25

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

And last, the definition of event eTraffic:

TTraffic = Event Event
TA : Bool; {
end; Bool TA;

} TTraffic;

This definition specifies that event eTraffic has a Boolean parameter TA (traffic announcement).
The FI of property pStation could be defined as follows:
iStation = Interface
iFrequency,
iTP
iQuality
end

Here is the example for the interface description of parameter Frequency.

iFrequency = Interface

Type : Tlong;

Min : 87500

Max : 108000

Unit : TkHz
end

The interface description of property TStation, consisting of interface definitions for the parameters
Frequency, TP, and Quality, can be available as part of the device specification and can be regarded
as a well-known function. It can also be requested by the control device and sent to it encoded in a
suitable form.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 26

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.2.8 MOST Network Service

The MOST Network Service provides all the basic functionality to operate a MOST system. It contains
a comprehensive library of API functions to interface with the hardware and simplify use of MOST for
the application.

The MOST Network Service offers a wide variety of functions for implementing applications. Some
functions are mandatory for a MOST device. MOST devices should be able to handle control tasks in
a peer-to-peer manner. To provide flexibility in control tasks, MOST devices must be able to work in an
environment with multiple masters.

MOST Network Service provides a basic framework for a MOST device.

MOST
Supervisor
Layer 2

NetworkMaster Address Handler

NetBlock Shadow Decentral Registry

Notification
Service

MOST Command Interpreter

Application Message Service
Synchronous Data Transmission Service
Network Service

Asynchronous Data Transmission Service
MOST Network Interface Control Service

Control Message Service

Figure 2-8: MOST Network Service

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 27

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3 Protocols

2.3.1 Protocol Basics

As already described in section 2.2.1.2 on page 20, functions are addressed without considering the
devices they belong to (on the application level). The resulting structure is this:

FBlockID . FktID . OPType (Data)

2.3.2 Structure of MOST Protocols
The principal structure of protocols on the application layer is:
DevicelD . FBlockID . InstID . FktID . OPType . Length (Data)

In addition to section 2.2.1.2 on page 20, three components were added: DevicelD, InstID and Length.
The individual elements are explained below.

2.3.2.1 DevicelD

The DevicelD stands for a physical device or a group of devices in the network (ID is network specific
and has a length of 16 bits). It precedes the protocol and does not need to be interpreted on the
application level.

If a function receives a protocol, the DevicelD contains the logical node address of the sender
(DevicelD = TxAdr = TxLog). In case of an answer, it precedes the protocol as the receiver’s address
(DevicelD = RxAdr = RxLog). Here a group address (DevicelD = RxAdr = GroupAddress) or the
broadcast address (DevicelD = RxAdr = 0x03C8) could be used too.

If the sender does not know the receiver's address, the DevicelD is set to OxFFFF. In that case, it is
corrected by the Network Service of the sender.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 28

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.2.2 FBlockID

The FBlocklID is the identifier of a special FBlock. Every FBlock with a certain FBlockID must contain
certain specific functions. In addition to those mandatory functions, it may contain other optional
functions.

“System Specific” proprietary FBlockIDs can be used by a System Integrator (e.g., a car maker). They
are specific for a system and are coordinated by the System Integrator between the suppliers
developing devices for this system. A second kind of proprietary FBlockIDs is called “Supplier
Specific”. Those FBlocklDs can be used by suppliers for any proprietary purpose. The special
FBlocklD OxFF addresses all FBlocks within a MOST device, except the NetBlock. Since this can be
regarded as a broadcast function, no error status messages should be returned.

The table below shows a collection (incomplete) of FBlockIDs:

Kind FBlocklID 8 Bit Name Explanation
Administration 0x0x
0x00 Network Service Telegrams that are related to
network tasks are sent and received
here. They are not passed to the
application.
0x01 NetBlock Mandatory for each device
0x02 NetworkMaster Mandatory for each system
0x03 ConnectionMaster Mandatory for each system
0x04 PowerMaster
0x05 Vehicle
0x06 Diagnosis
0x08 Router
OxOF EnhancedTestability Mandatory for each device
Operation 0x1x
0x10 Human Machine Interface (HMI)
0x11 Speech Recognition
0x12 Speech Output Device
0x13 Speech Database Device
Audio 0x2x
0x20 Audio Master
0x21 Audio DSP
0x22 Audio Amplifier
0x23 HeadphoneAmplifier
0x24 Auxiliarylnput
0x26 Microphonelnput
0x28 Handsfree Processor
Drives 0x3x
0x30 Audio Tape Recorder
0x31 Audio Disk Player
0x32 ROM Disk Player
0x33 Multimedia Disk Player
0x34 DVD Video Player

Table 2-1: FBlockIDs (part 1)

Note: EnhancedTestability (OxOF) is mandatory for each device due to compliance reasons.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 29

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Kind FBlockID 8 Bit Name Explanation
Receiver 0x4x

0x40 AM/FM Tuner

0x41 TMCTuner

0x42 TV Tuner

0x43 DAB Tuner

0x44 Satellite Radio
Communication | Ox5x

0x50 Telephone

0x51 Phonebook

0x52 Navigation System

0x53 TMC Decoder

0x54 Bluetooth
Video 0x6X

0x60 Display

0x61 Camera

0x62 Video Tape Recorder
Reserved 0x70 ...0x9F Reserved for future use
Proprietary

0xA0...0xC7 System Specific

0xC8 Reserved

0xC9...0xEF System Specific

0xFO ...0xFB Supplier Specific

OxFC Secondary Node MOST25 only!

OxFD...0xFE Reserved

OxFF All

Table 2-2: FBlockIDs (part 2)

The range between 0x00 and 0x9F can only be assigned by the MOST Cooperation.
Supplier specific FBlocks are not reported in NetBlock.FBlockIDs.Status.
Supplier specific FBlocks have to ignore all commands which contain FBlockID OxFF.

Specification Document

Page 30

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.2.3 InstID

There may be several equal® FBlocks (Instances) with the same FBlockID in the system (two CD
changers, four active speakers, several diagnosis blocks, etc.). In order to address these FBlocks
unambiguously, the FBlockID is complemented by an eight-bit instance identification number (InstID).
The combination of FBlocklDs and InstID is referred to as the functional address.

2.3.2.3.1 Responsibility
Each device is responsible for the uniqueness of functional addresses within the device. The

NetworkMaster is responsible for the unigqueness of functional addresses within the entire system.
Refer to section 3.3.3.

2.3.2.3.2 Assigning InstID

By default, every FBlock has InstID 0x01. In case there are several FBlocks of the same kind within
one MOST device, the default numbering within the device starts at 0x01 and is then incremented. In
principle, as long as the InstID provides the possibility to differentiate between equal FBlocks, the
InstID can be chosen freely. For example, in static systems the System Integrator may choose to use
hard coded InstIDs or set the InstiDs depending on certain ranges with respect to the supported
functions of the FBlock.

Note: Wildcards must not be used for InstID assignment.

2.3.2.3.3 InstID of NetBlock

InstIDs of NetBlocks are derived from the node position address of the MOST devices. Therefore, they
start counting at 0x00.

2.3.2.3.4 InstID of NetworkMaster

The InstID of the NetworkMaster may be zero; default value is 0x01. Requests to NetworkMaster shall
be sent to InstID 0x00 (wildcard ref 2.3.2.3.6).

2.3.2.3.5 InstID of Function Block EnhancedTestability

InstiIDs of FBlock EnhancedTestability are derived from the node position address of the MOST
device. Therefore, they start counting at 0x00.

! The expression “equal” means that those function blocks have the same functionality (e.g., two CD
drives). This means that the basic functions are equal, but there is the possibility that they differ with
respect to the total functionality (e.g., CD drive with, or without random play).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 31

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.2.3.6 InstID Wildcards

There are some special InstID values (wildcards) that can be used when addressing FBlocks. They
will be treated as follows:

0x00 Don't care (within a device). The device dispatches the message to one specific FBlock in the
device.

OxFF Broadcast (within a device). The message is dispatched to all instances of the matching
FBlock.

When replying to a request, wildcards may be used only under certain error conditions (see a-c
below). In all other cases all replies shall use the correct InstID of the respective FBlock.

a) When any FBlock is addressed by using InstID 0x00 or OxFF, but the FBlock is not actually
implemented, the returned error message (“FBlockID not available”, error code 0x01) has to contain
the same InstID as used in the original command message (0x00 or OXFF respectively).

b) The error message “Segmentation Error” (error code 0xOC) shall have the same InstID as the
original message. This error is handled on transport layer but not on application layer, therefore the
InstID is not evaluated.

MOST25

¢) The error message “Secondary Node” (error code 0x0A) shall have the same InstID as the original
message, as a Secondary Node never has an FBlock implemented.

This exception is an extension of use case “a”. If the request is aimed at the NetBlock, the error
message “Secondary Node” shall contain the actual node position as InstID.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 32

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.2.4 FktID

The FktID represents a function. This means a function unit (Object) within a device that provides
operations that can be called via the network. Examples for functions are: play of a drive, speed limit
in an on-board computer, etc. On network level, the FktID is encoded in 12 bits, so 4096 different
methods and properties can be encoded per FBlock. On the application level, the FktID is extended to
2 bytes. Exceptions to this rule will be explicitly marked.

The address range of FktIDs is subdivided in the following sections:

1. Coordination (0x000...0x1FF)
Functions for administrative purposes in an FBlock.

2. Mandatory (0x200...0x3FF)
Functions that are mandatory for the application of the FBlock, like the basic drive in all
FBlocks describing drives.

3. Extensions (0x400...0x9FF)
Optional functions.

4. Unique (0xAO00...0xBFF)
Functions that are defined unambiguously in the entire system.
Attention, these must be coordinated throughout the entire system!

5. Proprietary / System Specific (0xC00...0xEFF)
Functions that can be used by any System Integrator (car maker). They are specific to a
system and are coordinated by the System Integrator between the suppliers developing
devices for this system.

6. Proprietary/ Supplier Specific (0xF00...0xFFE)
Functions that can be used by suppliers for any proprietary purpose.
e Supplier specific functions are not reported in <FBlocklD>.FktIDs.Status.
e If a supplier specific property supports notification, notification of this property is not
affected by the <FBlockID>.Notification.Set(SetAll) command.
o If a supplier specific property supports notification, notification of this property is
cleared by the <FBlockID>.Notification.Set(ClearAll) command.

Some FktIDs in an FBlock that contains an application are predefined:

0x000 FktIDs Reports the FktIDs of all functions contained in the FBlock
(refer to section 2.3.9 on page 64).

0x001 Notification Distribution list for events (refer to section 2.3.12 on page
102).

0x002 NotificationCheck Check whether the distribution list for events is still as it
should be.

When developing proprietary FBlocks, all possible Function IDs can be used freely, except those
taken from the ranges:

e Unique
e Coordination

In case proprietary FBlocks contain functions within the ranges Unique or Coordination, those
functions must be in accordance with MOST FBlock Specifications.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 33

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

The following table regulates who is authorized to use certain FBlocklD/FktID combinations.

FktID Coordination Mandatory/ Unique Proprietary/ Proprietary/

Extension System Specific Supp_li_er
FBlockID Specific
MOST Co. MOST Co. MOST Co. MOST Co. System Supplier

Integrator
System MOST Co. System MOST Co. System Supplier
Specific Integrator Integrator
Supplier MOST Co. Supplier MOST Co. Supplier Supplier
Specific
Table 2-3: Responsibilities for FBlocklD and FktID ranges

Please note:

Before using any proprietary function or proprietary FBlock, a Controller must verify the
identity of the device. This can be done, for example, by reading the Devicelnfo property.

Specification Document

Page 34

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.2.5 OPType

The OPType indicates which operation must be applied to the property or method specified in FktID:

OPType For Properties For Methods
Commands:
0 Set Start
1 Get Abort
2 SetGet StartResult
3 Increment Reserved
4 Decrement Reserved
5 Getlnterface Getlnterface
6 Not allowed StartResultAck
7 Not allowed AbortAck
8 Not allowed StartAck
Reports:
9 Reserved ErrorAck
A Not allowed ProcessingAck
B Reserved Processing
C Status Result
D Not allowed ResultAck
E Interface Interface
F Error Error

Table 2-4: OPTypes for properties and methods

Specification Document

MOST Specification 10/2006

© Copyright 1999 - 2006 MOST Cooperation

Page 35

MOST®

Specification

MOST

COOPERATION

2.3.2.5.1 Error

Error is reported only to the Controller that has sent the instruction. On Error, an error code is
reported in the data field (Data[0]), along with additional information as shown in Table 2-5 and Table

2-6.

ErrorCode ErrorCode Description Errorinfo Errorinfo Description
Data[0] Data[1]..Data[n]
on ErrorAck on ErrorAck
Data[2]" Data[3]..Data[n]
0x01 FBlockID not available -- No Info
0x02 InstID not available -- No Info
0x03 FktID not available -- No Info
0x04 OPType not available Return OPType Invalid OPType
0x05 Invalid length -- No Info
0x06 Parameter wrong / out of range Return Parameter | Number of Parameter (byte
One or more of the parameters were wrong, i.e. not containing 1,2...). Value of
within the boundaries specified for the function. first incorrect parameter
only (optional).
Example: Function Temp shall be set to 200, although Interpretation will be
maximum value is 80. stopped then.
0x07 Parameter not available Return Parameter | Number of Parameter (byte
One or more of the parameters were within the containing 1,2...). Value of
boundaries specified for the function, but are not first incorrect parameter
available at that time. only (optional).
Interpretation will be
Example: Function SourceHandles is asked for handle stopped then.
0x03, which is not in use in the device at that time.
0x08 Reserved. Usage deprecated -- No Info
0x09 Reserved. Usage deprecated -- No Info
Ox0A MOST25 Return Address Address of that node which
Secondary Node of Primary is responsible for the
Secondary Node sending
the error.
MOST50 -
Reserved
0x0B Device Malfunction -- No Info
0x0C Segmentation Error
After this error code, the following Errorinfo Ox01 up to | 0x01 First segment missing
0x07 can be sent. 0x02 Target device does not
provide enough buffers to
handle a message of this
size
0x03 Unexpected segment
number
0x04 Too many unfinished
segmentation messages
pending.
0x05 Timeout while waiting for
next segment
0x06 Device not capable to
handle segmented
messages
0x07 Segmented message has
not been finished before the
arrival of another message
sent by the same node
0x08 Reserved, must not be
used

Table 2-5: Error codes and additional information (part 1)

! ErrorAck requires a SenderHandle in Data[0] and Data[1]. This results in different ErrorCode and
Errorinfo positions for Error and ErrorAck.

Specification Document

Page 36

MOST Specification 10/2006

© Copyright 1999 - 2006 MOST Cooperation

MOST® MOST

Specification COOPERATION
ErrorCode ErrorCode Description Errorinfo Errorinfo Description
Data[0] Data[1]..Data[n]
on ErrorAck on ErrorAck
Data[2] Data[3]..Data[n]
0x20 Function specific

After this error code, any function specific Errorinfo can | 0x01 Buffer overflow
be sent. Some, with general character, are suggested 0x02 List overflow
here. 0x03 Element overflow
0x04 Value not available
0xCO0..0xEF System Integrator specific
0xFO0..0xXFE Supplier specific
0x40 Busy - No Info
Function is available, but is busy
0x41 Not available - No Info

Function is implemented in principle, but is not available
at the moment

0x42 Processing Error -- No Info
0x43 Method Aborted - No Info
This error code can be used to indicate, that a method
has been aborted by the Abort / AbortAck OPTypes

0xCO0..0xEF System Integrator (e.g., car maker) specific. Optional

0xFO0..0xFE Supplier specific Optional Supplier specific Errorinfo.
After this error code, any supplier specific Errorinfo can
be sent.

Table 2-6: Error codes and additional information (part 2)

Please note:

The error telegrams described here mainly serve the purpose of debugging. They should be
handled in a Controller only, if the system’s performance requires it. Otherwise, error
processing should be omitted, and the devices should be designed as failure tolerant systems.
With respect to that, the Slaves also should manage with the existing error telegrams.
Individual error telegrams using error code 0x20 should be avoided if possible.

For avoiding infinite loops with respect to reporting errors, errors are reported only from Slave
to Controller. In addition, no reply of error telegrams is allowed on reception of broadcast
messages.

By OPType Error, different kinds of errors are reported. Incoming messages are scanned for all these
errors:

1. Syntax Error:

A syntax error occurs, if, for example, a function is accessed that does not exist or if an OPType that is
not implemented is called. Syntax errors are reported by the ErrorCodes 0x01..0x04. A syntax error
will be reported directly after reception of a faulty command. This also applies to methods, which will
not be started in that case. A Slave must report ErrorCode 0x01 if an unavailable FBlocklD was
requested. ErrorCode 0x02 must be reported if the requested InstID is not available.

Example for requesting a non-existing FBlock:

SrcAdr -> TrgAdr:
FBlockID.InstID.FktID.OpType(--.)

//iT FBlock not available:

TrgAdr -> SrcAdr:
FBlockID.InstID.FktID.Error(errorcode = 0x01)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 37

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2. Application Error — Parameter Error:

The specified length does not match the actual length of the data field. There have been too few
parameters, too many parameters, or one parameter is out of range. Parameter errors are reported by
the ErrorCodes 0x05 and 0x06. Messages are only accepted when being completely correct. In
particular, this means that the length of the parameter area must be correct. The only exception is the
handling of arrays that are too short (refer to section 2.3.11.2 on page 77).

3. Application Error — Temporarily not Available:
In some cases it may happen that the message is correct but the execution is not possible at the
moment. The following distinction of cases must be performed:

e It may be that both methods and properties are implemented but cannot be executed due to
operation status. An example for a method would be SMSSend of the telephone, which cannot
be executed if the bus is not available. In case of being called anyhow, it would report an
OPType error at error code 0x41 “not available”. In such a case, the application can supervise
the status of the telephone and may repeat the sending of the SMS as soon as the network is
available again.

e A method can be available but may be busy at the moment. So it would be possible that
method SMSSend of the telephone is busy in sending another SMS. In that case an error
code 0x40 “busy” would be reported. Here, the application may perform retries. This case can
only occur in connection with methods.

e A property represents a memory area, which is written by Set, or read by Get. According to
definition this memory area cannot be “busy”. It is solely possible that a value is within the
valid range but is not selectable at the moment. An example can be property DeckStatus of
the CD drive, which cannot be set to “Play” if there is no CD loaded. This would generate an
error code 0x07 “parameter not available”.

4. Application Error — General Execution Error:
Especially when using methods, execution errors may occur. In general, such an error (unspecific;
Command was correct, but execution failed) may be reported by error code 0x42 “processing error”.

5. Application Error — Specific Execution Error:

Besides the already listed errors, a MOST application may report specific errors during execution by
using OPType Error as well. Here, error code 0x20 “function specific” is used. Some possible errors
are predefined for that case, as well.

MOST25

6. Application Error — Error Secondary Node:

Detailed information about Secondary Nodes is to be found in section 3.2.3 on page 136. In case a
Secondary Node receives any Control Message, the requested FBlock replies with an Error
“Secondary Node“ (ErrorCode=0x0A). The reply contains the address of the Primary Node
(=Errorinfo), which is responsible for that Secondary Node. A Secondary Node must report ErrorCode
0xO0A with requested FBlockID, InstID and FktID, which are not available.

Example for requesting a Secondary Node:

SrcAdr -> TrgAdr:

FBlockID. InstID.FktID.OpType(--..)

//if TrgAdr is Secondary Node

TrgAdr -> SrcAdr:

FBlockID. InstID.FktID.Error(errorcode = Ox0A, errorinfo =)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 38

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

7. Application Error — Device Malfunction:
This error indicates that the requested function is temporarily not available due to a device
malfunction.

8. Application Error — Segmentation Error:

A MOST System provides the option of transporting messages that exceed the length limitations given
by the Control Channel of the MOST bus (17 bytes). This is done by dividing the message up into
several segments. Each of the segments is then transported as one Control Channel telegram to the
receiver. In order to make sure that the data can be reassembled safely on the receiver's side, each
telegram carries the appropriate additional information in its protocol header (TellD, Segment counter).

Errors during reassembling the original message in the receiver can be caused, for example, by
missing segments, wrong order of arrival or exceeding the timeout between two segments. In case of
such an error, the parts of the message that have already been received are discarded. In addition,
the application within the receiver is notified of the error by the Network Service.

Note:

“Segmentation Error” is not limited to the context of segmented messages. The error might also be
reported as result of a single telegram reception failure. The most likely reason in that case is an input
buffer overflow.

The segmentation error notifies the sender about the failure of the transfer. Therefore, the sender’s
application may react in an appropriate way, for example, by retrying to send the same message
again. The reaction depends on the respective problem that caused the error.

Segmentation Error shall be sent back to a Controller that failed to send a segmented message to a
Slave. Error telegrams can only be directed from the Slave to the Controller, to avoid infinite loops of
error telegrams. So a failure in sending a segmented message from the Slave to the Controller will not
be notified to the Slave. In this case, it is the responsibility of the Controller application to take
appropriate measures as soon as it is notified about the error by the Network Service.

Since the segment containing the sender handle in case of an Ack method may be missing,
Segmentation Error is never sent as an ErrorAck message.

9. Application Error — Method Aborted:

This error is used in case of abortion of methods by OPType Abort or AbortAck. A MOST device called
"A" starts a method in device "B". Due to some exceptional events, a third device "C" aborts the
method running in device “B”. In that case, device “B” reports error "Method Aborted" to both the
device that started the method and to the Device that aborted it since they are both currently involved
in the process. No other Controllers need to know about this.

The error report “Method Aborted” must always be sent back as a result to a successful abort request,
even if the method is not executed anymore, for example, because it has finished successfully
already.

The examination and processing of errors is done in the logical and temporary sequence as described
above and in Figure 2-9 on page 40.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 39

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Receive application message

MOST25
Secondary
node?

yes Send Error OPType Error

ErrorCode 0x0A

Segmentation
error?

Send Error OPType Error
ErrorCode 0x0C

Syntax error?
(Addressing,
OPType)

yes Send Error OPType Error

Network Service ErrorCodes 0x01..0x04

Parameter error?
(Length, number,
range)

yes Send Error OPType Error

MOST Application ErrorCodes 0x05, 0x06

Temporarily not

available? Send Error OPType Error

ErrorCodes 0x07, 0x40, 0x41

Start execution

General
execution error?

yes Send Error OPType Error

ErrorCode 0x42

Specific
execution error?

yes Send Error OPType Error

ErrorCode 0x20

C

Figure 2-9: Processing of messages including error check on different layers

Of course, there exist errors on application level that do not appear in the MOST syntax (i.e., reported
by OPType Error). An example would be the processing of errors within a data transfer in TCP/IP.
From the point of view of the MOST system, such a data transport is only the transport of data packets
to a receiving function. The contents of the packets and the fact whether that data contains errors is
interpreted on application level only. Higher levels of error management and individual error messages
are to be specified individually.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 40

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.2.5.2 Start, Error

By using Start, a Controller triggers a method. This approach is useful only for methods that do not
return results.

Controller FBlock (Slave) Controller FBlock (Slave)
FktID.Start FktID.Start
.

Lt »

Syntax-/ application error: FktlD.Error

P
l

End of procedure

Figure 2-10: Sequences when using Start with and without error

Please Note:

A method started by "Start" must be called only one time (no multiple instances are allowed).
In case a method that was started by "Start" is currently running, and a second Controller tries
to start the same method again, the method has to reply with an error "Busy". The already
running method is not affected by this new incoming request. For running several instances of
the same method, StartAck and ResultAck must be used.

2.3.2.5.3 StartResult, Result, Processing, Error

In opposite of triggering a method by using Start, the Controller requires feedback when it uses
StartResult. It then expects reports about the currently running procedure (with Processing), as well as
about the Result (Result or error). If a method does not return a result by parameters, it returns Result
as a signal of a successful processing.

If there are syntax or parameter errors during the calling of a method, there will be a reply using Error.
The method will not be started.

If a method that was started can generate a result within terocessingpefauis after reception of StartResult, it
returns the result by using “Result(<Parameter>)" as soon as it is available. There will be no reply
“Processing” in that case. The same applies to application errors.

If a method cannot generate a result within terocessingpefaurrs after having received StartResult and if there
is no application error, it replies after that time by using “Processing”. After that it starts the timer
tprocessingDefauiiz. THiS timer works in the same way as tprocessingpefauiri: 1hat means that in case of
terminating the method within terocessingpetauiz, @ reply “Result(<Parameter>)" will be sent. Otherwise
“Processing” will be reported when the timer expires. Upon sending processing, the timer is restarted.
The Controller evaluates the first reply by using a timer interval of twairorprocessingt (COMpensation of
eventual delays). In case that there is no reply within this time (Neither Result, nor Error, nor
Processing), it assumes an error. After receiving the first processing, it uses a timer with interval
twaitForProcessing2 fOr the following receptions.

System Integrators may change the default timeout value (tprocessingpetauirs) fOr acknowledging the start
of a method. This is to be done individually for the respective function within the FBlock Specification.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 41

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

There is also a possibility to define each method in the FBlock Specification with two timing values:

1. Initial timeout between StartResult and Processing
2. A second timeout between subsequent processing messages.

All changes must be documented in the related FBlock Specification and Dynamic Specification.

StartResult Received

Error?
Syntax, Appl — Parameter,
Appl — not available?

Yes

Send Error

Start Method

Start Timer tprocessingDefaultl

!

Start Timer tprocessingDefault2

Error?
Processing

Method Ready?
No

————p Send Error —p

) Send Result |)

(<Parameter>)

End

Send Processing

Figure 2-11: Flow for handling communication of methods (Slave’s side)

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 42

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

StartResult Sent

Start Timer twaitrorprocessingl

Start Timer twaitrorProcessing2

Error
Received?

Result
Received?

Yes Processing

Figure 2-12: Flow for handling communication of methods (Controller’s side)

Received?

No

Yes

Set Error Condition

Set Success Condition

Set Error Condition

End

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 43

MOST® MOST

Specification COOPERATION

2.3.2.5.4 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck

The behavior is equal to that of Start, StartResult, Processing, Result, and Error (refer to section
2.3.2.5.3 on page 41). The only difference is, that the first parameter transports the SenderHandle
(refer to section 2.3.6.2 on page 62).

2.3.2.5.5 Get, Status, Error

By using OPType Get, a Controller asks for the status of a property. In case of a Get request, a reply
using Status will be generated, if the syntax check has shown no errors. Otherwise, Error will be
returned. A property shall reply on a request within tprpery. If the Controller does not receive any reply
within twairorproperty &fter having sent Get, an error can be assumed. It is not critical if the Controller
reacts more tolerant and waits for a longer time. Nevertheless, an interruption of the waiting process is
a must.

2.3.2.5.6 Set, Status, Error

By using Set, the content of a property is changed. Set behaves equal to Start. This means that the
Controller does not expect any reply (except error reports). If the syntax check is ok, the command can
be executed.

The changed status of the property will be reported to all Controllers that are registered for this
function. This is done via notification. If the triggering Controller is registered, it will receive a status
report indirectly. This way is recommended, for example, if the Controller is registered in the
Notification Matrix. In addition to that it may be that the changing of a property, by a Controller from
outside, generates the changing of the status of several other properties by some internal
mechanisms.

Therefore, the controlling of properties by using Set is the preferred mechanisms for Controllers that
are registered in the Notification Matrix of a controlled FBlock.

2.3.25.7 SetGet, Status, Error
SetGet is the preferred way of controlling FBlocks for Controllers:

e that control a property only in rare cases
e that are not registered in the Notification Matrix

SetGet is a combination of Set and Get, which means that the Controller (in case of a correct syntax)
automatically gets the changed status in return. This is independent of the Notification Matrix.

In case of a request by using SetGet, a reply using Status is generated, if the syntax check has shown
no errors. Otherwise Error will be returned. A property shall reply on a request within tepery. If the
Controller does not receive any reply within twairorrropery after having sent SetGet, an error can be
assumed. It is not critical if the Controller reacts more tolerant and waits for a longer time.
Nevertheless, an interruption of the waiting process is a must.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 44

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.2.5.8 GetlInterface, Interface, Error

These OPTypes can be compared with Get, Status and Error (refer to section 2.3.2.5.5). Instead of
the status, the Function Interface will be requested.

2.3.2.5.9 Increment and Decrement, Status, Error

Increment and Decrement provide a relative changing of a variable in opposite to the absolute
changing by using Set. When using Increment or Decrement, the new status will be reported to the
triggering Controller as well as to the Controllers registered in the Notification Matrix. This is similar to
SetGet. In case of a Controller requesting Increment or Decrement although the respective maximum
or minimum is reached, no error will be reported. In fact the (old) new value will be reported. This
answer is directed to the triggering Controller only. A reporting to the Controllers registered in the
Noatification Matrix is not required since the value actually did not change.

2.3.2.5.10 Abort, Error

These OPTypes are available for methods only. When used, Abort terminates the execution of a
method. The message abortion is confirmed through an Error(Aborted) message. Abort must not have
any parameters. Please note that methods in general should be aborted only by that application which
has started the method. After the method has been aborted, information about this is sent out. Please
see 9 Application Error — Method Aborted: on page 39 for more information.

2.3.2.5.11 AbortAck, ErrorAck

This OPType is available for methods only. When used, AbortAck terminates the execution of a
method. The message abortion is confirmed through an Error(Aborted) message. In opposite to
“Abort”, AbortAck transports additional “routing” information (SenderHandle, as described in section
2.3.6.2 on page 62). AbortAck must not have any parameters except SenderHandle. Please note that
methods in general should be aborted only by that application which has started the method. After the
method has been aborted, information about this is sent out. Please see 9 Application Error — Method
Aborted: on page 39 for more information.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 45

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.2.6 Length

Length specifies the length of the data field in bytes. It is encoded in 16 bits.

Length = 0x0000 Data field of length O
Length = 0x0001 Data field of length 1 byte.
Length = OxFFFF Data field of length 65535 bytes.

Functions that need to transport voluminous application protocols communicate via MOST High
Protocol and the packet data transfer service. These functions will be marked in the FBlock
Specification.

Please note:
Length is not transmitted directly via MOST, but is reconstructed from the number of received
telegrams and the TelLen at the receiver’s side.

2.3.2.7 Data and Basic Data Types

In principle, the data field of a message in the application layer (also referred to as Application
Message) may have any length up to 65535 bytes. In a telegram on the Control Channel of the MOST
bus, the maximum length is 12 bytes. Longer protocols must be segmented, that is, be sent divided up
in several telegrams. It should be kept in mind that even on the application level, the data fields of a
protocol should exceed 12 bytes only in exceptional cases.

Within a data field, none, one, or multiple parameters in any combination of the following data types
can be transported. They are transported MSB first. The sign is encoded in the most significant bit and
2's complement coding is used for signed values. There are the following basic data types:

Boolean Unsigned Byte Unsigned Word
BitField Signed Byte Signed Word
Unsigned Long Enum Stream

Signed Long String Classified Stream

Short Stream

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 46

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Parameters are transmitted in a way that can be displayed directly. Using only the data types
mentioned above, no floating point format would be possible. The missing information about the
location of the decimal point is added via an exponent of type signed byte. The value to be displayed
must be transported in the following way:

value to be displayed = transmitted value * 10Exponent

Example 1:
transmitted value: 1073 (word)
exponent: -1
step: 1
unit: MHz

value to be displayed: 107.3 (MHz) (can be changed in steps of 100 kHz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107.3 MHz to 107.8 MHz.

Example 2:
transmitted value: 1073 (word)
exponent: +5
step: 1
unit: Hz

value to be displayed: 107,300,000 (Hz) (can be changed in steps of 100 000 Hz)

In case of an Increment operation with NSteps = 5, the current frequency would be incremented from
107,300,000 Hz to 107,800,000 Hz.

Example 3:
transmitted value: 1000 (word)
exponent: -3
step: 10
unit: m

value to be displayed: 1.000 (m) (can be changed in steps of 10 mm)

In case of an Increment operation with NSteps = 5, the current length would be incremented from
1.000 m to 1.050 m.

The exponent can be already known through the receiver of the parameter (Controller), or it can be
requested through the sender (function) of the value (refer to section 2.3.11 on page 66). It is not
transported together with the parameter.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 47

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.2.7.1 Boolean

Definition of Type Comments

1 byte Only one bit of the byte can be used.

2.3.2.7.2 BitField

Definition of Type Comments

Size byte = (Mask.Data)

Size: - (Total Size of the BitField): 1, 2, or 4 bytes
Data: % Size byte (Data Content Area)

Mask: Y Size byte (Masking Area):

"Mask" is a masking bit field of the same size as the Data Content
Area "Data". It indicates to which bits in the Data Content Area of the
BitField an operation shall be applied. The LSB of "Mask" masks the
LSB of the Data Content:

bitk (Mask) =1 -> apply Operation to bit k (Data)
bitk (Mask) =0 -> do not apply operation to bit k (Data)

Example:

State: MyBitField.Status (XXXX XXXX, 1010 1001)
Operation: MyBitField.Set (0000 1000, 1010 0111)
NewState: MyBitField.Status (XXXX XXXX, 1010 0001)

“X" means “don't care” in this example. These bits should be set to zero by the sender of the Status
message. However, their content must be ignored in the receiver of the Status message.

2.3.2.7.3 Enum

Definition of Type Comments

1 byte -

2.3.2.7.4 Unsigned Byte

Definition of Type Comments
1 byte -
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 48

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.2.7.5 Signed Byte

Definition of Type

Comments

1 byte -

2.3.2.7.6 Unsigned Word

Definition of Type

Comments

2 bytes -

2.3.2.7.7 Signed Word

Definition of Type

Comments

2 bytes -

2.3.2.7.8 Unsigned Long

Definition of Type

Comments

4 bytes -

2.3.2.7.9 Signed Long

Definition of Type

Comments

4 hytes -

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 49

MOST Specification 10/2006

MOST®

Specification

MOST

2.3.2.7.10 String

Definition of Type

Comments

Variable length | = (Identifier.Content. Terminator)

Please note:

In general, only “MSB first, high byte first” notation must be used for strings. Every string

starts with an Identifier and is Null terminated.

Identifier: 1 byte
Code String type ASCII compatible
0x00 Unicode, UTF16 No
0x01 ISO 8859/15 8bit Yes
0x02 Unicode, UTF8 No
0x03 RDS No
0x04 DAB Charset 0001 No
0x05 DAB Charset 0010 No
0x06 DAB Charset 0011 Yes
0x07 SHIFT_JIS No
0x08 - OxBF | reserved
0xCO0..0XEF | System Integrator (e.g. Car Maker)
0xF0..0xFF | Supplier

Content: Characters

Terminator: 1 Character Null character. Number of zeros. Depends on encoding.

For calculating length, only the number of characters is relevant. Length explicitly excludes the
Identifier and the terminating character(s). Strings that are using the RDS character set may contain
codes for switching the code pages. This can produce strings, which need more bytes in memory than
the number of characters they contain.

The encoding of an "empty" string depends on the used code:

Code "Empty" String Comment
UNICODE, UTF16 0x00,0x00,0x00 -

ISO 8859/15 8 bit 0x01,0x00 -
Unicode, UTF8 0x02,0x00 -
RDS 0x03,0x00 -

SHIFT_JIS 0x07,0x00,0x00 -

Since all strings are null terminated, character sets that use a null character are not allowed.

2.3.2.7.11 Stream

Definition of Type Comments

Any Data -

Specification Document
Page 50

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.2.7.12 Classified Stream

Definition of Type Comments

Variable length

=(Length.MediaType.Content)

Classified Strea

m acts as a container for different objects.

Length: 2 bytes Length of the stream.

MediaType: Null terminated ASCII string (no coding identifier) containing the data typing of the
object that is transported in the Classified Stream. The format used for this is the
same as for HTTP/1.1.

MediaType = type “/” subtype *(*;” parameter)

The MediaType’s values type, subtype, and parameter are specified by the Internet

Assigned Number Authority IANA. If a MediaType is not available “application/octet-

stream” shall be assumed when MediaType is an empty string.

Information about HTTP/1.1 can be found in:

RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul,

H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. (Obsoletes RFC 2068).
2.3.2.7.13 Short Stream

Definition of Type Comments

Variable length | =(Length.Content)

Length: 1 byte Length of the stream (max 255 bytes)

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 51

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.3 Function Formats in Documentation

The protocols have different DevicelDs, depending on the protocol being received or transmitted. In
documentation that must be human readable, the following general description must be used, which
covers both cases:

SrcAdr -> TrgAdr: FBlockID. InstID.FktID.OPType.Length(Parameter)

SrcAdr and TrgAdr are the physical MOST addresses of the sending and the receiving device,
respectively. On the sender’s side, it is identical with the TrgAdr, and on the receiver's side with the
SrcAdr (please refer to the example in section 2.3.5 on page 53). In most cases, only one instance of
the FBlock is available in the system and InstID can be omitted. Descriptions can also be simplified by
omitting the Length.

SrcAdr -> TrgAdr : FBlockID.FktlID.OPType(Parameter)
Example:

Choosing track of the CD changer:

HMI -> CDC : AudioDiskPlayer.Track.Set(5)
CDC -> HMI : AudioDiskPlayer.Track.Status(5)

2.3.4 Protocol Catalogs

The telegrams are included in a catalog and are grouped by functions (Function catalog). It is a good
approach to implement this catalog in a database so that a printable version can be produced.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 52

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.5 Application Functions on MOST Network (Introduction)

The controlling mechanisms described in this document are generally independent of the kind of bus
used. Protocols on the application level are described in a universal way. They are transported
virtually from one application to the other. In reality they are transmitted with the help of a bus system,
here the MOST network, which is described in detail below.

Virtual communication protocols
Functional addressing

Application - ———————————— - Application
Real Communication Real Communication
Network Service Network Service

Real communication

MOST telegrams
MOST Network Physical addressing MOST Network
Interface g - Interface
Controller Controller

Figure 2-13: Virtual communication between two devices on application layer and real comm. via hetwork

All application protocols are finally transferred via the Control Channel of the MOST network. From the
application’s point of view, all protocols are passed on to the Network Service. Depending on the
length, an application protocol is sent with a single transfer if it fits into one MOST telegram, otherwise
via segmented transfer.

In a MOST Network, nodes (devices) are addressed. In order to transport a protocol to an FBlock, the
MOST telegrams are provided with the address of the device that contains the FBlock.

Here, the entire data flow of an interaction between two devices via the network layer is described.
One device controls the functions of the other. The figure below shows the properties of an FBlock
with the FBlockID CD and the InstID 1. The FBlock is found in device CD Player with the physical
MOST address CDC.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 53

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

CcDC

CDA1
TRAK | 10

‘TIME \ 01:23 \

\STATUS\ PLAY \

Figure 2-14: Device with MOST address CDC, an FBlock CD Player with FBlockID CD, and its functions

For example, another track can be chosen by reception of the following protocol:

CD.1.Track.Set(10)

This protocol is sent by a device with the physical MOST address HMI. Therefore it will be passed on
to the Network Service in the following form:

FFFF.CD.1.Track.Set(10)

The first part is a special DevicelD, which means that the device address of the receiver is not known
on the application level. The Network Service will complement the address. The result is:

CDC.CD.1.Track.Set(10)

For transmission this is complemented by the sender’s device address:

HMI .CDC.CD.1.Track.Set(10)

Since the receiving device knows its own device address, this address does not need to be passed on
to the application level. The received protocol therefore looks like:

HMI.CD.1.Track.Set(10)

If the function wants to report its new status, it builds the following protocol:

HMI .CD.1.Track.Status(10)

Based on this, the Network Service builds the following telegram:

CDC.HMI .CD.1.Track.Status(10)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 54

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

In the HMI the receiver’s address is removed and the protocol is passed to the application:

CDC.CD.1.Track.Status(10)

The general data flow via the different layers in the two devices is displayed in the following figure:

FBlocklID.InstID.FktID.OPType(Parameters)
Application |g-—-——-—-"-"-"""""""""-"-"-"-"-"—"—"—"-"—"——"—"——— Application

D.InstID.FktID.OPType(Parameters)

DevicelD1.FBlockID.InstID.FktID.OPTyp
Network Service

Network Service

ockID.InstID.FktID.OPType(Parameters)

DevicelD1.FBlockID.InstID.FktID.OPTyp|

MOST Network
Interface
Controller

MOST Network DevicelD1.DevicelD2.FBlockID.InstID.FktID.OPType(Parameters)

Interface
Controller

Figure 2-15: Communication between two devices via the different layers

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 55

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.6 Controller / Slave Communication

For communication between Controllers and Slaves, properties and methods must be differentiated.

2.3.6.1 Communication with Properties Using Shadows

Below, communication between a controlling and a controlled device is explained for properties by an
example:

e Controlling device (Controller):
Contains FBlock Shadows for controlling the CD changer and Tuner FBlocks
e Controlled device (Slave):
Contains only the CD changer FBlock
The properties of a device should describe the current operation status completely at any time. The
figure below shows the properties of an FBlock CD changer with FBlockID CD and the InstID 1 in the
device with the MOST address CDC.

CcDC

CDA1
TRAK | 10

‘TIME \ 01:23 \

\STATUS\ PLAY \

Figure 2-16: Example for a Slave device

Operation status of the player is determined by the properties Disk (number of loaded CD), Track,
Time, and Status (Play, Stop, Forward, Rewind, and Eject). By changing these properties, the player
can be controlled by another device.

For example, another track can be chosen by sending the following protocol:
HMI->CDC: CD.1.Track.Set(10)

If this operation is successful, the new state of the CD player is confirmed by the following protocol:
CDC->HMI: CD.1.Track.Status(10)

By sending this protocol, the player can be stopped:

HMI->CDC: CD.1.Status.Set(Stop)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 56

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Also in this case, the new state of property Status can be transmitted via a protocol:

CDC->HMI: CD.1.Status.Status(Stop)

These status messages are sent by the CD player, even in a case where a property changes itself, for
example, when the player changes to the next track during play mode (on the condition that another
device is registered in the Notification Matrix of FBlock CD).

The MOST device address of the CD changer (represented by the abbreviation CDC) together with
FBlocklD and the InstID describe the property to be changed. To make sure that the protocols for
controlling a device find their way through the system, the property description must be unique in the
entire system.

If there are multiple CD players in the system, they get different InstIDs and, in addition to that,
different MOST addresses. Based on that, two players can be controlled by a HMI in the following
way:

???->CDC1: CD.1.STATUS.SET(STOP)
???->CDC2: CD.2.STATUS.SET(STOP)

By this, two CD FBlocks can be addressed unambiguously, even if they are located within one
physical device with one MOST address. This also guarantees that status reports can be assigned
unambiguously:

CDC ->?7??: CD.1.STATUS.STATUS(STOP) Status of CD in CDC
CDC1->?7?7: CD.1.STATUS.STATUS(STOP) Status of CD in CDC1
CDC2->7?7??: CD.2.STATUS.STATUS(STOP) Status of CD in CDC2
CDC->???: CD.1_.STATUS.STATUS(STOP) Status of 1t Player in CDC
CDC->???: CD.2.STATUS.STATUS(STOP) Status of 2" Player in CDC

The controlling device (Controller) contains the Shadows of the functions it controls. The Shadow of a
function in the control device represents an image of the property of the Slave device. That means, for
each controlled property of the Slave device, the control device contains a respective variable. For the
Controller, the function seems to reside in its own memory area. This is shown in the figure below:

HMI

cbc
HMI->CDC: CD.1.TRACK.SET (TRACK+1) CD.1

» TRACK -

‘TIME \ 01:23 \

 STATUS = PLAY \ STATUS \ PLAY \
: / ! CDC->HMI: CD.1l.TRACK.STATUS (03)

Figure 2-17: Virtual illustration of the controlled properties in the control device

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 57

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

The HMI shown in Figure 2-17 has an image of all properties of CDC (Slave device) represented by
the variables Disc, Track, Time and Status. These variables are required to store the display values,
and can be used for control purposes too. The example shows the flow of communication when using
the “Next track” button.

When the button is clicked, the HMI takes the contents of its local variable Track, increments it by one,
and sends the protocol CD.1.Track.Set(Track+1) to device CDC. After the player has changed track, it
replies by sending protocol CD.1.Track.Status(3). Addressing of the response is equal to the
addressing of the command, except the address, since the answer is sent to a (virtual) identical
FBlock. Variable Track reacts only on that protocol and stores the new value. The change of variable
Track causes the HMI to update its display.

As shown in the figure below, there is one protocol assigned to each variable unambiguously. Every
variable in HMI “reacts” only on the assigned protocol sent from the respective device.

HMI

[# [0 |3 [0 DasisSiBesnSywiome | i

cDnc
cD.1 cD.1
CDC->?:CD.1.DISK.STATUS
DISK \ 6
TRACK
CDC->?:CD.1.TRACK.STATUS
TRACK o3 ‘TIME \ 01:23 \
CDC->HMI: CD.1l.TRACK.STATUS (03)
CDC->?:CD.1.TIME.STATUS
TIME [0t:23 | STATUS | PLAY |
CDC->?:CD.1.STATUS.STATUS
STATUS \ PLAY

Figure 2-18: Unambiguous assignment between protocol and variable

The figure below shows the advantage of this approach when controlling multiple devices. The HMI
has an image of the controlled CD player, as well as an image of the tuner. Even during play operation
of the CD player, the tuner sends status changes to the HMI. In CD operation mode, this information is
not shown on the display but is stored in the respective variables. This means that the current
information about the tuner is available immediately if the operation mode is changed from CD to
Tuner, with no extra polling needed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 58

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

HMI

CD.1 HMI->CDC: CD.1.TRACK.SET (TRACK+1)

—
£
o
P

TIME | 01:23

CDC->HMI: CD.1.TRACK.STATUS (03) ‘TIME ‘ 01:23 ‘

_STATUS | PLAY

‘STATUS \ PLAY \

TUNER.1
RADIO
_FREQUENCY | 984
| | . TUNER.1
BAND i M RADIO->HMI:
i ‘ ; TUNER. 1.STEREO.STATUS (ON) ‘ FREQUENCY ‘ 084 ‘
_STEREO | ON
| ‘ | BAND | M|
| STEREO | ON

Figure 2-19: Controlling multiple devices

A similar case could be imagined if several identical CD players are available in the network.
Operation mode of the HMI could be changeable, for example, between CD1 and CD2. The display
would show only the status of the currently selected player and the keyboard would be switched, too.

As shown in the graphic below, such a HMI would contain two sets of variables (Shadows), one for
each CD player. The variables for CD.1 react only upon protocols of CD.1, while the variables for CD.2

react only upon protocols of CD.2. If both of the FBlocks are located in one device, handling would be
identical.

Both sets of variables are updated, even if only one set is displayed. When switching between the
players, all values are available immediately.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 59

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

HMI

5[Oasis SiBenSysloms

cbC

CD.1 CDA

CDC->?:CD.1.DISK.STATUS
DISK 6
{_cpc->2:CD. 1. TRACK. STATUS TRACK m

\TRACK 03

CDC->HMI: CD.1.TRACK.STATUS (03) ‘ TIME ‘ 01:23 ‘
CDC->?:CD.1.TIME.STATUS

TIME \ 01:23 ‘STATUS \ PLAY \
CDC->?:CD.1.STATUS.STATUS

STATUS \ PLAY

cbc

cD.2 cD.2
RSN TN
K8 Tk | 05

TRACK

CDC->?:CD.2.TRACK. STATUS

TRACK ‘ 03 CDC->HMI: CD.2.TRACK.STATUS (03) ‘ TIME ‘ 01:23 ‘
CDC->?:CD.2.TIME.STATUS ‘ STATUS ‘ PLAY ‘
TIME \ 01:23
CDC->?:CD.2.STATUS. STATUS

STATUS \ PLAY

Figure 2-20: Controlling two identical devices

For the assignment of protocols and variables in the Controller, the respective protocols are defined
for each variable. Each variable therefore has a filter function that can be passed only by the “own”
protocol.

This can be done by a table that contains the protocols consisting of MOST sender address, FBlockID,
InstiD, and FktID. There can be one pointer assigned to each protocol, pointing to the respective
variable. In addition to that, or as an alternative, function pointers are also allowed. This allows
functions to be called depending on protocols and controlled by tables.

The concept can also be realized by an object-oriented approach, where variables are realized by
objects with protocol filters and methods for representation. Following this approach, all incoming
protocols are distributed to all objects, but only that object whose filter lets the protocol pass will react.
Analogously, the incoming protocols are compared to all protocols in the table when using the table
approach.

On more complex Controllers, this approach can be optimized by filtering the protocols step by step.
The figure below shows an HMI, which contains Shadows of a CD player and a tuner. These Shadows
are implemented as interface objects. The interface objects are combined in two parent objects that
filter the incoming protocols by sender address and InstID. The interfaces themselves only need a
filter for the FktID.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 60

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

HMI CDC->HMI: CD.1l.TRACK.STATUS (03)
CDC->?: CD.1.2?2°2°2?
cDC

CD

??7?.DISK.STATUS

CD.1
sk | s
222.] |
TRAGK | 03 ¥ 27 meack. seatus (03 [1RAcK | os |

222 .TIME.STATUS ‘TlME ‘ 01:23 ‘
TIME | 0123

‘STATUS‘ PLAY \

??7?.STATUS.STATUS

STATUS \ PLAY

RADIO->HMI: TUNER.1.FREQUENCY.STATUS (98,4)

RADIO->?: TUNER.1.2?2??? |

RADIO
TUNER
‘ TUNERA1

22?2 . FREQUENCY . STATUS]

FREQUENCY | 98,4 555 FREQUENCY.STATUS (98,4) ‘ FREQUENCY ‘ 98,4 ‘
???.BAND.STATUS

BAND M BAND L Fm |
222 .STEREO. STATUS ‘STEREO ‘ ON ‘
STEREO . ON

Figure 2-21: Hierarchical structure of the protocol filter (command interpreter)

Without object-oriented programming, the stepwise filtering can be implemented by using a message
dispatcher. This dispatcher would forward the protocols to the respective FBlocks based on sender

address, FBlockID and InstID. Every FBlock can then analyze the FktIDs itself by an own command
interpreter.

Based on the well-structured protocols, further analyzing steps can be inserted if required.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 61

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.6.2 Communication with Methods

2.3.6.2.1 Standard Case

In general, communication with properties is equal to communication with methods. This means that a
Controller controls a function in a Slave Device and there will be a reply to the Controller Device. An
example:

Controller -> Slave: FBlocklID. InstID.StartResult (Data)
Slave -> Controller: FBlockID.InstID.Result (Data)

Slave -> Controller: FBlocklID.InstID.Error (ErrorCode, Errorinfo)

2.3.6.2.2 Special Case Using Routing

In some cases there are methods where the general way of communication is not sufficient. The
philosophy of building Shadows when on handling properties is based on the fact that every property
has only one single and unique state. This state then is imaged on one or more Controllers.

This condition is not valid for methods: It may happen that a method is processing a request for one
Controller, while it appears to another Controller to be busy. It has many states.

In addition to that, in methods a process is triggered that has a longer processing time. The Controller
may need to wait for a result. If several tasks within a device accessed one method at the same time,
it must be possible to route the answer back to the respective task.

One example can be the SMS service in a GSM module of the device Telephone. In HMI, three tasks
desired to send an SMS message independently from each other. The message of task 1 was sent,
the one of task 2 was buffered, while the message of task 3 was rejected. The respective status
message must now be assigned, which is not possible using the communication methods described
up to now.

HMI
TASK 1
TELEPHONE
GSM.1 GSM.1
TELEPHONE->HMTI :
f) GSM.1.SMSSend.Error (Busy)
TASK 2 H SMS < SMSSend

TASK 3

Figure 2-22: Routing answers in case of multiple tasks (in one Controller) using one function

To provide routing in such cases, the OPTypes StartResultAck, ProcessingAck, ResultAck, and
ErrorAck are introduced. The behavior of these OPTypes is identical to that of StartResult, Processing,

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 62

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Result and Error. The only difference is that as first parameter the SenderHandle (data type Unsigned
Word) is inserted. The SenderHandle is set by the Controller at StartResultAck and characterizes the
sender more in detail (Task, process...). The SenderHandle will not be interpreted by the Slave, but
will be returned in an answer (ProcessingAck, ResultAck or ErrorAck).

The SMS call in Task 1 may look like:

Controller -> Slave: Telephone.1l.SMSSend.StartResultAck
(SenderHandlel.SMSData)

After successful transmission, Task 1 gets:

Slave -> Controller: Telephone.1.SMSSend.ResultAck (SenderHandlel)

If Task 3 desires to send in the meantime, it sends:

Controller -> Slave: Telephone.1l.SMSSend.StartResultAck
(SenderHandle3.SMSData)

And it then gets in return:

Slave -> Controller: Telephone.1.SMSSend.ErrorAck
(SenderHandle3_ErrorCode=""Busy”’)

It must be decided individually which methods must have a detailed back addressing with OPTypes
StartResultAck, ProcessingAck, ResultAck, and ErrorAck.

2.3.7 Seeking Communication Partner

It may happen that an application has to seek a communication partner, that is, an FBlock. This may
happen in a self-configuring audio system with four or six active speakers. The audio Controller knows
that FBlocks with the FBlocklD AudioAmplifier must be available, but does not know how many, or
where. Therefore, it has to seek and gets the instance IDs as reply. With the help of the InstIDs and
the number of audio amplifiers, it can configure itself correctly.

To seek an FBlock, the seeking block sends the following protocol to the NetworkMaster:

control -> ??? : NetworkMaster.CentralRegistry.Get (FBlocklID)

The NetworkMaster contains the Central Registry, which represents an image of the physical and
logical system configuration. It answers with a list of all matching entries of the Central Registry with
physical and functional address:

??? -> control : NetworkMaster.CentralRegistry.Status (

RxTxLog.-FBlocklID. InstlID,
RxTxLog-FBlockID.InstID, ...)

Optionally, the InstID can also be specified to search for a certain FBlock:
control -> ??? : NetworkMaster.CentralRegistry.Get (FBlockID.InstID)
If the respective FBlock does not exist, the NetworkMaster replies with an error and error code 0x07

“Parameter not available”. It returns the number of the parameter (0x01 in this case) and the value
(FBlocKID.InstID in this case).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 63

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.8 Requesting Function Block Information from a Device

To obtain information about the FBlocks contained in a device, every NetBlock has the property
FBlockIDs (0x000). It will be read in the following way:

control -> ??? : NetBlock.FBlocklDs.Get

and answers with a list of the contained FBlockiDs. The FBlock that most characterizes the device
(e.g., Tuner in a radio device) is listed first. The NetBlock and FBlock EnhancedTestability do not need
to be listed, as they are mandatory FBlocks in every device:

??? -> control : NetBlock.FBlocklDs.Status (FBlocklID1.InstID1,
FBlockID2.InstlID2. ..
FBIockIDN. InstiIDN)

NetBlock.FBlockIDs
|FBlockID 1] FBlockID 2| FBlockID 3]...[FBlockID N|

Figure 2-23: Reading the FBlocks of a device from NetBlock

2.3.9 Requesting Functions from a Function Block

In an adaptable system it may happen that a Controller does not know exactly which functions are
available in an FBlock (e.g., simple or high-end audio amplifier). Therefore, every FBlock has the
function FktIDs (0x000). It is read as follows:

control -> ??? : FBlockID.InstID.FktlDs.Get

Within an FBlock, FktIDs between 0x000 and OxFFF (4096 different FktIDs) can be available. The
FktIDs are assigned as described in 2.3.2 on page 28. This raises the problem of a compact response,
if the functions contained in an FBlock are requested. It is solved by a mechanism derived from the
Run Length Encoding (RLE). A bit field is built where the first bit is set to 1 if FktID 0x000 is available;
the second bit is set to 1 if FktID 0x001 is available, and so on. Such a bit field may look like:

FktID 000 001 002 003 004 005 006 .. 021 022 023 024 .. AO0 AO1 A02 A03 .. FFF
Bitfeld 1. 12 1 o0 o0 1 1 0 O O 1 1 0O O 1 1 0O 0 0 ©

The answer lists only the positions (FktIDs) where the bit state changes, beginning with an initial bit
state of 1.

For the example shown above, the result would be:

??? -> control: FBlocklID.InstID._FktlDs.Status (002 004 006 022 024 AOO A02 0)

The last O represents a stuffing nibble.

NetBlock.FBlockIDs
FBlockID 1| FBlockID 2| FBlockID 3‘ ‘ FBlockID N

FBlockID1.FktIDs
[FktD 1 [FktiD 2 [FktID 3 |...[FktID N |

Figure 2-24: Requesting the functions contained in an application block

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 64

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.10 Transmitting the Function Interface

2.3.10.1 Principle

In principle, function interfaces can be transmitted to a Controller or an HMI.

NetBlock.FBlockIDs

FBlockiD 1]

FBlockiD 2| FBlockiD3| ..[FBlockiD N

FBlockID1.FktIDs

FktID 1 H FKtID 2 H FktID 3 ‘ ‘ FktID N

FktID1.Interface

‘ Type H Min H Max ‘ ‘ Unit

Figure 2-25: Requesting the function interface of a function

The flow for determining all function interfaces of an FBlock looks like:

Controller -> Slave : FBlockID1.FktID1.Getlnterface
Slave -> Controller : FBlocklID1._FktID1l.Interface ([Interface Description])
Controller -> Slave : FBlockID1.FktID2.Getlnterface
Slave -> Controller : FBlockID1.FktID2.Interface ([Interface Description])

Controller -> Slave : FBlockID1.FktIDN.GetlInterface
Slave -> Controller : FBlockID1_FktIDN.Interface ([Interface Description])

The parameter list “Interface Description” contains information about a function interface.

2.3.10.2 Realization of the Ability to Extract the Function Interface

In the FBlock Specifications, every interface of classified functions is described. Thus, a classified
definition of application protocols, as well as a uniform description is possible, which can be based
onto a few classes, described in the section 2.3.11.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 65

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.11 Function Classes

When having a look at function classes, properties and methods must be differentiated. The properties
themselves consist of such with one variable, and of such with multiple variables.

In the next sections, the following universal parameters are used:

Flags: 8 bits
Bit 6-7 Bit 4-5 Bit 3 Bit 2 Bit 1 Bit 0
Reserved | Channel Type | Notification | Unicode | Enabled | Visible

By using the Visible bit, the device can influence whether the function is displayed at the moment or
not (default = 1 = visible). It is possible to disable a function temporarily (like the gray options in PC
application’s menus). This is done by setting the Enabled bit to 0. Bit 2 indicates whether a function
uses Unicode or standard strings (note: Unicode is not ASCII compatible). The Notification bit shows
whether a function supports notification. This bit is valid only for properties. The Channel Type bit field
consists of two bits. It shows the type of channel that is used when communicating with the function.
Table 2-7 shows the three possible modes.

OPType | Property Method Mode O | Mode 1 | Mode 2
0 Set Start C A A
1 Get Abort C A C
2 SetGet StartResult C A A
3 Increment C A C
4 Decrement C A C
5 Getlnterface | Getlnterface C C C
6 StartResultAck C A A
7 AbortAck C A C
8 StartAck C A A
9 ErrorAck C A C
A ProcessingAck C A C
B Processing C A A
C Status Result C A A
D ResultAck C A C
E Interface Interface C C C
F Error Error C A C

Table 2-7: The different modes of the bit field Channel Type

The meaning of the characters "C" and "A" in the table is as follows:
C: messages on Control Channel without using MOST High
A: messages on the Packet Data Channel using MOST High

Mode 0:

This is the standard mode where all communication with the function is done via the Control

Channel.

Mode 1:

All communication is done via the MOST High Protocol on the Packet Data Channel. The only
exceptions from this are the OPTypes GetInterface and Interface which need to be available
on the Control Channel so that the interface can be received regardless of if the requesting
node is using MOST High or not.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 66

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Mode 2:

This is a mixed mode where only the OPTypes that are carrying a lot of data are accessed
over the Packet Data Channel via the MOST High Protocol. An exception is Processing which
does not contain a lot of data but is sent in the same way as Result, that is, over the Packet

Data Channel.

Bits 6 and 7 are reserved for future use.

Class: 8 bits 0x00 Unclassified Method
0x01 Trigger Method
0x02 Sequence Method
0x10 Unclassified Property
0x11 Switch
0x12 Number
0x13 Text
0x14 Enumeration
0x15 Array (Refer to section 2.3.11.2.2 on page 80.)
0x16 Record (Refer to section 2.3.11.2.1 on page 78.)
0x17 Dynamic Array (Refer to section 2.3.11.2.3 on page 83.)
0x18 Long Array (Refer to section 2.3.11.2.4 on page 85.)
0x19 BoolField
Ox1A BitSet
0x1B Container
0x1C Sequence Property
0x1D Map
OxFF Abort (No further specifications behind this location)
OPTypes: 16 bits BitField of available OPTypes (1 = OPType available).
LSB represents the least significant OPType "Set", which has code
0x0.
Name: Name of function as null terminated string.
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 67

MOST Specification 10/2006

MOST®

Specification

MOST

2.3.11.1 Properties with a Single Parameter

Many functions contain only a single parameter. These functions can be divided into classes, which
correspond with the type declaration in programming languages. The class of a property is derived

from the basis data type (Refer to section 2.3.2.7 on page 46) of its variable.

At the moment there are the following function classes for single properties:

Function class | Explanation

Switch Properties of this class contain a variable of type Boolean (on/off; up/down). It
can be set (Set, SetGet) or read (Get, Status).

Number Properties of this class contain a numeric variable (frequency, speed limit,
temperature), which can be read (Get, Status), set absolutely (Set, SetGet) or
changed relatively (Increment, Decrement).

Text Properties of this class have a string variable (Status), e.g., Warning, Hint.

Enumeration Properties of this class contain a variable of type Enum. They provide an
unchangeable number of invariable elements, from which can be chosen
(Set). Examples: Drive status (Stop, Pause, Play, Forward, Rewind), Dolby
(B, C, Off).

BoolField Properties of this class contain a number of bits that should either be used as
flag field, or as controlling bits that are always manipulated together.

BitSet Properties of this class are based on data type BitField. They contain a
number of bits, which can be manipulated individually.

Container Properties of this class contain a variable of type Classified Stream.

The function classes (basic classes) with one variable and their resulting protocols are described in

detail below.

Table 2-8: Classes of functions with a single parameter

Specification Document
Page 68

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.11.1.1 Func

tion Class Switch

OPType Parameters
Set Boolean®
Get
SetGet Boolean
Getlnterface
Status Boolean
Interface Flags, Class, OPTypes, Name
Error ErrorCode, Errorinfo
Boolean: 1 byte 0 for off, 1 for on
Example: RDSONOff in AM/FMTunerl
Function: RDSONOTFF e.g-., Ox00A
Flags: visible, enabled, 0000 1011 = Ox0B
no Unicode, notification
Class: Switch Ox11
OPTypes: Get, SetGet, Status 1101 0000 0010 0110 = 0xD026
GetlInterface, Interface,
Error
Name: RDSONOff ""RDS"

Upload interface:

Tuner -> HMI: AM/FMTuner.1_RDSOnOff.Interface (OB 11 D026 “RDS’)

Setting RDS = 0O

FF:

HMI -> Tuner: AM/FMTuner.1.RDSOnOff.SetGet (00)

Please note:

This is a hypothetical example. It does not necessarily follow the MOST FBlock Specification.

! In the next sections that introduce individual function classes, some parameters appear in boldface
type inside the OPType tables. These marked parameters are described in detail below the tables.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

Page 69

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.11.1.2 Function Class Number

OPType Parameters
Set Number

Get

SetGet Number

Increment NSteps

Decrement NSteps

Getlnterface

Status Number
Interface Flags, Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step
Error ErrorCode, Errorinfo
DataType: Uns. Byte Type of variable:
0x00 Unsigned Byte
0x01 Signed Byte
0x02 Unsigned Word
0x03 Signed Word
0x04 Unsigned Long
0x05 Signed Long
Exponent: Signed Byte Position of decimal point; Value = Number * 105"
Min: Minimum value of variable of type DataType
Max: Maximum value of variable of type DataType
Step: Step width for adjusting type DataType. The
following condition must always be true:
Max = Min + (n * Step)
NSteps: Uns. Byte Number of steps, as defined under "Step width for adjusting".
Default value is 1, value 0 is not allowed.
NSteps has no exponent, but has the same unit
as the Number parameter.
Units: Uns. Byte Unit
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 70

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Unit Encoding Unit | Encoding
none 0x00 Temperature and Pressure:
°C 0x60
Distance: F 0x61
cm 0x01 K 0x62
m 0x02 bar 0x63
km 0x03 psi 0x64
miles 0x04
Miscellaneous:
Time: dB 0x70
ps (Micro second) 0x10 % 0x71
ms (Millisecond) 0x11
s (Second) 0x12 Voltage:
min (Minute) 0x13 mV 0x80
h (Hour) 0x14 \ 0x81
d (day) 0x15
mon (Month) 0x16 Current:
a (Year) 0x17 mA 0x90
A 0x91
Frequency:
1/min 0x20 Angle:
Hz 0x21 Degrees 0xA0
kHz 0x22 Minutes OxAl
MHz 0x23 Seconds 0xA2
360°/ 2% OxA3
Volume: 360°/ 2° 0xA4
| (Liter) 0x30
gal (UK) 0x31 Resolution:
gal (US) 0x32 Pixel 0xBO
ccm 0x33
Data:
Consumption: Byte 0xC0
1/100km 0x40 kByte 0xC1
miles/gal 0x41 MByte 0xC2
km/| 0x42
Speed and Acceleration:
km/h 0x50
Miles/h 0x51
m/s 0x52
cm/s 0x53
°ls 0x54
m/s’ 0x55

Table 2-9: Available units

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 71

MOST®

Specification

MOST

COOPERATION

2.3.11.1.3 Function Class Text

OPType Parameters
Set String
Get
SetGet String
Getlnterface
Status String
Interface Flags, Class, OPTypes, Name, MaxSize
Error ErrorCode, Errorinfo
MaxSize: Uns. Byte Maximum length of string
2.3.11.1.4 Function Class Enumeration
OPType Parameters
Set Pos
Get
SetGet Pos
Increment NSteps
Decrement NSteps
Getlnterface
Status Pos
Interface Flags, Class, OPTypes, Name, Size, Namel, Name?2...
Error ErrorCode, Errorinfo
Size: Uns. Byte Length of enumeration
0 = no element
1 = one element
2 =two elements....
Name Xx: Null terminated string, representing the name of element x
Pos: Uns. Byte Number of active element or of element to be activated
Please Note:

Increment and Decrement must be interpreted like Predecessor and Successor in common
programming languages.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 72

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.11.1.5 Function Class BoolField

OPType Parameters
Set Content
Get
SetGet Content
GetlInterface
Status Content
Interface Flags, Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
Error ErrorCode, Errorinfo
Content: Uns. Byte Data area, containing e.g., flags
Uns. Word
uns. Long
DataType: Uns. Byte Type of variable:
0x00 Unsigned Byte
0x02 Unsigned Word
0x04 Unsigned Long
NElements: Uns. Byte Number of Elements in the BoolField
BitName: String Null terminated string, indicating the name of the
respective element
BitSize: Uns. Byte Number of bits required for encoding the element. Encoding

starts at the LSB.

If a variable of Class BoolField is defined, a field of either 8bits, 16bits, or 32bits will be reserved.
Using the flags starts at the LSB. The value Ob**** ***Q means false and Ob**** ***1 means true.
Manipulating a BoolField always requires the writing of the entire variable.

Example:

This example shows a BoolField based on "Unsigned Word". There are 11 bits used for representing
some flags. Please note, that it is also possible to combine several bits for representing a special
element (flag).

B Y T E 1 B Y T E 0
D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO D7 | D6 | D5 [D4 | D3 [D2 | D1 [DO
F.10| F.9 | F. 8 F.7|F.6 | FF5|F4 | F3|F2]|F1]|FO0

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

Page 73

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.11.1.6 Function Class BitSet

OPType Parameters

Set SetOfBits

Get

SetGet SetOfBits

Getlnterface

Status SetOfBits

Interface Flags, Class, OPTypes, Name, Size

Error ErrorCode, Errorinfo

Size: Uns. Byte Size of SetOfBits (Mask + Data) in bytes
SetOfBits: BitField

BitSet in Arrays and Records:

A BitSet represents one variable. That means it is addressable as an entity via one dedicated value of

Pos.

Example:

MyArray = Array of BitSet: XXXX XXXX,0100 1001

XXXX XXXX,1110 0011
XXXX XXXX,0010 1101
XXXX XXXX,0111 1111

Requesting Status report (1):

MyArray.Get (PosX=0x0)

Answer:

MyArray.Status (PosX=0x0, XXXX XXXX,0100 1001,

XXXX XXXX,1110 0011,
XXXX XXXX,0010 1101,
XXXX XXXX,0111 1111)

Requesting Status report (2):

MyArray.Get (PosX=0x2)

Answer:

MyArray.Status (PosX=0x2, XXXX XXXX,1110 0011)

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 74

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Performing a Set operation (1):
MyArray.Set (PosX=0x0,

Result:
MyArray =

Performing a Set operation (1):
MyArray.Set (PosX=0x4,

Result:
My Array =

1000
1000
1000
1000

XXXX
XXXX
XXXX
XXXX

1111

0001,1000
0001,1000
0001,0111
0001,0111

XXXX,1100
XXXX,1110
XXXX,0010
XXXX,0111

0000,1000

XXXX XXXX,1000
XXXX XXXX,1110
XXXX XXXX,0010
XXXX XXXX,1000

0001,
0001,
1110,
1110)

1001
0011
1100
1110

0001)

1001
0011
1100
1110

Specification Document

MOST Specification 10/2006

© Copyright 1999 - 2006 MOST Cooperation

Page 75

MOST® MOST

Specification COOPERATION

2.3.11.1.7 Function Class Container

OPType Parameters
Set Classified Stream

Get

SetGet Classified Stream

Getlnterface

Status Classified Stream

Interface Flags, Class, OPTypes, Name, MaxLength

Error ErrorCode, Errorinfo

Function Class Container is used for objects that cannot be described in a satisfying way by the other
structures.

MaxLength: Unsigned Word MaxLength indicates the maximum size of the stream in
bytes.
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 76

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.2 Properties with Multiple Parameters

Some functions contain multiple parameters. Here the principle should be to only combine functions
that are very similar in nature (e.g., Station name and PI). Parameters that do not match like that
should be modeled in separate functions (e.g., Station name and current frequency).

Functions with multiple parameters can also be assigned to classes called array and record. In an
array, parameters are of the same type, in a record they are of different types. It is possible to build an
array of records or a record containing an array. Such “two dimensional” constructs are allowed.

More complex constructs whose dimension exceeds two (array of array of record or a record with two
arrays) are definitely not allowed. In addition to that, it is not allowed to reference other functions from
within a function. This means that an interface description of a function must not reference the
interface descriptions of other functions. A function must be described completely and independent of
other functions.

Function class | Explanation

Record Properties of this class contain a variable of a composite type. It may consist
of any number of single properties.

Array Properties of this class contain only elements of the same type.

Dynamic Array Properties of this class use a more dynamic approach than ordinary Arrays.

Long Array Properties of this class are used to handle large arrays in a sophisticated way.
Sequence Properties of this class contain a number of single properties of the same
Property kind.

Table 2-10: Classes of functions with a multiple parameters.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 77

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.2.1 Function Class Record

OPType Parameters
Set Position, Data

Get Position

SetGet Position, Data

Increment Position, NSteps

Decrement Position, NSteps

Getlnterface

Status Position, Data
Interface Flags, Class, Name, NElements, IntDescl, IntDesc?...
Error ErrorCode, Errorinfo

In the interface description of a record, the OPTypes are omitted since they are not necessarily
identical for all parameters. OPTypes are therefore relevant only in basic types.

NElements Uns. Byte Number of elements in Record

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of the
interface descriptions defined for the respective class can be inserted. Please note that here in case of
elements, parameter Flags is not available. For parameter OPTypes only Set, Get, SetGet, Status,
Increment, Decrement and Error can be used.

Please note:
IntDesc only represents a group of parameters. No referencing of other functions and their
interface descriptions is done here!

Below, IntDesc is displayed with respect to the basic classes:

Class IntDesc

Switch Class, OPTypes, Name

Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Text Class, OPTypes, Name, MaxSize

Enumeration Class, OPTypes, Name, Size, Namel, Name2, ...

BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size

Array Class, Name, NElements, IntDesc

Container Flags, Class, OPTypes, Name, MaxLength

Position always consists of two bytes, and indicates what will be set, requested, or read in the record.
The first byte (x) indicates the position of an element in the record. If the record contains an array (two
dimensions), the second byte specifies the line in the array. On:

° x:y:()'
the operation is related to the entire record.

e x=(Position of array in record) AND y>0,
the operation is related to a “line” in the array.

e x=(Position of array in record) AND y=0,
the operation is related to the entire array.

e x<>(Position of array in record) AND y=0,
the operation is related to the respective element in the record.

Even if the record does not contain an array, the position consists of two bytes, but the second byte is
not used in this case.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 78

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

X —> 1 2 3 4

5
s>

X —> 1

2
R4 1
Record —> | R1 R2 R3 AL R5

Figure 2-26: Meaning of position x in record (above) and of position y in a record with array (below)

Data represents data according to the structure of the record and the specifications by position.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 79

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.2.2 Function Class Array

OPType Parameters
Set Position, Data

Get Position

SetGet Position, Data

Increment Position, NSteps

Decrement Position, NSteps

Getlnterface

Status Position, Data
Interface Flags, Class, Name, NMax, IntDesc
Error ErrorCode, Errorinfo

Function class Array is very similar to Record. NMax, of type Unsigned Byte, represents the maximum
number of elements. Since the array contains only elements of the same type, there only needs to be
one IntDesc of the following type:

Class IntDesc

Switch Class, OPTypes, Name

Number Class, OPTypes, Name, Units, DataType, Exponent, Min, Max, Step

Text Class, OPTypes, Name, MaxSize

Enumeration Class, OPTypes, Name, Size, Namel, Name2, ...

BoolField Class, OPTypes, Name, DataType, NElements, BitName, BitSize, BitName, BitSize, ...
BitSet Class, OPTypes, Name, Size

Array Class, Name, NElements, IntDesc

Record Class, Name, NElements, IntDesc1, IntDesc2, ...

Container Flags, Class, OPTypes, Name, MaxLength

Analogous to the determinations of a record, the following is valid here for an array:

X Array X Array

Lo |

Record —> 1

N w N [

z] 2] [&] [2

N w N

7Y 23 [RY RE-<
2l & &l &l»
2l 8 2 &le

[&)]
5
[62]

[&)]
R &
2]
N
3]
w

Figure 2-27: Position x in case of an array of basic type (left), y in case of an array of record (right)

As in the case of a record, Position always consists of two bytes, independent of whether the array
contains a record or not. If there is no record, the second byte is not used.

Please note:
The first parameter x (first byte) always refers to the outer structure, that is, the array for an
Array of Record, and the record for a Record with Array.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 80

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

If a partial structure is transmitted by using Position, the sending device is responsible for keeping
consistency with the general structure transmitted before. As an example, the AM/FMTuner may
update the signal qualities in a station list that was transferred earlier. It must make sure that the
signal quality values are assigned to the correct stations.

Transmitting an array is the only time when it is possible to transmit fewer elements than the maximum
number of elements (NMax entry in the function interface Fl). As an example, on 10 receivable
stations the entire list of perhaps 100 possible entries does not need to be transferred. It must be kept
in mind that each individual element of the array must always be transferred completely. If not, an
error is assumed. The specification of the length is done in parameter Length of the application
protocol.

If an array is empty, the status is reported without data:

FBlockID. InstID.Array.Status (PosX=0x00, PosY=0x00)

Examples:
Disk information in CD changer:

The CD changer contains a magazine of up to 10 CDs. Each disk contains several tracks. The
information is modeled in the two properties Magazine and Disk.

Magazine = Array[1..10] of Record of

DiskTitle: String (Text)
TotalTime: Int (Number)
NTracks: Unsigned Byte (Number)

If a disk is not available, this can be recognized by TotalTime and NTracks containing 0x00. When
requesting the FI, the formal answer is:

AudioDiskPlayer.0.Magazine. Interface

(Flags. Class. Name. NMax. Array of
Class. Name. NElements. Record of
Class. OPTypes. Name. MaxSize Text

Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step Number
Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step) | Number

or more related to the contents:
AudioDiskPlayer.0.Magazine. Interface

(Flags. Array. “Magazine*, OA

Record. “DiskInfo‘, 03

Text. OPTypes. “DiskTitle*, FF

Number. OPTypes. “TotalTime*“. Seconds. Word. 00. 00 00. FF FF. 00 01
Number. OPTypes. “Tracks“. 00. Unsigned Byte. 00. 01. 63. 01)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 81

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

On request

Controller -> CDC: AudioDiskPlayer.0.Magazine.Get (03. 01)

one receives the title of the third disk. On request

Controller -> CDC: AudioDiskPlayer.0.Magazine.Get (00. 01)

the titles of all disks are returned.

Disk = Array[1..99] of Record of

TrackTitle: String (Text)
TrackTime: Unsigned Byte (Number)

On requesting the FI, the formal answer is:

AudioDiskPlayer.0.Disk. Interface

(Flags. Class. Name. NMax. Array of
Class. Name. NElements. Record of
Class. OPTypes. Name. MaxSize Text

Class. OPTypes. Name. Units, DataType, Exponent, Min, Max, Step) ! Number

or more related to the contents:

AudioDiskPlayer._0.Magazine.Interface

(Flags. Array. “Disk*, 63

Record. “TracklInfo*“, 02

Text. OPTypes. “TrackTitle*”, FF

Number. OPTypes. “TotalTime*“. Seconds. Word. 00. 00 00. FF FF. 00 01

Selecting In Arrays:

In many arrays, lines will be selected. Here, selections “1 of n” (one single line selected only) need to
be differentiated from selections “n of N” (several lines can be selected at the same time).

n of N:

The selection here should be done by an individual parameter Selected of type Switch, which
is used as prefix (Array of record of {Selected, ...}). The change in the status of the switch can
be modified by Controller or Slave either single (Selected of a single line), or for an entire
column (Selected of all lines). In principle, this kind of selection can be used in case of 1 of N
as well.

1 of N:

In case of 1 of N there is an alternative modeling which is less expensive with respect to
communication than n of N. Here a property Selected is modeled, which points onto the
selected line. The kind of pointer differs individually. So,for example, in case of station lists the
pointer may point onto the Pl of the station currently active. In other cases, the position may
be more effective. This way can be very effective, if a single line shall be selected in several
Arrays (e.g., an entry in all telephone directories).

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 82

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.2.3 Function Class DynamicArray

The arrays described above are optimized with respect to a high data volume. Navigation is based on
the fixed sequence of elements in the array (Position = PosX, PosY). The position will not be
contained in the data field. In DynamicArrays navigation is based on accessing a unique tag which
identifies each element individually (tag is of data type Unsigned Word, replaces PosX and is defined
as the first parameter in the record). With the aid of these unique tags it is possible to insert and delete
elements at every position of the DynamicArray. Hence the length of the DynamicArray may vary but
the relative ordering is kept after inserting and deleting of elements.

DynamicArrays are defined as follows:

DynamicArray = Array of Record of {Tag, -..-}

For function class DynamicArray, the protocols are defined as follows:

OPType Parameter
Set Tag, PosY, Data

Get Tag, PosY

SetGet Tag, PosY, Data

Increment Tag, PosY, NSteps

Decrement Tag, PosY, NSteps

Getlnterface

Status Tag, PosY, Data
Interface Refer to section 2.3.11.2.2 on page 80
Error ErrorCode, Errorinfo
Tag Uns. Word = 0x0000 all lines
<> 0x0000 one special line
PosY Uns. Byte <> 0x00 one special column (only if Tag <> 0x0000)
= 0x01 not allowed, no access to Tag
Please note:

The Tag belongs to the data field. This means that it is returned at the start of every line.
PosY = 0x01 denotes the Tag. With respect to consistency, accesses to a column are not
reasonable. The last line in a DynamicArray indicates the end. It starts with Tag OxFFFF and
contains dummy data. This line is included within the NMax counter.

Examples for positioning:

1. Array of Record of {Tag, El1, EI2, EI3}
2. Tag = 0x0000 and PosY = 0x00
3. Tag = 0x2006 and PosY = 0x00
4. Tag = 0x6389 and PosY =3
1) (2) 3) (4)
|Tag |ElL |E2 |EB | |Tag |El |EI2 |EIB | |[Tag JEI |EI2 |EIB | |Tag |ElL [ER2 [EB |
0356 0356 0356 0356
3467 3467 3467 3467
3624 3624 3624 3624
2006 2006 2006 2006
0101 0101 0101 0101
6389 6389 6389 6389
0900 0900 0900 0900
3581 3581 3581 3581
9023 9023 9023 9023
FFEFF FFFF FFFF FFFF
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 83

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Editing In DynamicArrays:

As with simple arrays, data contents can be modified by using Set. In many cases this is sufficient for
DynamicArrays, as well, especially if the inserting and deleting of lines is done within the Slave only. If
the inserting and deleting of lines is done by the Controller as well, more complex editing functions are
required. They will be defined as separate methods.

Below there are two examples which are defined in a way, that they can be applied to several
DynamicArrays (FktIDs), for example, several telephone directories. There is no need for an individual
instance per array. These functions will be placed in the range of Coordination (0x000..0x1FF).

By DynArraylns (FktID=0x080), a number Quantity (Unsigned Word) of array elements (entire lines)
will be inserted in DynamicArray FktID. The lines will be inserted after that line containing Tag. A
special case is inserting lines before the first line. In this case Tag 0x0000 is used. The data contents
of the lines to be inserted will be transferred as Data.

DynArraylns._StartResultAck (SenderHandle, FktlD, Tag, Quantity, Data)

Examples:
e DynArraylns.StartResultAck (SenderHandle, FktlD, 0000, 5, Data)
Inserts 5 lines at the beginning of the DynamicArray
e DynArraylns.StartResultAck (SenderHandle, FktlD, 8795, 1, Data)
Inserts 1 line after the line containing Tag 0x8795

DynArrayDel (FktID=0x081) deletes a number Quantity (Uns. Word) of array elements (entire lines).
This is performed starting at the element containing Tag, which is included within deletion.

DynArrayDel .StartResultAck (SenderHandle, FktlD, Tag, Quantity)

Examples:

e DynArrayDel .StartResultAck (SenderHandle, FktiD, 0000, FFFF)
Deleting of entire array

e DynArrayDel.StartResultAck (SenderHandle, FktID, 8795, FFFF)
Deleting of entire array starting at line containing Tag 0x8795

e DynArrayDel.StartResultAck (SenderHandle, FktID, 8795, 0001)
Deleting of the line containing Tag 0x8795

e DynArrayDel.StartResultAck (SenderHandle, FktID, 8795, 0000)
No deleting

Notification on DynamicArrays
In case of a notification update, always the complete DynamicArray is transmitted to the notified
Controllers.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 84

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.11.2.4 Function Class LongArray

A Slave transfers the arrays and DynamicArrays (as described above) to the registered Controller
using Shadows. In case of changes, the Shadows then will be updated. In case of big arrays that are
changed very often, this may not be practicable any longer (Amount of memory in Controller,
transmission time, bus load). Here another model — LongArray — must be applied. Where to place the
boundary between LongArray and DynamicArray is a matter of an individual decision.

The class LongArray consists of a function MotherArray and a function class ArrayWindow. It is
possible to generate instances of class ArrayWindow dynamically. An ArrayWindow represents an
extract, a window to the MotherArray. An instance of LongArray therefore consists of at minimum two
functions, so LongArray is no simple function class.

Please note:

The Tag belongs to the data field. This means that it is returned at the start of every line. PosY = 0x01
denotes the Tag. With respect to consistency, accesses to a column are not reasonable. The last line
in a MotherArray starts with Tag OxFFFF and contains dummy data. The tag 0x000 is reserved to the
Controller for initialization of the ArrayWindow. Therefore it must not be used in the MotherArray.

2.3.11.2.4.1 MotherArray

The MotherArray is structured like a function of class DynamicArray but handling of MotherArrays is
independent of any other array.

The main difference compared to other arrays is that the MotherArray is not controlled and viewed
directly but via one or more different functions. In the function interface of the MotherArray, all
OPTypes are listed that can be executed via ArrayWindows. Below there is an example for a
MotherArray as Array of Record of {Tag, Character, Number}:

Tag Ell1]| ElI2

6243 a 01
2100 b 02
5428 c 03
0101 d 04
3245 e 05
4562 f 06
0012 g 07
5342 h 08
9473 i 09
9343 i 0A
8367 K 0B
3752 [oC
7698 | m | oD

6354 X 1E
3425 | y 1F
1045 z 20
FFFF | FF | FF

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 85

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.2.4.2 ArrayWindow

The ArrayWindow represents a part of the MotherArray. One main difference to other function classes
is that it is not useful to instantiate an ArrayWindow in a static way (via the FBlock Specification). In
other function classes, where functions are instantiated in a static way, those functions describe fixed
properties and methods of the Slave. Their state is identical for all Controllers. With respect to its
status, an ArrayWindow is strongly bound to a Controller.

There must be an individual ArrayWindow for each Controller. It is possible that several HMIs have
individual ArrayWindows to an address directory (MotherArray), which have different size and position.
Functions of class ArrayWindow are instantiated dynamically at runtime. Therefore an FBlock (that has
a MotherArray, which shall be accessed by ArrayWindows) must provide a method
CreateArrayWindow for instantiation and a method DestroyArrayWindow (both of class Unclassified
Method). The FktIDArrayWindow is used as instance handle, which is transferred from Slave to
Controller during instantiation.

Function OPTypes Parameter
CreateArrayWindow StartResultAck | SenderHandle, FktIDMotherArray, PositionTag, WindowSize
ResultAck SenderHandle, FktIDArrayWindow
ErrorAck SenderHandle, ErrorCode, Errorinfo
DestroyArrayWindow StartResultAck | SenderHandle, FktIDArrayWindow
ResultAck SenderHandle
ErrorAck SenderHandle, ErrorCode, Errorinfo
FktIDMotherArray FktID of the MotherArray. It is not dynamic, since MotherArray is a property of class

DynamicArray of the Slave

FktIDArrayWindow FktID of the ArrayWindow. It is generated dynamically and represents the object handle,
which is transferred during instantiation. A range for such dynamically generated FktlDs
is occupied in advance.

PositionTag Uns. Word Top left corner of the ArrayWindow is positioned at PositionTag

WindowSize Uns. Byte Number of elements contained by the ArrayWindow

The methods CreateArrayWindow and DestroyArrayWindow can instantiate and destroy
ArrayWindows even of several MotherArrays. If, for example, in a telephone all telephone directories
are available as MotherArrays, every HMI that is interested in a telephone directory may instantiate an
ArrayWindow for the respective MotherArray. So it can be that, for example, three telephone
directories may be watched by three ArrayWindows.

There are some situations, where Controller and Slaves destroy their ArrayWindows:

1. If modulated signal goes off, all instances of ArrayWindows are destroyed
2. If the FBlock containing the MotherArray is removed from the Central Registry.
3. Reception of Configuration.Status(NotOk)

A Controller is only allowed to destroy its own ArrayWindows.

Every Controller stores the position of its ArrayWindow with the help of the Tag of the first line inside
the ArrayWindow. During CreateArrayWindow and by the help of MoveArrayWindow (SenderHandle,
MovingMode, FktIDArrayWindow, Absolute, Tag), the window can be positioned again.

Upon creation an ArrayWindow is placed with its upper left corner to the Tag defined by the variable
PositionTag. If the Controller has no information yet about the content of the MotherArray it can set
PositionTag to 0x0000. That places the ArrayWindow to the top of the MotherArray.

A CreateArrayWindow with a PositionTag too close to the bottom of the MotherArray has the same
effect as MoveArrayWindow.Bottom: It creates an ArrayWindow that contains the last WindowSize
number of valid elements plus the last element with tag OxFFFF.

If a Controller tries to position the ArrayWindow on a non-existent PositionTag, the ArrayWindow is
positioned on the next greater tag. If there is no greater tag available, the next lesser tag is used.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 86

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

The status of an ArrayWindow is kept up to date in the Controller by using a Shadow. It is the Slave’s
task to keep the Shadow up to date. Here the notification mechanism of the Network Services cannot
be used, since it is static. Naotification for ArrayWindows is to be implemented at the application level.
A creation of an ArrayWindow implies a notification on that ArrayWindow without the need of sending
a Notification.Set message. For each ArrayWindow there is only one single Shadow, which is located
in the Controller that has instantiated it. The DevicelD of the Controller is transferred to the Slave
during instantiation, so there is no need to implement a special notification mechanism for registering
the Controller.

In case of the implicit notification a Slave always sends complete ArrayWindows (that does not
necessarily mean full ArrayWindows) with parameter Tag = 0x0000 and PosY = 0x00 (this is also true
for non-full ArrayWindows with less elements than WindowSize).

By using the ArrayWindow, editing the MotherArray can be done in the conventional way:

ArrayWindow.SetGet (Tag, PosY, Data)

Tag |ElI1| EI2
6243 | a 01
2100 | b 02
5428 | ¢ 03
0101 | d 04
3245 | e 05
4562 | f 06
0012 | g 07 0012| g 07 0012]| g 07
5342 | h 08 5342 | h 08 5342 h 08
9473 i 09 9473 i 09 9473 i B3
9343 | j 0A 9343 | j 0A 9343 | j 0A
8367 | k 0B 8367 | k 0B 8367 | k 0B
3752 | 0C
7698 | m oD
6354 | x 1E
3425 | y 1F
1045 | z 20
FFFF| FF | FF
MotherArray ArrayWindow Set (9473, 03, B3)

The Slave reacts on the Set operation by notifying all Controllers having an ArrayWindow on the
edited column.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 87

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

For inserting and deleting lines the following methods can be used:

These methods manipulate the ArrayWindow. The changes of the ArrayWindow are mirrored back to
the MotherArray. Due to the fact that the MotherArray has changed its content, all ArrayWindows
needing updates are getting an automatic update by the implicit notification, which was built up during
instantiation of the ArrayWindows.

All changes to the content of the MotherArray, which result in changes to the content of an Array-
Window or to the parameters AbsolutPosition or CurrentSize lead to an update of the respective
Shadows. In order to keep the communication load low all changes to the MotherArray that do not
lead to changes of an ArrayWindow or these parameters should not result in an update of the
Shadows.

Function OPType Parameter
ArrayWindowlns StartResultAck | SenderHandle, FktIDArrayWindow, Tag, Quantity, InsertData
ErrorAck SenderHandle, ErrorCode, Errorinfo
ProcessingAck | SenderHandle
ResultAck SenderHandle
Tag Uns. Word unique handle of a row (OxFFFF no valid value) after which the new lines are
inserted 0x0000 indicates an insertion before the first line of the ArrayWindow
FktIDArrayWindow Uns. Word FktID of ArrayWindow
Quantity Uns. Word number of rows
InsertData Stream Data to be inserted
Function OPType Parameter
ArrayWindowDel StartResultAck [SenderHandle, FktIDArrayWindow, Tag, Quantity
ErrorAck SenderHandle, ErrorCode, Errorinfo
ProcessingAck | SenderHandle
ResultAck SenderHandle
Tag Uns. Word unique handle of a row (OXFFFF no valid value) after which the given number of
lines is deleted
FktIDArrayWindow Uns. Word FktID of ArrayWindow
Quantity Uns. Word number of rows

If any element of the ArrayWindow is deleted, the ArrayWindow keeps its position. All following
elements move one position up and the resulting gap is filled up with the next element of the
MotherArray.

Deleting elements within an ArrayWindow positioned to the bottom generates partially filled
ArrayWindows because there are no elements in the MotherArray left to fill the gap. The ArrayWindow
stays at its position. This exception is introduced to stabilize displays of the ArrayWindow to the user.
The deletion can be caused by the Controller via command or by internal changes within the Slave.

If the last meaningful element of an ArrayWindow positioned at the bottom of the MotherArray is
deleted,the ArrayWindow is shifted one window size up on the MotherArray. The result is the same as
a Bottom operation. The ArrayWindow shows the WindowSize last elements of the MotherArray again.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 88

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

There is no function interface for an ArrayWindow since it only represents a “view” onto the
MotherArray. The MotherArray itself has a function interface that describes all operations that can be
performed by using an ArrayWindow.

Function OPType Parameter
ArrayWindow Set Tag, PosY, Data

Get Tag, PosY

SetGet Tag, PosY, Data

Increment Tag, PosY, Nsteps

Decrement Tag, PosY, Nsteps

Getlnterface

Status Tag, PosY, CurrentSize, AbsolutPosition, Data

Interface Refer to section 2.3.11.2.2 on page 80

Error ErrorCode, Errorinfo

Tag Uns. Word = 0x0000 alllines
<> 0x0000 one special line

PosY Uns. Byte <> 0x00 one special column (only if Tag <> 0x00 00)
= 0x01 not allowed, no access to Tag

CurrentSize Uns. Word current size of the MotherArray
The termination line with Tag OXFFFF is not counted for CurrentSize.
CurrentSize only indicates the number of meaningful lines

AbsolutPosition Uns. Word absolute position of the Array Window in the Mother Array.
The value specifies the position of the top left cell in the MotherArray and the
counting starts at 0.

2.3.11.2.4.3 Positioning an ArrayWindow on a MotherArray

Since an ArrayWindow represents an extract of the MotherArray, it must be positioned on the
MotherArray in an appropriate way. Therefore two methods are defined. Method MoveArrayWindow is
mandatory. An instance of MoveArrayWindow is used for all instances of ArrayWindows (FktID) of an
FBlock.

MoveArrayWindow.StartResultAck (Senderhandle, FktlDMotherArray, MovingMode,
Number, Tag)

SenderHandle Unsigned Word unique identifier of a task
FktIDArrayWindow Unsigned Word FktID of the ArrayWindow to be moved
Mode Enum 00 Top

01 Bottom

02 Up

03 Down

04 Absolute
Number Unsigned Word Number of lines to move the window
Tag Unsigned Word unique handle of a row
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 89

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Top and Bottom:

Top and Bottom move the ArrayWindow to the start or the end of the MotherArray. The parameters
Number and Tag are transferred as well but they are not used in this mode.

If an ArrayWindow is positioned to Bottom, it contains the last WindowSize valid elements plus the last
element with tag OxFFFF. This means that in this case the ArrayWindow is one element bigger than in
other cases.

Tag |EI1| EI2

6243 | a 01 6243 a 01

2100 | b 02 2100 b 02

5428 | ¢ 03 5428 c 03

0101 | d 04 0101 d 04

3245 | e 05 3245 e 05

4562 | f 06

0012 | ¢ 07 0012 g 07

5342 | h 08 5342 h 08

9473 i 09 9473 i 09

9343 | j 0A 9343 i 0A

8367 | k 0B 8367 k 0B

3752 | 0C

7698 | m oD

7589 | v OF 7589 \% OF
9643 | w 1D 9643 | w 1D
6354 | x 1E 6354 X 1E
3425 | y 1F 3425 y 1F
1045 | z 20 1045 z 20
FFFF| FF | FF FFFF | FF FF
MotherArray ArrayWindow

MoveArrayWindwow.StartResultAck (SenderHandle, FktID, Top, XX, XXXx)
MoveArrayWindwow.StartResultAck (SenderHandle, FktID, Bottom, xx, XXXX)

Up and Down:

Up and Down are used for relative movement of the ArrayWindow, where the parameter Number
(Uns. Byte) defines the number of lines by which the ArrayWindow shall be moved. If the ArrayWindow
is moved to a position that is outside of the MotherArray it will be positioned at the closest point within
the MotherArray. This means that it will be positioned at the Top or Bottom position depending on
whether it was an Up or a Down command that tried to move it. No error will be reported.

The ArrayWindow stays at the Top or Bottom position.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 90

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Please note:
A Controller cannot move the ArrayWindow out of the MotherArray’s area - the ArrayWindow remains
full. A MoveArrayWindow.Up command to an ArrayWindow positioned to the top of the MotherArray or
a MoveArrayWindow.Down to an ArrayWindow positioned to the bottom result in no change to the

position

Tag [EI1 | El2

6243 a 01

2100 | b 02

5428 | c 03

0101 | d 04 0101| d 04

3245 | e 05 3245| e 05

4562 | f 06 4562 | f 06

0012 | g | o7 0012| ¢ 07 0012 ¢ 07

5342 | h 08 5342 | h 08 5342 | h 08

9473 i 09 9473 i 09 9473 i 09
9343 | j 0A 9343 j 0A 9343 | j 0A
8367 | k 0B 8367 | k 0B 8367 | k 0B
3752 | 0C 3752 | 0C
7698 | m oD 7698 | m oD
6354 | x 1E

3425 | y | 1F

1045 z 20

FFFF| FF | FF

MotherArray ArrayWindow

MoveArrayWindwow.StartResultAck (SenderHandle, FktID, Up, 03, XXXXx)
MoveArrayWindwow.StartResultAck (SenderHandle, FktID, Down, 05, xxxx)

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 91

MOST® MOST

Specification CODPERATION

Absolute:

Absolute adjusts an ArrayWindow in a way, that the first line contains the desired Tag. If the Tag is
located too close to the end of the MotherArray, so that the ArrayWindow would exceed the valid
range, the ArrayWindow will be placed as if Bottom had been used.

Tag [EI1 | El2

6243 a 01

2100 b 02 2100 b 02
5428 | ¢ 03 5428 c 03
0101 | d 04 0101| d 04
3245 | e 05 3245| e 05
4562 | f 06 3245 f 06
0012 | g | o7 0012 | ¢ 07

5342 h 08 5342 h 08

9473 i 09 9473 i 09

9343 | | 0A 9343 j 0A

8367 | k 0B 8367 | k 0B

3752 | 0C

7698 | m oD

6354 X 1E

3425 y | 1F

1045 z 20

FFFF| FF | FF

MotherArray ArrayWindow

MoveArrayWindwow.StartResultAck (SenderHandle, FktID, Absolute, xx, 2100)

The second method SearchArrayWindow is optional. SearchArrayWindow provides a method to look
for Searchstring in the MotherArray by means of an ArrayWindow (FktIDArrayWindow). Search is
performed in that element of each line, which is specified by PosY:

SearchArrayWindow.StartResultAck (SenderHandle, FktlDArrayWindow, PosY,
Searchstring)

Seeking starts from the first line of ArrayWindow and runs down to the end of the MotherArray. Then
seeking continues automatically at the start of the MotherArray and ends at the first line of the
ArrayWindow. In case of success, the first line of the ArrayWindow is positioned onto the first line of
the MotherArray which contains Searchstring. In case of failure, an error is reported (ErrorCode 0x07
“parameter not available”).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 92

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Please note:
If the Searchstring is closer to the bottom of the MotherArray than the size of the ArrayWindow, the
ArrayWindow is placed as described in the section “MoveArrayWindow(Bottom)”.

Tag |EI1| EI2

6243 | a 01

2100 | b 02

5428 | c 03 5428 | c 03

0101 | d 04 0101| d 04

3245 | e 05 3245| e 05

4562 | f 06 4562 | f 06

0012 | g 07 0012 g 07 0012| g 07

5342 | h 08 5342 | h 08

9473 i 09 9473 i 09

9343 | j 0A 9343 j 0A

8367 | k 0B 8367 | k 0B

3752 | 0C

7698 | m 0D

6354 | x 1E 6354 | x 1E
3425 | y 1F 3425 y 1F
1045 | z 20 1045| z 20
FFFF| FF | FF FFF | FF FF
MotherArray ArrayWindow SearchArrayWindow.StartAck (SenderHandle, FktID, 02, ,c*)

SearchArrayWindow.StartAck(SenderHandle, FktID, 02,”z")

2.3.11.2.4.4 Re-Synchronization of ArrayWindows

Each device containing one or several LongArrays must offer the property LongArraylnfo to its
Controllers. One instance of this property services all LongArrays present in the node. The purpose of
this property is to enable Controllers to re-synchronize after a system error. By this property,
Controllers can see if the ArrayWindows they created before still exist. It works like a normal array
except that it is only possible to perform a Get operation on it.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 93

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.2.5 Function Class Map

The structure of the function class Map is similar to DynamicArray; however, no ordering of the
elements may be assumed. It is optimized for arrays with dynamic changes through both the
Controller and the Slave. By not assuming an order of the lines in a Map, the communication overhead
for notifications can be minimized.

Similar to the function class DynamicArray, lines of a Map are identified by a uniquely defined handle,
named Tag of data type Unsigned Word, which replaces PosX. Tags are not necessarily sorted and
not necessarily continuous. Additionally, Tag is always the first element inside the record that defines
the lines of the array. The value OxFFFF for Tag is reserved for indicating the end of the transmission
of a whole array in a status message (see below). The elements of the record are identified through
PosY.

Map = Array of Record of {Tag, ---}

For the function class Map, the protocols are defined as follows:

OPType Parameter
Set Tag, PosY, Data

Get Tag, PosY

SetGet Tag, PosY, Data

Increment Tag, PosY, NSteps

Decrement Tag, PosY, NSteps

Getlnterface

Status Tag, PosY, {Data}

Interface Refer to section 2.3.11.2.2 on page 80

Error ErrorCode, Errorinfo
Tag Unsigned Word = 0x0000 all lines

<> 0x0000 one special line

PosY Unsigned Byte <> 0x00 one special column (only if Tag <> 0x0000)

= 0x01 not allowed, no access to Tag

Please note: The Tag belongs to the data field and is returned at the start of every line.

PosY = 0x01 denotes the Tag. With respect to consistency, accesses to a column are not
reasonable. As with PosX, the value 0x0000 for Tag is reserved to indicate the whole array.
Because of the unordered nature of the function class Map, no last line with a Tag value of
OxFFFF needs to be stored. However, OXFFFF is used to indicate the end of the transmission of
the whole array.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 94

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Examples for Accessing Elements of a Map:

Array of Record of {Tag, El1, EI2, EI3 }
Tag = 0x0000 and PosY = 0x00
Tag = 0x2006 and PosY = 0x00
Tag = 0x6389 and PosY = 0x03

@ (2) 3 4
|tag [ElL [El2 |[EB | |Tag |EL |[E2 |EIB | |Tag |ElL [El2 |EB | |Tag [ElL |EI2 [EI3 |
0356 0356 0356 0356
3467 3467 3467 3467
3624 3624 3624 3624
2006 2006 2006 2006
0101 0101 0101 0101
6389 6389 6389 6389
0900 0900 0900 0900
3581 3581 3581 3581
9023 9023 9023 9023
2712 2712 2712 2712

Status Transmission for Function Class Map:

The status messages a Slave sends as a response to a Get request and for notifying the Controller of
changes to a Map property contain the parameters Tag, PosY and Data. Data contains one element, a
whole line or several lines of the array including the unique Tag of each line. The data field may be
omitted to indicate the deletion of lines.

Map.Status (Tag, PosY, {Data})

The contents of a function class Map property are transmitted as follows:
1. Transmission of single entries:

To transmit only one entry of a given line as a response to a corresponding Get request (PosY
<> 0), the Slave sends a status message with the line's Tag, the position of the entry in PosY
and the contents of the entry in the parameter Data.

The Slave may also use this type of transmission to notify the Controller when only one
element of a line has changed.

2. Transmission of single lines:

To transmit a whole line as a response to a Get request (PosY = 0), the Slave sends a status
message containing the line's Tag, a PosY of 0x00 and the contents of the whole line in the
parameter Data (including the line’s Tag). Note that in this case the value of the parameter
Tag and the line’s Tag entry in the parameter Data have to be identical.

The Slave may also use the single line transmission to notify the Controller of a change or
insertion of a given line. In case of an insertion of a line the Slave sends a status message
with the new line’s Tag, a PosY of 0x00 and the contents of the line in Data to the Controller.

If the Controller receives a message with a Tag already contained in its local copy, it must
update the respective line accordingly. If it receives a notification message with an unknown
Tag, it must add this line to its copy.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 95

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3. Combined transmission of changes and insertions:

In a naotification multiple changes or insertions can be combined. In this case, the Tag is set to
0x0000 (to indicate that the complete array is affected), PosY to 0x00, and the parameter Data
contains a list with those lines that have changed or have been inserted. It is also allowed to

notify single changes in this way. The Controller handles each item of Data separately as with
single changes of insertions.

4. Transmission of whole Map property:

If the whole contents of the Map property are transmitted, either as response to a
corresponding Get request or as a notification, parameter Tag is set to 0x0000, parameter
PosY to 0x00, and the last Tag in the parameter Data is the end Tag OxFFFF. Tag OxFFFF will
be followed by dummy data. When receiving such a notification, the Controller must discard its
local copy of the Map property and use the new, completely transmitted list.

5. Removal of line:

To signal the removal of a certain line, the Slave sends a status message with only the Tag of
the line and PosY to the Controller. To signal the deletion, parameter Data is not sent;
parameter PosY is set to 0x00. If the Controller receives such a notification, it deletes the line
with the transmitted Tag from its local copy.

The notification behavior for the function class Map is illustrated by the following examples:

Example 1: Notification of added line*

notification:
old list Tag = 0x3624, PosY = 0x00 new list
Data =
|Tag |ElL |El2 |EB | |Tag |El |EI2 |EB | |Tag |ElL [E2 |EI3 |
0356 |011 |012 |013 | 3624 |031 [032 | 033 | 0356 |011 |012 |013
3467 | 021 022 [023 3467 |021 [022 [023
3624 |031 [032 [033

Example 2: Notification of modified line (using single line transmission)

notification:
old list Tag = 0x3467, PosY = 0x00 new list
Data =
|tag [En [E2 |EB | |Tag |EIL |ER2 [EB | |Tag [|EIL [El2 |EIB |
0356 [011 [012 |013 | 3467 [No1 [NO2 [NO3 | 0356 [011 |012 [013
3467 021 [022 [023 3467 | NO1 | NO2 | NO3
3624 [031 [032 [033 3624 [031 [032 [033

! Note that because of the unordered nature of the function class Map, the line could be inserted at
any point in the array.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 96

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Example 3: Notification of multiple modifications

notification:
old list Tag = 0x0000, PosY = 0x00 new list

Data =
|Tag |ElL |EI2 |EB | |Tag |El |EI2 |EB | |Tag |ElL [E2 |EI3 |
0356 [011 |012 | 013 3467 [N11 | N12 | N13 0356 [011 [012 | 013
3467 | AAA | AAA | AAA 2006 | 041 | 042 | 043 3467 | N11 [N12 | N13
3624 031 | 032 | 033 3624 031 [032 [033
2006 [041 [042 | 043

Example 4: Notification with transmission of whole array*

notification:
old list Tag = 0x0000, PosY = 0x00 new list
Data =
|tag |El [E2 |EB | |Tag |EN |ER2 |EB | |Tag |E [ER2 |EB |
0356|011 [012 |013 3624 |031 032 [033 3624 [031 |032 [033
3467 | BBB |BBB | BBB 2006 | N21 [N22 | N23 2006 | N21 | N22 | N23
3624 [031 [032 [033 0101 [051 [052 [053 0101 [051 |052 [053
2006 | 041 [042 | 043 FFEF |d/c |d/ic |dic
Example 5: Deletion of line
notification:
old list Tag = 0x2006, PosY = 0x00 new list
|Tag |EIL [ER2 |EB | |Tag |ElL |ER2 [EIB |
3624 | 031 [032 |033 3624 [031 |032 [033
2006 | N21 | N22 | N23 0101 [051 |052 [053
0101 [051 |052 |053

Editing in Function Class Map:

As in case of simple arrays, data contents of a property of function class Map can be modified by
using the operation types Set or SetGet in a similar way. However, similar to function class
DynamicArray, more complex editing functions are required if insertion and deletion of lines is done by
the Controller. These will be defined as separate methods in the coordination range (0x000 ... Ox1FF)
and can be applied to different Maps of an FBlock indicated by their FktIDs.

Using the method Maplns (FktID = 0x082), a number of array elements (entire lines) will be inserted in
the Map with the given FktID. Because the elements of a Map are not ordered, no given position for
the insertion can be specified. The number of array elements to insert is given in the parameter
Quantity of data type Unsigned Word. The data contents of the lines to be inserted will be transferred
in the parameter Data of type Stream. Because the Slave is responsible for assigning Tags, the Tag
values in Data must be ignored (to avoid misunderstandings, these values should be set to OXFFFF).

In case of using StartResult and if the insertion of the elements has been successful, the assigned
Tags will be returned in the parameter TagList of the Result message. The items in TagList must have
the same order as the items in the parameter Data of the corresponding StartResultAck request.

! d/c (don't care) describes data that is to be ignored.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 97

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Maplns.StartAck (SenderHandle, FktID, Quantity, Data)
Maplns.StartResultAck (SenderHandle, FktlD, Quantity, Data)
Maplns.ResultAck (SenderHandle, FktID, Quantity, TagList)

Examples:

Controller -> Slave: Maplns.StartAck (
SenderHandle, FktlD, 0x0002, OxFFFF EI1 EI12 EI13 OxFFFF EI1 EI12 EI3)

Inserts two lines into the specified Map property.

Controller -> Slave: FBlock_Maplns.StartResultAck (

SenderHandle, FktlD, 0x0002, OxFFFF EI1 EI12 EI3 OxFFFF EI1 EI2 EI3)
Slave -> Controller: FBlock_Maplns._ResultAck (

SenderHandle, FktID, 0x0002, 0x4312 0x4834)

Two lines have been inserted into the specified Map property with Tags 0x4312 and 0x4834.

The method MapDel (FktID = 0x083) deletes a number of array elements (entire lines) from the Map
with the given FktID. The number of elements to delete is described through the parameter Quantity of
data type Unsigned Word. The Tags of lines to be deleted are contained in the parameter TagList of
type Stream. Because the elements in a Map are not ordered, no deletion of ranges is possible.
However, using a Quantity of OXFFFF and an empty TagList will delete the whole Map.

If the method MapDel is called with the OPType StartResultAck and if the deletion of the lines is
successful, the given FktID is returned together with the number and the tags of the deleted lines in
the parameters Quantity and TagList.

MapDel .StartAck (SenderHandle, FktlD, Quantity, {TagList})

MapDel .StartResultAck (SenderHandle, FktlID, Quantity, {TagList})
MapDel .ResultAck (SenderHandle, FktlD, Quantity, {TagList})

Examples:

Controller -> Slave: FBlock._MapDel ._StartAck (
SenderHandle, FktlD, 0x0001, 0x0101)

Deletes the line with Tag 0x0101.

Controller -> Slave: FBlock.MapDel.StartAck (
SenderHandle, FktID, 0x0002, 0x3581 0x2006)

Deletes the lines with Tags 0x3581 and 0x2006.

Controller -> Slave: FBlock._MapDel .StartAck (
SenderHandle, FktID, OxFFFF)

Deletes the entire array.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 98

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2.3.11.2.6 Function Class Sequence Property

OPType Parameters
Set <Parameter>{, <Parameter>}

Get

SetGet <Parameter>{, <Parameter>}

Getlnterface

Status <Parameter>{, <Parameter>}

Interface Flags, Class, Name, NElements, IntDescl, IntDesc?...

Error ErrorCode, Errorinfo

NElements Uns. Byte Number of elements in Function Class Sequence Property

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of the
interface descriptions defined for the respective class can be inserted. Please note that in case of
elements, parameter Flags is not available. For parameter OPTypes only Set, Get, SetGet, Status and
Error can be used.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 99

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

2.3.11.3 Function Classes for Methods

For methods there are only two function classes, since methods may differ significantly with respect to
the parameters transferred during Start and Result (in opposite to properties). Methods that do not
belong to these classes belong to class “Unclassified Method”. They must be defined in a specific
way.

Function Class Explanation

Trigger Method | This class of methods is used to trigger something. They have no parameters.

Sequence This class of methods has a number of parameters. An interface description
Method can be generated according to section 2.3.11.3.2.

Unclassified Methods that do not belong to any classified function class belong here.
Method

Table 2-11: Classes of functions for a method.

2.3.11.3.1 Function Class Trigger Method

There are no parameters in case of Start/StartResult and it does not return parameters in case of
Result or Processing.

OPType Parameters

Start

StartResult
Getlnterface
StartResultAck | SenderHandle

ErrorAck SenderHandle, ErrorCode, Errorinfo
ProcessingAck | SenderHandle
Processing
Result
ResultAck SenderHandle
Interface Flags, Class, OPTypes, Name
Error ErrorCode, Errorinfo
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 100

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

2.3.11.3.2 Function Class Sequence Method

OPType Parameters
Start <Parameter>{, <Parameter>}

Abort

StartResult <Parameter>{, <Parameter>}

GetlInterface

StartResultAck | SenderHandle, <Parameter>{, <Parameter>}

AbortAck SenderHandle

ErrorAck SenderHandle, ErrorCode, Errorinfo

ProcessingAck | SenderHandle

Processing

Result <Parameter>{, <Parameter>}

ResultAck SenderHandle, <Parameter>{, <Parameter>}

Interface Flags, Class, Name, NElements, IntDescl, InDesc2, ...
Error ErrorCode, Errorinfo

NElements Uns. Byte Number of elements in Function Class Sequence Method

IntDescX are the interface descriptions of the single elements. Depending on the data type, one of the
interface descriptions defined for the respective class can be inserted. Please note that in case of
elements, parameter Flags is not available.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 101

MOST® MOST

Specification COOPERATION

2.3.12 Handling Message Notification

In many cases, HMIs and Controllers must get information about values reaching their maximum or
about changes of properties in other FBlocks. To avoid polling, events for automatic notification are
defined. Such events must often be sent to several devices (e.g., two HMIs). Because of that, a
Noatification Matrix is implemented in every FBlock. The devices that should be notified of changes to
the status of a function are registered in this matrix.

Please note:
Only properties can be admitted to the Notification Matrix!

Entry Fkt | Fkt | Fkt | Fkt | Fkt
1 2 3 4 5

DevicelD1 X X X X X

DevicelD2 X X

Free for entry
Free for entry
Free for entry
Free for entry

Table 2-12: Notification Matrix (x = notification activated)

The size of a Notification Matrix depends on the FBlock, on the number of properties, and on the
number of device entries, each of which must be registered individually.

When taking into consideration that a DevicelD has 16bits, an FktID has 12bits, and that in some
FBlocks possibly all 64 possible nodes of the network must be registered, the Notification Matrix may
be very big. Nevertheless, the following subjects should be kept in mind:

e The Notification Matrix is only a model. It does not dictate the software implementation
method.

e Implementation may be done in very economical ways, for example, by pointers, in every
function object, that point to DevicelDs.

e In most cases it is sufficient if the Notification Matrix has only a few entries.

e Group addresses are allowed as DevicelD in the Notification Matrix.

For very simple FBlocks, for example, a CD changer, it is sufficient if the Notification Matrix provides
only three entries for DevicelDs. A very efficient implementation is possible. For example, by using a
group address, all HMIs in the network can be notified of status changes.

Administration of the Notification Matrix is done via function Notification. If a Controller desires to
register, or to remove registration, it sends the following protocol:

Controller -> Slave: FBlocklID.InstID.Notification.Set (Control, DevicelD,
FktID1l, FktID2...)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 102

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

The DevicelD of the Controller is transported at the start of the protocol, as described in section 2.3.5
on page 53, but in order to enter group addresses, the DevicelD is transmitted in the parameter field
as well. Parameter Control specifies where the entry or deletion is done:

Control Name Comment

0x0 SetAll Entry is done for all functions

0x1 SetFunction Entry is done for the following functions (maximum is 4)

0x2 ClearAll DevicelD of Controller is deleted for all functions

0x3 ClearFunction DevicelD of Controller is deleted for the specified functions (maximum is 4)
Rest Reserved

Table 2-13: Parameter Control

On SetFunction and ClearFunction, at most 4 FktIDs can be specified (16 bits each), to avoid
exceeding the maximum data length of 12 bytes of a MOST telegram.

In the table below, the protocols with the different controls for making entries in the Notification Matrix
are listed together with the respective resulting entries.

Protocol Entry Fkt | Fkt | Fkt | Fkt | Fkt
1 2 3 4)

Notification.Set (SetAll, DevicelD1) DevicelD1 X X X X X

Notification.Set (SetFunction, DevicelD2, FktlD2, FktlD4) DevicelD2 X X

Free for entry
Free for entry
Free for entry
Free for entry

Table 2-14: Protocols with different controls for making entries in the Notification Matrix, and the resulting entries.

Immediately after registration in the Notification Matrix, the Controller receives the status reports of all
functions it has activated as events. If a device registers for a property that has already been
registered for this device, the report is sent as if the device had been registered for the first time.
However, this does not generate a second entry in the Notification Matrix. This also applies to
registering with group addresses.

Deleting entries is done in a similar way. Deletion of a not notified function shall not cause an error
message.

If a Controller desires to read information from the Notification Matrix, it sends:

Controller -> Slave: FBlockID.InstID.Notification.Get (FktiD)

In general, all "Report" OPTypes (Status, Error, and Interface) are notified. Status and (possibly) Error
are reported spontaneously after registration. Interface is not reported directly after registration.

As an answer to this request, a list is returned that contains all DevicelDs that activated the respective
FktID:

Slave -> Controller: FBlockID.InstID_Notification.Status (FktlD,DevicelD1,
DevicelD2,...,DevicelDN)

Please note:

In case of array properties, only those elements that have been changed are sent as status
during notification. This applies to regular arrays. The content of DynamicArrays and
ArrayWindows is always sent entirely.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 103

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

If a device sends a status message based on a notification and the MOST Network Interface
Controller indicates to the Network Services that the transmission failed due to an invalid target
address, all entries for this target address shall be deleted from the Notification Matrix of the FBlock
sending this status message.

Please note that when using the notification mechanism with groupcast addresses, the notification
must be deleted if the message could not be transmitted to any node. As long as there are one or
more nodes receiving the message, the naotification must not be deleted. Furthermore, the natification
will not be deleted when using the debug address OxOFFO to send the notification.

Error handling:
The Notification Service reports one of the following error messages, if any error occurred:

e No more registration possible*
If no more registering is possible, function Notification answers:

Slave -> Controller: FBlockID.InstID.Notification.Error (0x20,0x01)

e FBlock not registered in the Notification Service
This happens when the corresponding FBlock is not registered in the Notification Service.

Slave -> Controller: FBlockID.InstID_Notification.Error (0x20,0x20)

e No more registration possible
If no more registering is possible, function Notification answers:

Slave -> Controller: FBlockID.InstID_Notification.Error (0x20,0x21)

¢ Notification set rejected
The corresponding properties (FktIDList) reject the "Notification.Set” command, because of
a Notification Matrix overflow or because the property is not registered in the Notification
Service.

Slave -> Controller: FBlocklID. InstID.Notification.Error (0x20,0x10,
FktIDList)

¢ Notification get not possible
On a received "Notification.Get” command, whenever the respective property is not registered
in the Notification Service, the following is reported:

Slave -> Controller: FBlocklID. InstID.Notification.Error (0x07,0x01, FktlID)

e No valid values or property failure
In case a Controller registers at a time where no valid values of the respective property are
available or a property becomes temporarily unavailable, Notification sends the following
message to all nodes that are registered for the respective property:

Slave -> Controller: FBlocklID.InstID.Fktld.Error (0x41)

Application Example:

This error code could be used to indicate the failure of a sensor. If the sensor signal
disappears, the Sensor function would report the error “Not available” (0x41). If the function
has an implemented notification mechanism, the error is distributed to the registered
Controllers.

This message is also sent, in case a node registers for the property after the problem
occurred. Failure of a whole FBlock is described in section 3.2.5.4.

! Errorinfo 0x01 is equivalent to Errorinfo 0x21. Errorinfo 0x21 should be preferred.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 104

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Reactions on system events

e Configuration.Status(NotOk)
After reception of NotOk (and every time the system is regarded in state NotOk, for example,
after start up) the Notification Matrix is deleted.

e Configuration.Status(New)
After receiving Configuration.Status(New), every device checks whether it has to notify itself
for one or more properties of the new registered FBlocks.
In that case the device has to register itself using Notification.Set.
Only those notifications have to be requested which are related to the new FBlocks. It is not
necessary to rebuild other notifications

e Configuration.Status(Invalid)
After receiving Configuration.Status(Invalid) every device checks whether it has notified itself
for one or more properties in the deregistered FBlocks.
In this case the device has to react in an appropriate way to adjust its internal structure to the
new situation.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 105

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3 Network Section

3.1 MOST Network Interface Controller and its Internal
Services

The MOST Network Interface Controller provides the means for operating the MOST bus simply and
safely, and for the transmission of different types of data. Based on these mechanisms, higher layers
are defined. The following sections give an overview of the features of the MOST Network Interface
Controller that are available for the use in higher layers.

3.1.1 Bypass

If the bypass is closed, all signals received at the input of the MOST Network Interface Controller are
forwarded to the output of the MOST Network Interface Controller. In this state, the respective device
is “invisible” to the network. The device will be considered for the automatic counting of bus
components only after opening the bypass, which gives access to the bus.

oPhy
When using oPhy, the bypass is closed, while the MOST Network Interface Controller is reset.

ePhy

During reset of the MOST Network Interface Controller using ePhy, the output is disabled.

This is caused by the ePhy coding. During this time all devices located downstream detect unlocks.
The bypass state is first available after the MOST Network Interface Controller is coming out of reset.

3.1.2 Master/Slave

A MOST system consists of up to 64 nodes. By configuration, any of the MOST Network Interface can
be the TimingMaster; all the others are Slaves. The TimingMaster provides generation and
transporting of system clock, the frames, and blocks. All Slave devices derive their clock from the
MOST bus.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 106

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.1.3 Data Transport

The bit stream is optimized in such a way that processing is easy and maximum functionality is
supported. This includes mechanisms for automatic channel routing, network delay recognition
(3.5.2.3 Compensating Network Delay), and Packet Data Channel management.

Since the MOST system is fully synchronous, with all devices connected to the bus being
synchronized, no memory buffering is needed (unlike isochronous, or asynchronous devices).

The sample frequency in a MOST system can be chosen in a range between 30 kHz and 50 kHz. The
frequency depends directly on the application components. Some devices, for example, CD drives,
work at a device-specific sample rate. In systems optimized for cost, such devices are regarded as
fixed with respect to sample frequency. The sample frequency that is used most should be defined as
the system frequency to avoid sample rate conversion in the different devices.

3.1.3.1 Frames

The MOST frame structure is designed to allow for easy re-synchronization as well as clock and data
recovery while guaranteeing data quality and integrity. Built-in structures provide the basis for simple
network management on the lowest layers to avoid overhead.

For synchronization, two different bus node types are required. A TimingMaster that generates the
frames and Slave devices that synchronize to the Master clock on the bus.

MOST25

One MOST25 frame consists of 512 bits (64 bytes). The first byte is used for administrative purposes.
The next 60 bytes are used for stream and packet data transfer, where the Boundary is defined in 4
byte steps. The Boundary can only have values between 6 and 15. Therefore, at least 24 bytes are
available for Stream data transfer. All Stream data bytes are transmitted before any Packet data bytes
occur. The next two bytes of each frame are reserved for Control data and the last byte is another
administrative byte.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 107

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

This diagram represents the MOST25 frame.

|
|
|
i Boundary
|
i

Figure 3-1: MOST25 frame

A MOST25 Control Message has a fixed size of 32 bytes and is time multiplexed over 16 MOST
frames, each having two Control data bytes.

Byte Number |Task

0 Administrative

° Preamble (bits 0-3)

° 4 bits Boundary Descriptor (bits 4-7)

1-60 60 data bytes
61 - 62 2 data bytes for Control Messages
63 Administrative

° Frame control and status bits
° Parity bit (last bit)

Table 3-1: Structure of the MOST25 frame

D e e >
W ! TA|

| | |

| 7 \

! 1 |

| stream data packet data ; Control

i (Number of bytes depends (Number of bytes depends i Data i

i on Boundary settings) on Boundary settings) I 2 Bytes I

! i |

' I I
< MOST Frame >

64 Bytes
administrative administrative

MOST50

Due to the fact that MOST50 is designed for high bandwidth, one MOST50 frame consists of 1024 bits
(128 bytes). The first 11 bytes are used for administrative purposes. In this area 4 bytes are used for
Control data. Therefore, a MOST Control Message gets multiplexed into 4 bytes/frame pieces. The
Control Message length can vary depending on the specifics of the particular Control Message. This
results in better utilization of the bandwidth regarding Control Messages. The next 117 bytes are used
for Packet and Stream data transfer.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 108

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

This diagram represents a MOST50 frame.

|
|
|
i dynamic Boundary
|

| |
AR R Rt R et e bt »
| |
: | |
.
| |
Y , .
I | |
. | |
| []
|
i packet and stream data
i (Number of bytes depends on virtual boundary settings)
i
|
< MOST Frame >
128 Bytes
administrative and 4 bytes Control Data
Figure 3-2: MOST50 frame
Byte Number | Task
0-10 Administrative, includes 4 Control data bytes, additionally
° System Lock flag
° Boundary Descriptor
11-127 117 data bhytes
Table 3-2: Structure of the MOST50 frame
Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 109

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.1.3.1.1 Preamble

The preambles are used internally to synchronize the MOST core and its internal functions to the bit
stream.

For synchronization to a frame, two different mechanisms are used for Slave and Master nodes. For a
Slave node, the first reception of valid preambles after reset, power-up, or loss of lock indicates that
phase lock on the input bit stream has been accomplished.

This method ensures that the Slave node is phase- and frequency-locked to the bit stream, and hence
to the Master node. In a Master node, the transmitted bit stream is synchronized to an external timing
source.

Once all the nodes in the network have locked to the Master’s transmitted bit stream, the received bit
stream has the correct frequency but will be phase shifted with respect to the transmitted bit stream.
This phase shift is due to delays from each active node and additional accumulated delays due to
tolerances in the phase lock within the Slave nodes. The Master node re-synchronizes the received
data by the use of a PLL to lock onto the incoming bit stream, thereby re-synchronizing the incoming
data to the proper bit alignment.

3.1.3.1.2 Boundary Descriptor

MOST25

The Boundary Descriptor provides a flexible way of changing the bandwidth for streaming and packet
data transmission. It represents the number of 4 byte blocks (quadlets) of data used for streaming
data. This value is used to determine the boundary between the streaming and packet data areas in
the frame. A count value of zero indicates no streaming data and 15 quadlets of packet data, while a
count value of 15 indicates 15 quadlets of streaming data and no packet data.

By this means, a 60 byte data field can be allocated to either streaming or packet data on a 4 byte
resolution. As such, it can be optimized to different requirements, depending on the amount of
bandwidth required for each type of data.

Note that the maximum number of packet data bytes per frame is 36 bytes, which means that the
Boundary Descriptor values can be between 6 and 15. When the Boundary Descriptor is set to the
minimum value of 6, 24 bytes per frame remain for streaming data.

The Boundary Descriptor is managed by the TimingMaster of a MOST Network (see 3.7.1).

After having changed the Boundary Descriptor, the streaming connections must be re-built.

The Boundary can be seen as a real border between the area that is available for streaming data and
the area that is used for packet transmission.

Bandwidth calculation:

Total bandwidth =60

Packet bandwidth =60 — Boundary * 4

Streaming bandwidth = Boundary * 4

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 110

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

MOST50

MOSTS50 systems have access to a Dynamic Boundary. This means that the bandwidth which is
available for the streaming data transmission can be changed during runtime of the system, that is,
during NetlInterface state NetOn.

The initial value, which is used after each reset of the TimingMaster, is set in the TimingMaster’s
configuration. A system might not have the need to change the Boundary dynamically, but the
Network Interface provides that possibility.

To change the Boundary during runtime the command NetBlock.Boundary.SetGet is sent to the
NetBlock with instance ID zero (i.e., NetBlock in TimingMaster). A Slave device does not provide this

property.

The only application that can allow or deny such a change is the application running on top of the
TimingMaster.

MOST50 provides the possibility to use nearly the total bandwidth (116 out of 117 bytes per frame) for
packet data transmission.

Bandwidth calculation:

The total bandwidth, that is, the sum of bandwidth for streaming and packet data, is 117 bytes per
frame:

Total bandwidth = Packet bandwidth + Streaming bandwidth = 117

The bandwidth to be used for packet transmission in number of bytes per frame is calculated
according to following formula:

Packet bandwidth = Total bandwidth — (Boundary *4) —1 = 116 — (Boundary * 4)
The remaining bandwidth can be used to transport data of type streaming:

Streaming bandwidth = (Boundary *4) + 1

Packet/Streaming Data usage example:

Legend:
Allocated | Free
Streaming Packet
Boundary Descriptor
MOST25
0 I 59
L[T T [[J..0 T T T T NS
more bandwidth for more bandwidth for
packet data *—» streaming data
MOST50
11 127
L[OO [[1 . D [[N | |
Figure 3-3: Packet/Streaming Data usage example
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 111

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Property NetBlock.Boundary is designed to control the available bandwidth for the packet transmission
channel (asynchronous data transmission). It is possible to use the total available bandwidth for
streaming data.

MOST25 MOST50
NetBlock Available bgndwidth for Available bandwidth for
: streaming data streaming data
Boundary | (in number of bytes per frame) | (in number of bytes per frame)
0 1 116
1 5 112
2 N/a N/a 9 108
3 13 104
4 17 100
5 21 96
6 24 36 25 92
7 28 32 29 88
8 32 28 33 84
9 36 24 37 80
10 40 20 41 76
11 44 16 45 72
12 48 12 49 68
13 52 8 53 64
14 56 4 57 60
15 60 0 61 56
16 65 52
17 69 48
N/a N/a
28 113 4
29 117 0

Table 3-3: NetBlock.Boundary influence in MOST25 and MOST50 systems

3.1.3.1.3 MOST System Control Bits

All other bits within the frame are for management purposes on the network level. While the preamble
provides synchronization and clock regeneration, the parity bit indicates reliable data content and is
used for error detection and phase lock loop operation.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 112

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.1.3.2 Control Data Transport

MOST25
Organization of data transfer in blocks of frames is required for network management and control data
transport tasks.

A block consists of 16 frames with 512 bits each. 2 bytes in each frame transport control data. The 2
bytes of 16 frames (1 block) are added to the control frame that transports a control telegram.

MOST 50

Control Messages are based on a variable number of frames.

e The minimum number of frames (per Control Message telegram) is 6, in case of TelLen 0
(command without payload).

e The maximum number of frames is 9, in case of TelLen 12.

3.1.3.3 Source Data

3.1.3.3.1 Distinction between Source Data and Control Data

Depending on the kind of data and bandwidth, the MOST system provides different transmission
procedures.

Telegrams for controlling devices or slow packet data are transmitted via the Control Channel of the
MOST Network Interface Controller. For transmitting packet data of higher bandwidth, a packet-
oriented data area is available. Streaming data, such as audio signals of a CD drive, can be
transmitted directly in the streaming data area of the network. A more detailed description of the
different data areas can be found in the sections below.

3.1.3.3.2 Differentiating Streaming and Packet Data

MOST25
60 data bytes (15 quadlets) total are available for streaming and packet data.

MOST50
117 data bytes are available for streaming and packet data.

The number of streaming and packet data bytes is specified by the Boundary Descriptor value
described above.

3.1.3.3.3 Source Data Interface

The MOST Network Interface Controller can handle a variety of different data formats at its source
data port. The source data port formats are controlled via the internal registers of the MOST Network
Interface Controller.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 113

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.1.3.3.4 Transparent Channels

Another use case for Source Data transmission is the transparent transmission of a RS232 interface,
that is, without synchronizing RS232 to the bus. For this purpose, the original data is oversampled
(depending on the system’s sample rate, and on the sampling rate chosen for the transparent port)
and routed via the network.

3.1.3.3.5 Streaming Data

The Streaming Data Channel time slots are available for real-time data such as audio/video or sensors
and eliminate the need for additional buffering in analog-to-digital converters (and digital-to-analog
converters) or in single speed CD devices for audio and video.

Accessing this data is provided by time division multiplexing (TDM) and allocation of quasi-static
physical channels for a certain period of time (e.g., while playing an audio source). The bandwidth for
such a channel can be adjusted by allocating any number of bytes to one logical channel.

MOST25

The maximum number of bytes available in a Streaming Data Channel is 60 bytes/frame, which
corresponds to 60 x 8 bits or 15 stereo channels of CD-quality audio. The typical frame rate is 44,100
frames/second.

The routing engine (RE) is used to route data to and from the appropriate sources or sinks within a
node. Internal synchronization is provided so input data does not need to be phase-aligned to the
MOST Network Interface Controller. The RE provides full flexibility in directing data from any source to
any sink.

MOST50

The maximum number of bytes available in a Streaming Data Channel is 117 bytes/frame, which
corresponds to 117 x 8 bits or 29 stereo channels of CD-quality audio. The typical frame rate is 48,000
frames/second.

The functionality of the routing engine is encapsulated in the NIC. Accessing Streaming Channels is
handled via an abstract socket mechanism.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 114

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.1.3.3.6 Packet Data

Another time slot is available for packet data transport as required for burst-like data. In contrast to the
control data channel, the Packet Data Channel provides transmission of longer data packets.

Access to this type of data is provided in a token ring manner. Each node has fair access to this
channel and its bandwidth can be controlled using the Boundary Descriptor in a step of four bytes
(quadlets). The maximum packet length on the Packet Data Channel when using the 48 bytes data
link layer is 48 bytes. In case of using an alternative data link layer, the maximum packet length is
1014. The data on this channel is CRC protected. The packet data message is defined as follows.

Byte Task
0 Arbitration
1-2 Target address
3 Length (in Quadlets = 4 bytes)
4-5 Own address (Source address)
6-53 Data area
54-57 CRC

Table 3-4: Structure of a frame of packet data (48 bytes data link layer)

Byte Task
0 Arbitration
1-2 Target address
3 Length (in Quadlets = 4 bytes)
4-5 Own address (Source address)
6-1019 Data area
1020-1023 [CRC

Table 3-5: Structure of a packet data frame in the packet data area (alternative data link layer)

MOST50
Only Table 3-5 is valid for MOST50.

Since the packet data area is variable, it can take several frames to complete a message. The
corresponding management such as arbitration and channel allocation is provided by the MOST
Network Interface Controller. A hardware CRC is provided. The CRC is calculated in the background
and can be indicated in a register at the end of each packet data message. A low-level retry
mechanism is not implemented.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 115

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.1.3.4 Control Data

3.1.3.4.1 Control Data Interface

The transmission of control data to and from the MOST Network Interface Controller is done via the
control bus.

3.1.3.4.2 Description

The control data is used mainly for communication between the single nodes of the bus. This is where
commands, status and diagnosis messages, as well as gateway messages are handled. The protocol
on this channel runs in a carrier sense multiple access (CSMA) manner offering predictable response
times, which are considered essential in an audio/video control network.

A control data message is 32 bytes long and has the following structure:

Byte Task
0-3 Arbitration
4-5 Target address
6-7 Own address (Source address)
8 Message type
9-25 Data area
26-27 CRC
28-29 Transmission status
30-31 Reserved

Table 3-6: Structure of a control data frame

MOST25
Please note: The delay time between two messages in case of low level retries must be
identical in all nodes of a MOST Network.

Message type:
Normal messages provide control of applications.

Normal messages:
Single cast (logical or physical addressing)
Groupcast
Broadcast

MOST25
System messages handle system-related operations such as resource handling for streaming data
connections.

System messages:
Resource Allocate
Resource De-Allocate
Remote GetSource

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 116

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Arbitration is provided automatically by the MOST Network Interface Controller in case a node wants
to send a message. In order to provide fair arbitration even at high bus loads, a double arbitration
mechanism is used. This ensures that an access is not depending on the communication load of
upstream devices and the priority is not depending on the network position. Rejection of messages is
flagged and automatic retransmission is performed. The number of retries can be defined by the
application software. If the maximum of retries is reached without success, a transmission error is
indicated to the controlling device (e.g., external micro Controller).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 117

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.1.4 Internal Services

3.1.4.1 Addressing
The MOST Network Interface Controller supports four different ways of addressing:

¢ Node position in the ring.

The node position is generated automatically in each node during the locking procedure of the

MOST Network.

e Logical node address (2 bytes).
This address can be set by the application.
A logical node address can be either dynamic or static. A dynamic address is calculated

based on the node position address (see 3.4.1). A static address is predefined and is not

recalculated upon a state transition to System State NotOKk.

e Group address (1 byte).

Group address can be set by the application. A group is made up of devices that have the

same number in the group address register.

e Broadcast

The broadcast address is a special group address. When used, the message is received by all
nodes in the ring. Until the last node in the ring has acknowledged a broadcast message,

communication via the Control Channel is suppressed for other messages.

The different ways of addressing are mapped into the address area of a MOST Network Interface

Controller:

Address range Mode

0x0000...0x000F Internal Communication

0x0010...0x00FF Static address range

0x0100...0x013F Dynamic calculated (0x0100+POS) address range

0x0140...0x02FF Static address range

0x0300...0x03FF Reserved for group/ broadcast

0x0400...0x043F Node position (0x0400 + POS) address range.

0x440...0x4FF Reserved

0x0500...0xOFEF Static address range

OxO0FFO0 Optional debug address
0xO0FF1...0xOFFD Reserved

OXOFFE Init address of Network Service

OXOFFF Init address of Network Interface Controller
0x1000...0xFFFE Reserved for future use

OXFFFF Uninitialized logical node address

Table 3-7: Addressing modes vs. address range

Group addressing is typically used for controlling several devices of the same type (e.g., active

speakers). The grouping of devices must be established during definition of the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 118

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.1.4.2 Support at System Startup

The MOST Network Interface Controller meets all requirements of a low level startup. Several
supporting mechanisms are provided. All components of the system get a unique number, with
numbering starting at the TimingMaster at 0x00, and then incremented by one. These numbers can be
used for node position addressing. Furthermore, every device receives the information about the total
number of devices in the ring. The MOST Network Interface Controller also provides a wakeup
mechanism.

3.1.4.3 Automatic Allocation Mechanism

MOST25
Bandwidth administration is supported by the MOST system resource administration on the MOST
Network Interface Controller level.

Allocating bandwidth is done via a request from an application to the TimingMaster of the network.
Bandwidth can be allocated with a granularity of one byte. If there are enough channels, the
application will get a handle, by which source data can be routed onto the network. The handle can
also be used for de-allocating. A channel resource allocation table, distributed automatically in the ring
(on the MOST Network Interface Controller level), gives access to the current allocation status of the
channels in each node.

The channel map that belongs to the handle can be retrieved from the MOST Network Interface
Controller or it can be delivered during connection management via Control Messages. It is possible to
change allocation during runtime.

Detection of unused channels, that is, channels that are allocated by a device but no longer used, is
done with the help of the channel resource allocation table. Only the TimingMaster can determine from
its channel resource allocation table if there are unused channels. If there are unused but allocated
channels, they should be de-allocated with respect to the network resources.

MOST50

Bandwidth is allocated implicitly by creating a socket, where the size of the socket denotes the
amount. By simply destroying the socket, the allocated bandwidth is de-allocated.

This approach relies on a connection label (16-bit word) combined with bandwidth information (also
16-bit word), instead of a long list of single byte channels.

Furthermore, the routing and the low-level allocation are entirely encapsulated by the Network
Interface Controller, and of no influence on the application.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 119

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2 Dynamic Behavior of a Device

3.2.1 Overview

This section describes the dynamic behavior of the system — the states and state transitions of the
system, with a special focus on network dynamics (or the dynamic of the network interface of a
device). The expression Netinterface stands for the entire communication section of a node, that is,
the physical interface, the MOST Network Interface Controller, and the Network Service.

The following classes of nodes exist in MOST:
e Primary Nodes
(implement NetBlock, FBlock ET and Network Services)

MOST25

e Secondary Nodes
(Secondary Nodes are controlled by Primary Nodes. A Primary Node might control more than
one Secondary Node)

A MOST device contains at least one Primary Node and may contain additional nodes of the above
mentioned classes. If the device contains more than one node it is called a multi-node device.

The figure below shows a layer model of a device. The lowest layer is the power supply. On this layer,
every hardware function is built, that is, the hardware of the Netinterface, which is made up of the
MOST Network Interface Controller, the physical interface, and the Controller on which the Network
Service are running. The Network Service occupies the next layer on which the higher services of
address management, power management and network error management are based. At the top layer
there is the application itself.

Application

Network Service

MOST Network Interface Controller

Figure 3-4: Layer model of a device

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 120

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Generally, for each device, the device specification must define all the possible combinations of the
states of the application section and the communication section. Particularly from the view of the
network, there are three states that are mandatory for each device:

1. DevicePowerOff: Communication section is in state NetinterfacePowerOff. The logical
function of the application is running, while peripherals with high power consumption such as
drives are switched off. This state is reached after state DevicePowerOff. The communication
section is in state NetinterfaceNormalOperation.

2. DeviceNormalOperation: The communication section, as well as the application, is in state
normal operation.

The following description gives an impression of what may happen in the single states with respect to
the communication and application sections.

DevicePowerOff:

e The application may be awakened, for example, by a timer, can check an external signal, and
return to sleep state without waking up the Netinterface. The device does not leave the mode.

e The application may be awakened, for example, by a timer, and can then wake up the
Netinterface, and by that the entire network. The device changes to state DeviceStandBy, or
state DeviceNormalOperation

e The application may be awakened when detecting a modulated signal on the bus and then
wakes the application during initialization phase. The device changes to state DeviceStandBy.

DeviceStandBy:

e If the application is used, or its peripherals are in use, the device changes to state
DeviceNormalOperation.

e If the modulated signal on the bus is switched off, the device changes to state
DevicePowerOff.

DeviceNormalOperation:

e If the modulated signal on the bus is switched off, the device changes to state
DevicePowerOff.

The following description of the dynamic behavior is done from the bottom up. The most significant
subjects regarding power supply are described in section 4.1 on page 202. The following section
focuses on the dynamic behavior of the Netinterface.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 121

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2.2 NetlInterface

Here, the states of a device are seen from the view of the Netinterface. Operations within the
application of a device are not considered. Only the interfaces to the application are shown.
The following figure shows the states of the NetInterface and the events that lead to state transitions.

The following sections explain the individual states.

NetInterface
Ring break
diagnosis

Diagnosis Diagnosis
Error Start . .

Shut Down Diagnosis
Ready

Netinterface
PowerOff

Start Up
Normal

Shut Down

Init Error Error
Shut Down Shut Down

NetlInterface
Normal
Operation

/
i Application
\ Init J

NetInterface
Init

Init Ready

Figure 3-5: Flow chart “Overview of the states in NetInterface”

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 122

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.2.1 NetInterfacePowerOff

In state NetinterfacePowerOff, the Netinterface is switched off from the view of the network. That
means there is no modulated signal. The MOST Network Interface Controller does not necessarily
need to be switched off since the application may still use function groups of it (e.g., local clock
generation).

State NetInterfacePowerOff is left when one of the following events occurs:

Event Transition to Cause

Start Up NetInterfacelnit A Netlnterface is activated either by a modulated
signal at the receiving physical interface, by the
application (hypothetical example: phone receives a
call), or by a switch at the device.

Diagnosis Start NetInterfaceRingBreakDiagnosis A Netinterface is activated by connecting to power
(for information about signal SwitchToPower please
refer to section 4.1 on page 202)

Table 3-8: Events in state NetlnterfacePowerOff

3.2.2.2 NetlInterfacelnit

In this state, Netinterface is initialized to the point where the MOST Network Interface Controller is
able to communicate with other nodes.

MOST25

When entering state Netinterfacelnit, the TimingMaster loads the Boundary Descriptor with the
“invalid” value 0x04. This value is transferred to all MOST Network Interface Controllers. As soon as
the TimingMaster recognizes a stable lock, it sets the Boundary Descriptor to a valid value (>0x05).

MOST50

When entering state Netinterfacelnit, the TimingMaster clears the System Lock flag on data link layer.
This value is transferred to all MOST Network Interface Controllers. As soon as the TimingMaster
recognizes a stable lock, it sets the System Lock flag in the administrative area of the MOST frame.

This state is left when one of the following events occurs:

Event Transition to Cause
Init Ready NetInterfaceNormalOperation Netinterface is ready for communication (see below).
Init Error Shut Down NetlInterfacePowerOff Error occurred during initialization (see below).

Table 3-9: Events in state Netlnterfacelnit

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 123

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Causes for event Init Ready:

e Inthe Master device:
Stable lock (for a minimum time of t o) was recognized. Lock is called stable if for a period of

time t_oe NO unlock events occurred.

e Ina Slave device:
Stable lock (for a minimum time of t) was recognized by the TimingMaster. Note that the
approach is speed grade dependent.

MOST25
The Boundary Descriptor is set to a valid value (> 5).

MOST50
This is signaled on data link layer level via the System Lock flag.

Causes for event Init Error Shut Down:

e Inthe Master device:
Timeout tconig OCCUrs before a stable lock can be recognized.

¢ In a waking Slave device:
Timeout tconig Occurs before a closed ring can be recognized. Error Error_NSInit_Timeout is

stored by the application.

¢ In a non-waking Slave device:
Timeout tconig €xpires before a modulated signal was recognized, or a closed ring was
recognized; or the modulated signal was switched off again.

In a Slave device (non-waking) the bypass of the MOST Network Interface Controller is deactivated
(opened) as soon as a short lock is recognized (i.e., the lock does not need to be stable for t o). In
case of a waking Slave device and the Master device, the bypass is deactivated immediately after
having entered this state (modulated signal at the output).

As soon as the initialization of the MOST Network Interface Controller starts, the logical node address
has to be set to OXOFFE.

The flow chart below shows the behavior in state Netlnterfacelnit. A differentiation is made between
Master and Slave. On this level, Master means TimingMaster and Slave means Timing Slave.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 124

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Device with the TimingMaster

The Start Up Event will be
activated either by a switch at

Start Up the device, by modulated signal
at the input of the physical input,
or by the application.

4

MOST Network
Interface Controller
will be configured as
Master
(Modulated signal at

output)

v

Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

v

MOST25
Set the Boundary
Descriptor to an
invalid value

MOST50
Clear System Lock
flag

v

Start timer
tConﬂg

no

)

Modulated signal
at input?

no no

Lock stable?

Y
Timeout?
MOST25
Set the Boundary
yes Descriptor to a valid
value
MOST50
Set System Lock flag
|
Y

Init Error

Shutdown Init Ready

Figure 3-6: Behavior of a Master device in state Netinterfacelnit

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 125

MOST Specification 10/2006

MOST® MOST
Specification n '

COOPERATION

Waking Slave Device

The Start Up event will be
< > generated by the application
Start Up (e.g. telephone receives a call),

or by a switch at the device.

Y

MOST Network
Interface Controller
will be configured
as Slave
(bypass disabled,
light at output)

/

Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

/

Start timer
tConflg

no
Timeout?

yes

no

Modulated signal
at input?

yes

Figure 3-7: Behavior of a waking Slave device in state Netlinterfacelnit

Y

Init Error
Shutdown

After having woken the ring (a modulated signal generated by the TimingMaster is received at the

input), the Slave Device goes to Shutdown. From there it starts up as a standard Slave Device, woken
by the TimingMaster.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 126

MOST Specification 10/2006

MOST®

MOST

Specification

COOPERATION

Woken Slave Device

The Start Up Event
will be generated at
the input of the
physical interface.

Start Up

Y

MOST Network
Interface Controller
will be configured
as Slave
(bypass enabled)

Y
Set NodeAddress in
MOST Network
Interface Controller
to OXOFFE

A\

Start timer
tConﬂg

no
Modulated signal
at input?
yes
Deactivate bypass at
recognized Lock
-
Y
no
Modulated signal >———p»
at input?
yes
Y
yes
Timeout? —
MOST25
no The ring is closed as soon as
 J the Boundary Descriptor in the
Slave Device has a valid value.
no
;"?k stable o MOST50
andring closed: The ring is closed as soon as
the System Lock flag is set.
yes
Y Y
Init Ready Init Error

Shutdown

Figure 3-8: Behavior of a woken Slave device in state NetInterfacelnit

Specification Document © Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 127

MOST® MOST

Specification COOPERATION

3.2.2.3 NetlInterfaceNormalOperation

This state is reached as soon as the initialization has reached a level where the MOST Network
Interface Controller can start to communicate with other nodes in the network. When entering this
state, the part of the application that is connected to the communication section is initialized.

Examples for initializing a higher layer due to the Init Ready event:
e Check of system configuration and building of the Central Registry (refer to section 3.3.3).
e Setting of the logical node address and group address (refer to section 3.3).
e Initialization of the sending and receiving parts of the Network Service.

In certain circumstances, other application units are initialized earlier, independently from the state of
the Netinterface.

Event Transition to Cause

Normal Shut Down NetlInterfacePowerOff NetInterface will be deactivated by switching off the
modulated signal.

Error Shut Down NetInterfacePowerOff Netinterface will be deactivated due to a critical
unlock.

Net On Report to an application Entering state NetInterface Normal Operation

Table 3-10: Events in state NetInterfaceNormalOperation

The Normal Shut Down event is generated as soon as no modulated signal is recognized at the input.

In state NetinterfaceNormalOperation, the Network Service checks the lock state of the PLL of the
MOST Network Interface Controller. If an unlock should occur, the application is informed as soon as
possible by an unlock event (Error Shut Down). Please refer to section 3.2.5.2 ‘Unlock’ on page 147
for more information regarding this type of error.

The flow chart below shows the behavior in state NetInterfaceNormalOperation:

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 128

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Every device

Init Ready

Report to application:
Net On Event

Off Request?

Modulated signal
at input?

Change in
number of MOST
Devices?

yes

Report to application:
Net Off Event

Report to application:
NetworkChangeEvent

Unlock?

no

Report to application:
Lock Event

Unlock Event

Report to application:

yes

Net Off Event

Report to application:

Error Shut

Down

Normal Shut
Down

Initialization of the next upper
layer e.g. setting address,
verifying system configuration,
etc.

Off Request is the request (by a
higher layer) to switch off the
modulated signal

An unexpected Net Off Event, i.e.
without having started method
ShutDown in NetBlock before,

will be interpreted as Error Shut
Down in the higher layer

Figure 3-9: Behavior in state NetinterfaceNormalOperation

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 129

MOST® MOST

Specification COOPERATION

3.2.2.4 NetiInterface Ring Break Diagnosis

A simple recognition of a fatal error is possible in any state. Ring break diagnosis serves the purpose
of localizing a fatal error in the network.

The ring break diagnosis process can be started by various triggers, which must be chosen and
implemented by the System Integrator. One possible way is to start the ring break diagnosis by
disconnecting the System from the power source for a short time. In this case, ring break diagnosis is
entered when signal SwitchToPower of the SwitchToPowerDetector indicates that the device was
connected to power first time (e.g., after reconnection of the car’s battery). If SwitchToPower is used to
trigger ring break diagnosis, all devices must start the diagnosis within tpjag_start-

In state NetinterfaceRingBreakDiagnosis the network cannot reach normal operation. In this state, a
relative node position is determined in every device. This information can be used in case of a fatal
error (ring break or defective device) to localize the error.

If there is no fatal error, the Netinterface immediately changes to state NetInterfaceNormalOperation.
In case of a Diagnosis Error Shut Down event, the position determined in each device describes the

position relative to the device that was configured as TimingMaster at the end of ring break diagnosis
(since there was no modulated signal at its input).

TX

rel. Pos.: 1
rel. Pos.: 2

rel. Pos.: 0 rel. Pos.: 3

Figure 3-10: Localizing a fatal error with the help of ring break diagnosis.

Event Transition to Cause
Diagnosis Ready NetInterfaceNormalOperation No fatal error.
Diagnosis Error Shut Down | NetInterfacePowerOff Fatal error (Ring break or defective device)

Table 3-11: Events in state NetInterfaceRingBreakDiagnosis

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 130

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Table 3-12 lists the possible results of ring break diagnosis and the corresponding events.

Ring Break Diagnosis Description Event

Result

DIAG_OK No error detected. Transition to Diagnosis Ready
NetInterfaceNormalOperation.

DIAG_MULTIMASTER No fatal error detected. But the Diagnosis Ready

Netlnterface, which was originally
configured in TimingMaster mode, has
been re-configured to Slave mode,
because there is another TimingMaster in
the network.

Transition to
NetinterfaceNormalOperation.

At next initialization of NetInterface, the
NetInterface has to be configured as
timing Slave, to prevent event “Init Error

Shut Down”.
DIAG_ALLSLAVE Fatal error: No TimingMaster existing. Diagnosis Error Shut Down
DIAG_POS Ring break detected. Diagnosis Error Shut Down

The result indicates the relative position
to the ring break.
DIAG_POOR Fatal error, but there is no valid relative Diagnosis Error Shut Down
position available, since stable lock could
not be established

Table 3-12: Ring break diagnosis results

During ring break diagnosis a device stays configured as TimingMaster until it recognizes a modulated
signal at its input or until the Diagnosis Error Shut Down event is generated by occurrence of the
timeout (ipiag master OF Ipiag_siave respectively). On a fatal error, the application stores the error
Error_Ring_Diagnosis with the relative ring position.

After recognition of a stable lock, a TimingMaster device generates a Diagnosis Ready event and
changes immediately to state NetinterfaceNormalOperation.

The timeout values (ipiag_master OF Ipiag_siave) CaN be changed through the System Integrator, if alternative
approaches for ring break diagnosis are used. In this case, the System Integrator must make sure that
all devices in the network are able to start the diagnosis process within the specified timeouts.

As soon as a device, which does not contain the TimingMaster under normal operation conditions,
recognizes modulated signal at its input, it is configured as Slave (bypass enabled). The bypass is
deactivated after a recognized lock. If no lock errors occur for a time tpiag_Lock (Stable lock), the relative
ring position is determined.

MOST25
If, on stable lock, the Boundary Descriptor value is greater than 5, the ring is closed. There is no
defect and the Netinterface changes to state NetinterfaceNormalOperation.

MOST50

A stable lock is signaled by the existence of the System Lock flag in the administrative area of the
MOST frame. In this case, there is no defect and the Netinterface changes to state
NetInterfaceNormalOperation.

If the ring could be closed, every Netinterface switches to state NetinterfaceNormalOperation. The
application will get notified about that by the Init Ready event. After that, all high level initializations
must be performed (building of the Central Registry, address initialization, notification...).

If the ring could not be closed because of a ring break, devices should not be restarted by incoming
modulated signal until tpiag restart @S passed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 131

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

The following flow charts show the behavior in the state NetinterfaceRingBreakDiagnosis:

Device with TimingMaster

Diagnosis
Start

MOST Network
Interface Controller
will be configured as
master
(Modulated signal at
output)

.

MOST25
Set the Boundary
Descriptor to an
invalid value

MOST50
Clear System Lock
Flag

v

Start Timer
(tDiagMaster)

Modulated
signal at input?

Timeout
(tDiagMaster)

Lock stable?

Modulated
signal at input?

iagShutdown
_Enabled?

MOST Network
Interface Controller
will be configured as

MOST25
Set the Boundary

Descriptor to a valid DiagShutdown

value Slave with All _Enabled?
Bypass active
MOST50 - .
Set System Lock ¢ Z;'ZZJD'ESZQS;%:
flag. Start Timer Y exp

(tpifference) -> tpifference =

tDiagSIave - tDiagMaster

Diagnosis
ready

Figure 3-11: Behavior during ring break diagnosis in a TimingMaster (part 1)

Specification Document

Page 132

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Device with Timing Slave

Diagnosis
Start

Start Timer
(tDiagSIave)
Start Timer toiagsignal CaN also be
(toingsina) zero. In that case no
biagSignal delay is performed.

Modulated
signal at input?

Timeout
(tDiagSignal)

MOST Network
Interface Controller
will be configured as
master (Modulated

signal at output)

MOST Network
Interface Controller

will be configured as
Slave with bypass ¢
active MOST25

Set the Boundary
Descriptor to an
invalid value

MOST50
Clear System Lock
Flag

Modulated
signal at input?

Timeout
(tDiagSIa\/e)

DiagShutdown

Diag_M1 _Enabled?

Figure 3-12: Behavior during ring break diagnosis in a Slave (part 1)

Specification Document © Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 133

MOST®

Specification

MOST

COOPERATION

Every Device

Timeout
(tDiagSIave) or
(tDifference)
respectively

DiagShutdown
_Enabled ?

Modulated
signal at input?

» Diag_M2

Bypass will be
deactivated directly
after recognizing
lock

MOST25

The ring is closed as
soon as the Boundary
Descriptor value in the
Slave device is valid.

Lock stable
and ring closed?
MOST50

The ring is closed as
soon as the System
Lock flag is set.

DiagShutdown
_Enabled ?

yes

Diagnosis
ready

Figure 3-13: Behavior during ring break diagnosis in a TimingMaster and Slave (part 2)

Specification Document
Page 134

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Every Device

Start Timer
(trestart)

;

Switch off Modulated
signal at output

Timeout
(tResIart)

Timeout

tDiagSIave)x (tDiagMaster
or (tDiﬁerence)
respectively

yes

Modulated
signal at input?

iagShutdown
_Enabled?

- tpiagrestart CN AISO be
MOST Network Start Timer zero. In that case no
Interface Controller (tpiagrestart) delay is performed.
will be configured as
Slave with bypass
active

Timeout
(tDiagRestart)

no

yes

Diagnosis
Error Shut Down

Figure 3-14: Behavior during ring break diagnosis in a TimingMaster and Slave (part 3)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 135

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.3 Secondary Node

MOST50
This entire section does not apply to MOST50. Secondary Nodes do not exist in MOST50.

For some applications it can be useful to integrate two MOST Network Interface Controllers into one
device, a Primary Node and a Secondary Node. A Secondary Node does not contain any FBlocks. In
case of receiving any request, it returns an error (Error Secondary Node. Please refer to section
2.3.2.5.1 on page 36). This error has the meaning of "I am a Secondary Node only. The node
responsible for me has DevicelD Oxnnnn". The example below shows this mechanism by means of the
request of System Configuration (NetworkMaster). During Network Configuration request, the
NetworkMaster asks all nodes for the FBlocks they contain. The Secondary Node therefore replies:

SN -> NM: NetBlock.Pos.FBlockIDs.Error (ErrorCode
Errorinfo

Ox0A = Secondary Node,
DevicelD of Primary Node)

In the Central Registry, it must be marked which node is the Primary Node to a certain Secondary
Node. Therefore, the Central Registry must be sorted in a way that the Secondary Node's entry
directly succeeds the entry of the Primary Node in case of a request. This explicitly does not refer to
the hardware configuration in the respective device. In a MOST device, the Primary Node can be
arranged behind the Secondary Node as well.

For completing the entries of Secondary Nodes in the Central Registry, each Secondary Node is
registered with a single FBlock having FBlockID.InstID = 0xFC.O0.

Note that there may be more than one Secondary Node in a system. This is the sole exception to the
rule of unambiguousness of the entries in the Central Registry.

Please note:
The Secondary Node approach applies for Timing Slave nodes only.

When using Secondary Nodes, both MOST Network Interface Controllers are controlled by the same
micro controller. That node, where Control Messaging is handled (and where the Network Service is
running mainly) is called “Primary Node”. There are three scenarios:

e Scenario 1:
Primary Node : Ctrl + Packet
Secondary Node : Stream

e Scenario 2:
Secondary Node : Stream
Primary Node : Ctrl + Packet

e Scenario 3:
Primary Node : Ctrl + Stream
Secondary Node : Packet

All timing constraints, which apply for “normal” MOST nodes must be fulfilled by Secondary Nodes too.
Also, the address of the Secondary Node should be determined and initialized.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 136

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2.3.1 Scenario 1

MOST Device
Ctrl + Packet Stream
Physical Physical
Interface Interface
f Rx Primary Tx Rx Secondary Tx “
Node Node
Pos=n Pos=n+1
\ Micro /
Controller
Primary Node Secondary Node
- SP Parallel Async. CP Serial - SP Serial, CP Serial
- SP Parallel Async. CP Parallel - SP Parallel Sync. CP Serial

- SP Parallel Sync. CP Parallel

Figure 3-15: Secondary Node, scenario 1

In Scenario 1, the node position (Pos) of the primary node is always less than the node position of the
Secondary Node. Figure 3-15 shows, which configurations for Source Data Port (SP) and Control Port
(CP) are available.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 137

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2.3.2 Scenario 2

MOST Device
Stream Ctrl + Packet
Physical Physical
Interface Interface
f Rx Secondary Tx RX Primary Tx “
Node Node
Pos=n Pos=n+1
\ Micro /
Controller
Secondary Node Primary Node
- SP Serial, CP Serial - SP Parallel Async. CP Serial
- SP Parallel Sync. CP Serial - SP Parallel Async. CP Parallel

- SP Parallel Sync. CP Parallel

Figure 3-16: Secondary Node, scenario 2

In Scenario 2, the node position (Pos) of the Secondary Node is always less than the node position of
the Primary Node, except for the Primary Node being the system’s TimingMaster. Figure 3-16 shows
which configurations for Source Data Port (SP) and Control Port (CP) are available.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 138

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2.3.3 Scenario 3

MOST Device
Ctrl + Stream Packet
Physical Physical
Interface Interface
f Rx Primary Tx Rx Secondary Tx “
Node Node
Pos=n Pos=n+1
\ Micro /
Controller
Primary Node Secondary Node
- SP Parallel Sync. CP Serial - SP Parallel Async. CP Serial
- SP Parallel Sync. CP Parallel - SP Parallel Async. CP Parallel

Figure 3-17: Secondary Node, scenario 3

In Scenario 3, the node position (Pos) of the Primary Node is always less than the node position of the
Secondary Node. Figure 3-17 shows which configurations for Source Data Port (SP) and Control Port
(CP) are available.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 139

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.4 Power Management

Power management means that the administrative function, which is above the Network Service,
wakes and shuts down the MOST network or specific devices. The power management is handled
mainly by the PowerMaster, which uses NetBlock functions for this purpose.

3.2.4.1 Waking of the Network

Waking the network is done by switching on a modulated signal. In principle the network can be
awakened by any node. The permission of a node to wake up the network can be activated or
deactivated by the PowerMaster (e.g., in case of a critical charge status of the accumulator) in the
property PermissionToWake, which is mandatory for every NetBlock. The PowerMaster itself will
usually wake the network, for example, when there is communication on the car’s bus, or based on the
status of the vehicle (Clamp status).

By default, the property "PermissionToWake" of the NetBlock controls the permission to wake the
network via the MOST signal (opt./electr.). Optionally, the System Integrator can define, that
PermissionToWake additionally controls the permission to wake via a separate electrical wake-up line.

The value of NetBlock.PermissionToWake is never changed automatically. It can only be changed by
using

NetBlock.PermissionToWake .SetGet(On/0ffF)

The property NetBlock.PermissionToWake of the device containing the system’s PowerMaster should
not be set to OFF.

The PermissionToWake property must be stored as long as the device is connected to power. It is up
to the System Integrator to decide whether it must be stored when the device is removed from power.

"CapabilityToWake" indicates the ability of the device to wake the network via the MOST signal
(opt./electr.). It does not imply the ability in respect to an additional electrical wake-up line.
“CapabilityToWake”, which is mandatory, is reported through NetBlock.Devicelnfo.Status with ID 0x07.

Please note:

A device must only wake the network when this is initiated by the application. Failure (e.g.,
supply voltage too low or too high) must not initiate waking of the network.
Other solutions for waking up the network have been implemented as well, such as using a
separate electrical wakeup line. It is up to the System Integrator to choose the preferred
wakeup method. The process described here is independent of the wakeup method.

When an application wakes the network, it calls the respective routine in the Network Service, which
switches on a modulated signal at the output of the device. Every node that recognizes the modulated
signal at its input switches on a modulated signal at its output and initializes. In this way the modulated
signal travels from node to node until the entire network is awake.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 140

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
Applic. Applic.
|

StartUp NetOn

\
Net Net

Interface Interface

4
Device Device

Modulated signal on

Figure 3-18: Example (2 devices) for waking of the MOST network via a modulated signal on the network

3.2.4.2 Network Shutdown

Switching off the network is done on lowest level by switching off the modulated signal. A device,
which has switched off the modulated signal, must not switch it on again before tgesiar OCcurred. This
applies even if it recognizes a modulated signal at its input (modulated signal wakeup). Separate
electrical wakeups may be latched to perform a wakeup after trestar-

All devices, except the one containing the PowerMaster, switch off the modulated signal when certain
errors occur (unlock, low voltage with reset). This is done without warning the other devices by
sending a telegram.

In all other cases, only the PowerMaster switches off the network. For avoiding that devices have to
save their status to persistent memory very often, the PowerMaster implements a shutdown procedure
that has two stages. This procedure contains request and execution. For requesting, it starts method
ShutDown with parameter Query in all NetBlocks of the system. This is one of the rare cases where a
telegram is broadcasted. After that, the PowerMaster waits for tsyspeng DEfOre it actually shuts down the
system. A device without any further need for communication does not respond on
ShutDown.Start(Query).

The execution is announced by the PowerMaster by starting ShutDown.Start(Execute). By this
function call, the shutdown process is started irrevocably. The devices do not reply to this call. They
prepare for shutting down (saving status) and then wait for the modulated signal to be switched off.

The PowerMaster switches off the modulated signal tspuipownwait @fter ShutDown.Start(Execute). This
time allows to shutdown audio output without audible side effects. If the modulated signal was not
switched off within tsjaveshutdown @ Slave device may switch off the modulated signal.

If an FBlock desires to communicate, it must notify the PowerMaster after ShutDown.Start(Query) with
ShutDown.Result (Suspend) within time tsyspens. The PowerMaster then postpones its attempt to
switch off for time trewyshupown, DEFOre retrying to shut down. This procedure guarantees that a device,
which woke the bus in the parked vehicle, does not need to prevent the PowerMaster from switching
off the network actively (according to the current status of the vehicle).

For switching off, the PowerMaster calls the respective routine in the Network Service. The status
“modulated signal off” travels around the ring in the same way as “modulated signal on” when waking
the network. After a certain delay time tpyswichoripelay the nodes change to sleep mode.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 141

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

1) ShutDown.Start (Query)
3) ShutDown.Start (Execute)

v
Power ’
I— 2
NetBlock Master NetBlock 2) Net Off —¥» Applic.
+
4) Off Request 6) Net Off Event

|

Net Net

Interface Interface
Y
Device
Device

5) Modulated signal off

Figure 3-19: Switching off MOST Network via starting method ShutDown in every NetBlock, and
signaling to every application, and switching off modulated signal

If a device desires to wake the network directly after a shutdown, it has to wait at minimum for trestart
(running from Modulated signal Off), before it switches on the modulated signal again.

1) ShutDown.Start (Query)

4
——2) Net Off 72—
NetBlock Power 4) ShutDown. Result NetBlock INe Applic.
Master (Suspend)
‘«—3) No !
Net Net
Interface Interface
Device Device

Figure 3-20: Prevention of switching off MOST Network via ShutDown.Result (Suspend)

Please note:
If the modulated signal is switched off during shutdown, for example, by low voltage, long

unlock or fatal error, the PowerMaster must not wake the network in order to finish its
shutdown procedure. The PowerMaster must regard the shutdown procedure as complete.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 142

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.4.3 Device Shutdown

In order to minimize power consumption on system and device level it is possible to shut down specific
MOST devices. This process is called Device Shutdown. Shutting down a device may affect the
application on a system level, avoiding such affects is handled by other mechanisms. It is optional to
support Device Shutdown.

When a device is shut down, all applications in the device may be shut down with the exception of
NetBlock, which is still active with full functionality. Also, the device has to know the current System
State when it wakes from Device Shutdown; therefore the NetworkMaster Shadow has to keep track
of the current System State even while the device is in Device Shutdown state.

The NetBlock.Shutdown.Start message is used to bring a device into or out of Device Shutdown.
When managing Device Shutdown, this message may be sent to one device or a group of devices, as
opposed to Network Shutdown where this message has to be broadcast. The behavior of a device
during Network Shutdown is not affected by whether the device is in Device Shutdown or not. Refer to
section 3.2.4.2 for information about Network Shutdown.

3.2.4.3.1 Performing Device Shutdown

The process of shutting down a device or a group of devices can be divided into two stages, a request
stage and an execution stage. The request stage is optional.

Request Stage (Optional)

This stage guarantees that a device is not shut down while its FBlocks are communicating with
FBlocks on other devices. It is also useful if the PowerMaster wants to shut down a group of devices
but only if the whole group is ready.

The PowerMaster sends Shutdown.Start(Query) to a single device or a group of devices.
The PowerMaster will wait for tsuspend t0 allow devices to suspend its own shut down.

A device that requires communication will respond with Shutdown.Result(Suspend).

P w NP

If a device responds to the Query, the PowerMaster will wait for tretryshuown befOre trying
again.

5. Steps one through four may be repeated until tsyspeng €XPires before receiving a request to
suspend the Device Shutdown process. Then the Execution stage is entered.

Execution Stage

To execute Device Shutdown, the PowerMaster starts method Shutdown with parameter
DeviceShutdown in a single device or in a group of devices.

1. The PowerMaster sends Shutdown.Start(DeviceShutdown).
2. The device mutes any streaming outputs.
3. The device unregisters itself from notification matrices in other devices, if any.

The device unregisters its FBlocks by sending an FBlocklDs.Status with an empty FBlockIDList.
The NetworkMaster broadcasts the device’s invalid FBlocks.
The device can shut down its application but the NetBlock has to stay active.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 143

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2.4.3.2 Waking from Device Shutdown
The device can be woken by the PowerMaster or by the device itself.

WakeUp by PowerMaster
1. The PowerMaster sends Shutdown.Start(WakeFromDeviceShutdown).
2. The device wakes its application.
3. The device registers its own FBlocks using FBlocklDs.Status(FBlockIDList).
4. When NetworkMaster reports the new FBlocks they can be used.

Internal Wakeup
1. The device wakes its application.

2. When the System State is OK or when explicitly asked by the NetworkMaster, the device
registers its own FBlocks using FBlockIDs.Status(FBlockIDList).

3. When NetworkMaster reports the new FBlocks they can be used.

3.2.4.3.3 Persistence of Device Shutdown
The state of being in Device Shutdown is not memorized after a system restart.

3.2.4.3.4 Response when Device Shutdown is Unsupported

Since Device Shutdown is optional, the NetBlock of a device that does not have support for Device
Shutdown responds to a request for Device Shutdown with ErrorCode 0x07 (parameter not available).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 144

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.5 Error Management

In the network the following errors may occur on a high level:

e Failure of a Network Slave Device: Error that leads to either a reset of the whole device or
reset of the failing application.

e Critical Voltage: The Netinterface works normally, the device can communicate. On a
recovery from this state, the network does not need to be initialized again.

e Over-Temperature: Depending on the temperature, four different alert levels are defined.

Also, errors may occur on a lower level:

e Fatal Error: Error that leads to the interruption of the ring, to the breakdown of the network, or
that means the network cannot be initialized (super- or sub-voltage, ring break, defect
Physical Interface unit).

e Unlock: The PLL of the MOST Network Interface Controller is no longer locked. A ring break
is not necessarily the inevitable conclusion of this error.

e Network Change Event: One of the nodes in the network has activated or deactivated its
bypass, which means it “disappears” or “appears” as a new node.

e Low Voltage: The voltage of one or more devices is too low to maintain operation of the
NetInterface.

For the handling of these errors, there are the following general rules:

e No Alert Communication: For keeping error management simple, robust and not error-
prone, there is no communication in case of an error.

e Local Handling of Errors: Every device is responsible to handle every recognized error
locally. Only the NetworkMaster handles errors for the entire network.

e Securing Streaming Signals: In opposite to the packet data area and the Control Channel,
there is no data securing for the streaming area. Data transported here is sensitive for
disturbances in case of errors. A device that recognizes an error should immediately secure all
output signals that depend on streaming data transfer. This applies for instance to an audio
amplifier, which has to mute its analog output signal (the one connected to the speakers). The
streaming connections on the Network are not removed, except in case of a fatal error or a
Network Change Event, which leads to the NetworkMaster sending out
Configuration.Status(NotOK).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 145

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.5.1 Fatal Error

A “fatal error” is a kind of error that prevents the modulated signal from being handed on in the Ring.
There are four possible reasons:

e A device (especially a modulated signal transmitter, a modulated signal transceiver, or a MOST
Network Interface Controller) has no, or an insufficient distribution voltage.

e A modulated signal receiver is defect.
e A modulated signal transmitter is defect.

e The modulated signal connection between transmitter and receiver is interrupted

3.2.5.1.1 Handling of Modulated Signal Off

If a device recognizes at its input that the modulated signal was switched off, it switches off its own
output immediately. In case there is the need to wake the network again, it has to wait for tregian. If the
modulated signal was switched off without a ShutDown.Start (Execute), there may be two causes:

e Fatal error (voltage low, ring break), which is described below

e A device runs error handling (e.g., long unlock). In such a case the PowerMaster switches on
the modulated signal again after tRestart has expired, if the vehicle’s status requires it. It
wakes the network in the normal way and by that a re-initialization is done.

If the modulated signal was switched off, it may be the case that it is switched on again after a short
time. If the application would shut down immediately, some devices may need a long time to return to
normal operation. Therefore the application has to be prepared for Shutdown, but has to stay active
for tpwrswitchofibelay- If the modulated signal reappears within teyrswichoripelay, the system is re-initialized
like when waking up after sleep mode. The only difference is that within the devices power supply,
micro controller and operating system need not be re-initialized.

3.2.5.1.2 Waking

If a fatal error occurs while an application tries to wake the network, “modulated signal on” does not
propagate through the entire ring and the Network Service in every device change to state
NetinterfaceOff after tconig. The waking application waits for tresiat and then tries again to wake the
network. This will be repeated up to three times and then it suspends the waking. Only the
PowerMaster tries to start up the network if required by the vehicle’s status.

3.2.5.1.3 Operation

If there is a fatal error during normal operation, “modulated signal off” propagates through the entire
ring. This is handled as described above. In case the power status of the vehicle requires it, the
PowerMaster tries to wake the network after tresiar- SO the handling of a fatal error during waking
needs to be performed (see above).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 146

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.5.2 Unlock
An unlock occurs when a Slave device cannot lock onto the modulated signal of the MOST Network.

Causes for this may be that two TimingMasters in one ring are working against each other or if a
TimingMaster does not receive a comprehensible signal.

Another cause can be that the modulated signal at a node’s input is too weak or a node opens or
closes its bypass. Every node downstream from the location that caused the unlock, up to the
TimingMaster, recognizes the unlock. The nodes downstream of the TimingMaster up to the location
that caused the unlock do not recognize the unlock. On an unlock, data errors occur. Based on its
securing mechanism, the Control Channel is relatively insensitive to short unlocks.

If an unlock would occur all applications must secure its in- and output signals (e.g. an amplifier mutes
the outputs).

The Network Service checks the length of an unlock, or the occurrence of a series of unlocks. If the
length of a single unlock exceeds the time tynock, @an Error Shut Down event (critical unlock) is
generated.

In case of a series of unlocks the time of the different unlocks are accumulated. If this accumulated
time is greater than tynock (@ single unlock which causes a critical unlock) an Error Shut down event is
generated. The accumulated time is reset whenever a stable lock is reached, that is if there is a lock
that lasts at least t; .

The following example will clarify the meaning. (The timer values used can be found in section 3.8 on
page 197).

[Z7] Unlock [Lock [Critical Unlock [| Stable Lock

(1) | Stable Lock | | Gritical Unlock \

@ @ [Lock [] Lock [-] Lock @

@ | Stable Lock | [Tock]] Citical Unlock \

(4) | Stable Lock | ‘ Lock | Stable Lock | \ Lock | Stable Lock

Figure 3-21: Examples of the behavior when unlocks occur.

1. The first example shows an unlock that persists longer than tyno. This result in a critical
unlock (Error Shutdown event).

2. A series of short unlocks with an accumulated time less than ty,.c Will not lead to a critical
unlock.

3. Two unlocks with an accumulated time that exceeds tynoc. This leads to a critical unlock.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 147

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

4. The unlocks are almost as long as tyne The example shows that the system can withstand a
series of long unlocks, provided that a lock time of at least t, . is interspersed.

In addition to that, the change in number of MOST devices is checked. If this number indicates a
Network Change Event, the application will be informed.

3.2.5.3 Network Change Event

A Network Change Event (NCE) is defined as a detected change of the Maximum Position Information
transmitted cyclically on the Network.

If a device opens or closes its bypass, that is, enters or leaves the Network, the Maximum Position
Information changes (except for the case when one device enters and another device leaves the
network in a very short time interval®).

Disturbances of the Maximum Position Information can occur, for example, because of an unlock.
A NCE is recognized by the Network Service in every device.

If an additional node joined the network, the new node must be integrated on system level. Therefore,
SystemCommunicationinit must run (refer to chapter 3.3.1.1.2). In order to achieve that the
NetworkMaster checks configuration again and broadcasts Configuration.Status.

If a node has left the network, the output signals that depend on streaming data transfer must be
secured immediately. Furthermore, every node must be able to handle the case where a
communication partner is missing and must act accordingly in a safe way. The NetworkMaster checks
configuration again and broadcasts Configuration.Status.

'typically up to 24 ms

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 148

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.5.4 Failure of a Network Slave Device
The failure of a Network Slave device can be divided into two scenarios:

1. A Network Interface Controller failure, which leads to a reset of the whole device; that is,
Network Interface Controller, EHC etc. (bottom-up reset).

2. An Application failure. The Network Interface Controller is still OK, hence only the affected
application(s) needs to be restarted.

3.2.5.4.1 Failure of the Network Interface Controller

If a device experiences an internal failure of the Network Interface Controller the whole device must be
re-initialized.

3.2.5.4.2 Failure of an Application

Every application must be able to handle the case where one of its communication partners does not
respond and safely terminate the parts of the program that depend on this communication.

By implementing a watchdog in each device, a long “hanging” of an application should be avoided.

It may happen that single processes in a device are hanging (but not the entire device, as in section
3.2.5.4.1, 'Failure of the Network Interface Controller’), and that those processes need to be restarted.
In case this failure stops an entire, or even several FBlocks, the device has to un-register those
FBlocks in the Central Registry in the NetworkMaster. This is done through a notification of the new
status of FBlockIDs sent to the NetworkMaster:

Device -> NM: NetBlock.RxTxLog.FBlocklDs.Status (FBlockIDList)
This states, that only those FBlocks contained in FBlockIDList are available. The NetworkMaster

updates the Central Registry and broadcasts immediately after the reception of such an
un-registration:

NM -> All: NetworkMaster.l.Configuration.Status (Control=Invalid,

DeltaFBlockIDList)
Control Uns. Byte 0: NotOK
1: OK
2: Invalid
3: New
DeltaFBlockIDList List of FBlockID.InstlID

A detailed description of the handling of "Control = Invalid" and "Control = New" is to be found in
sections 3.3.3.6 and 3.3.4.3.

DeltaFBlockIDList is the list of those FBlocks that are invalid. Therefore, all applications have the
required information and can terminate functions depending on the invalid FBlocks.
Note that the device must not communicate until it receives a Configuration.Status message.

When the failed process is ready (after being killed and re-initialized), the depending FBlocks are
registered again:

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 149

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Device -> NM: NetBlock.RxTxLog.FBlocklIDs.Status (FBlockIDList)

The NetworkMaster registers these FBlocks in the Central Registry and broadcasts immediately after
having received the registration:

NM -> All: NetworkMaster.1l.Configuration.Status (Control=New,
DeltaFBlockIDList)

Here, DeltaFBlockIDList is the list of the new FBlocks.

Please note:

In case a device that starts up fast has single FBlocks starting up relatively slow, the same
mechanism of supplementary registration can be used. However, the status message may not
be sent before the NetworkMaster has asked the device.

When the NetworkMaster reports Central Registry updates, the DeltaFBlockList must contain a
maximum of five FBlocks. This allows the message to be sent within a single telegram (11
bytes max.). This limitation refers to such nodes that can handle single telegrams only. In case
more than five FBlocks must be reported, several single telegrams are sent. Refer to sections
3.3.3.6.1 and 3.3.3.6.2.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 150

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.2.5.5 Supply Voltage

The definition of voltage levels and more information can be found in section 4.6 on page 209. A too-
low supply voltage does not inevitably occur in every device at the same time and in the same
intensity. As already described, there are two limits regarding the supply voltage of a device:

Critical voltage Uciitical:

First, there is the limit at which the application will no longer work safely but where communication is
still possible. Since the application does not work any longer, the output signals that depend on
streaming data transfer must be secured. In case of a recovery, they can be restored immediately.

Low voltage U oy:

There is a second limit, where even the NetInterface no longer works reliable, so even communication
cannot be maintained.

If low voltage is reached, the device is reset; then it switches off the modulated signal and switches to
normal DevicePowerOff Mode, as if it was switched off. The device stays in DevicePowerOff mode,
even if the supply voltage recovers. It is awakened either by “modulated signal on” at its input, or by
the demand for communication from its own application. It changes to mode DeviceNormalOperation
via the standard initialization process. The low voltage reset leads a device to normal behavior.

By opening bypass, the device indicates that it is joining the network. The other devices must then
integrate it into the system via SystemCommunicationlnit. Further signaling is not required here as
well.

U<Uccritical

Device

NormalOperation
U>Ucritical

Device StandBy

Sync Signals Mute

NetInterface Normal
Operation

Sync Signals Demute
Netinterface
NormalOperation

U>Ucritical

DevicePowerOff
(normal Sleep Mode)
NetInterface PowerOff

SystemCommunicationlnit

(Notification...) deleted

((Modulated signal On at receiver)
or (Application Request))

& (U > ULow)

(no own initiative)

Figure 3-22: Behavior of a device depending on supply voltage

! Note: It is up to the System Integrator to decide whether an application is powered or not.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 151

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.2.5.6 Over-Temperature Management

Some components could experience malfunctions or permanent damage when exposed to
temperature conditions above their operating limits. Even though it should be the design goal of every
system that such condition is never reached during normal operation, it is still necessary to define the
system’s behavior for this worst case. This section applies to every device which can monitor its own
temperature and decide when to take appropriate action.

Different strategies are presented for the re-start of the system; they work independent from each
other and can even be mixed within one system, if desired.

3.2.5.6.1 Levels of Temperature Alert

A

\ @

'95hutdcmm

'gNetOn - Y 4
Sypoﬁ /
/ o

AppOiff

AppOn

v

App' ON ts tcool ts tcool
(2)Send Status ﬁ (3)Send Status
App OFF for Shutdown VEKELP Wake-Up

Figure 3-23: Alert Levels

Figure 3-23 shows three of the four different temperature alert levels that can be identified. Starting
with the lowest one, they are:

1. Limited application functionality (not shown in the figure). Above a certain temperature, an
application may decide to limit its functionality in order to reduce power dissipation and hence
the warming up of the device. This could be done “silently” by the application or with an
appropriate notification of the application’s Controller. An example is: Volume limitation in
order to reduce the power stage’s power dissipation.

2. Shutdown of individual applications. If, for example, a telephone unit becomes warmer than its
maximum operating temperature (which is still below the maximum operating temperature for
the Physical Interface unit or other components needed for MOST functionality), the device
could decide to shut down this specific application. The FBlock is then removed from the
CentralRegistry by sending an updated NetBlock.FBlockiDs.Status message to the
NetworkMaster.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 152

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3. If the temperature comes near the critical limit, the device should request a temperature
shutdown from the PowerMaster. This is done by broadcasting NetBlock.Shutdown.Result
with parameter 0x03 (Temperature Shutdown). The PowerMaster will then execute the
standard shutdown procedure, please refer to section 3.2.4.2. Before that, it will set the
PermissionToWake property of all devices except the one with the temperature problem to
“Off".

4. If the critical temperature is finally reached (e.g., if the normal shutdown procedure does not
finish due to a device constantly sending NetBlock.Shutdown.Result(Suspend)), an immediate
shutdown is initiated by the device, which is in critical condition by simply switching the
modulated signal off. Since the PowerMaster is aware of the over-temperature condition
(because of having received the device’'s broadcast message before), it shall avoid an
immediate restart of the network. The PowerMaster is considered to be in “over-temperature-
mode”, a state that is maintained beyond the shutdown of the system.

From these alert levels, only the following subset is mandatory: Point 4 as described above, and the
broadcasting of the message NetBlock.Shutdown.Result(0x03) by the device as described under point
3. All other measures, including the standard shutdown procedure mentioned under point 3, are
optional and can be used independently from each other.

3.2.5.6.2 Re-Start Behavior

After the system has been shutdown (see points 3 and 4 above), it has to stay off long enough for the
device to cool down. The temperature should sink to a level that guarantees a reasonable amount of
operation time when the system is back up again, that is, it is not very useful to have a system that re-
starts and remains in operational state for just a minute.

There are several ways to determine when and how the system shall be re-started. As with the alert
levels, they can be combined in several ways.

a) If the device is able to supervise its own cooling phase, it may wake up the ring when it has cooled
down.

b) The PowerMaster may decide, after a while, to try a re-start. It simply wakes up the ring.

¢) The PowerMaster could be triggered to re-start the ring upon user request.

One of the methods b) or ¢) must be supported by the PowerMaster.
Independent of those three re-start methods, the following is mandatory for the re-start procedure:

If the device finds that it is still above the re-start temperature threshold, it broadcasts
NetBlock.Shutdown.Result(0x03) again immediately after the NetOn state is reached. The
PowerMaster shuts down the system again (without the standard procedure).

If at re-start the NetworkMaster reaches the state “Configuration OK”, the over-temperature
condition of the system is over and the PowerMaster resets the PermissionToWake properties of
all devices to their original state.

A minimum time between re-start attempts of the system shall be guaranteed so the device has a
chance to cool down. After all, a failing attempt to re-start the network lasts no longer than approx.
150ms, so if the minimum interval between such attempts (twaitaterovertempshutoown) 1S, for example,
one minute, the short phase of operation can be considered insignificant.

Note that all temperature levels (those for the alerts as well as those for re-start) are device-specific
and are handled on a device-internal basis. No central component supervises the temperature of a
device and decides for the device when it has to shutdown; this is completely at the device's
discretion.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 153

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3 Network Management

Network Management is the process by which the NetworkMaster ensures secure communication
between applications over the MOST Network. This section describes the conditions that must be met
by the NetworkMaster and the Network Slaves to enable safe Network Management. The tools used
for this process include the control of the System State and the administration of the Central Registry
as well as the Decentral Registries.

Section 3.3.1 contains general descriptions of Network Management. Detailed requirements of the
behavior of MOST devices regarding Network Management are described in sections 3.3.2 through
3.3.4. For more implementation specific information and examples refer to Appendix A.

3.3.1 General Description of Network Management

3.3.1.1 System Startup

This section describes the System Startup following the Init Ready event.

3.3.1.1.1 Initialization of the Network

The NetworkMaster is responsible for initializing the network at System Startup. It collects the system
configuration by requesting the configuration of each individual Network Slave; this is referred to as a
System Scan. The collected information is entered into the Central Registry.

The NetworkMaster sets the System State to OK to indicate that the Central Registry is valid or NotOK
to indicate that the Central Registry is invalid. When the System State is OK, MOST devices may
communicate freely. When the System State is NotOK, communication is limited.

Setting the System State to NotOK resets the system from a network point of view, that is, any
network related information is reset in all Network Slaves. This event prevents the same collisions to
occur more than once.

e If there is no valid logical node address available at System Startup the NetworkMaster resets
the network by setting the System State to NotOK before scanning the system.

e Ifthere is a valid logical node address available at System Startup the NetworkMaster starts to
scan the system.

The NetworkMaster will set the System State to NotOK whenever an error is caused by a Network
Slave registration. The NetworkMaster will perform a System Scan as described in section 3.3.3.4.

A transition to System State OK indicates the completion of the network initialization.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 154

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.1.1.2 Initialization on Application Level

After the NetworkMaster has set the System State to OK initializations that have to do with the
interacting of multiple devices on the application layer should be performed. However, initialization of
the individual applications may start earlier. The application may now initialize communication
controlled by itself. This initialization phase is referred to as “SystemCommunicationinit”.

During SystemCommunicationlnit, for example, notification is established, so the application of a
device may register in the Notification Matrices of those FBlocks from which it desires to get status
information.

The system must be prepared for devices connecting to or disconnecting from the network (Network
Change Event) and FBlocks being activated and deactivated during runtime. In these cases, the
system must run consistently without disturbances and reinitializing phases must be as short as
possible. On a Network Change Event, parts of SystemCommunicationlnit must be run again, but
initialization must not be run completely due to the time this would take.

3.3.1.2 General Operation

3.3.1.2.1 Finding Communication Partners

When an application seeks a communication partner, that is, an FBlock; it requests the whereabouts
of the FBlock from the NetworkMaster. The requesting application receives the available InstIDs of the
sought FBlock and the logical node addresses of the devices in which they reside. Alternatively, if a
specific FBlock is sought, the InstID may also be specified.

A Controller device may store the information concerning its communication partners in a Decentral
Registry. The benefit of having a Decentral Registry is that the Network Slave does not have to
request the logical node address of its communication partners every time it needs to communicate.
The Decentral Registry must be deleted whenever the NetworkMaster sets the System State to
NotOK.

3.3.1.2.2 Network Monitoring

The NetworkMaster monitors the system for changes and errors. When a Network Change Event is
detected, the NetworkMaster must find out if a device has entered or left the network. It scans the
network and reports any new information to all Network Slaves in the system. This way a device will
be notified if one of its communication partners is missing or if new potential communication partners
enter the system. The NetworkMaster may be instructed to scan the system at any time by the
application.

3.3.1.2.3 Dynamic Function Block Registrations

It may happen that devices activate and deactivate FBlocks at any time; these changes have to be
reported to the NetworkMaster. The NetworkMaster then updates the Central Registry and informs all
Network Slaves.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 155

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.2 System States

A MOST Network is in either of two System States, OK or NotOK. The System State reflects the
validity of the Central Registry. The NetworkMaster builds and maintains the Central Registry as well
as distributes the System State to all Network Slaves.

The NetworkMaster builds the Central Registry by collecting logical node addresses and FBlock
configuration from all Network Slaves. The system relies on a valid Central Registry, not only because
it contains the information used by Controller devices to find their communication partners, but also
because it is crucial that a device is informed if one of its communication partners disappears.

The NetworkMaster distributes the System State of the network to the Network Slaves by broadcasting
Configuration.Status messages. The state diagram in Figure 3-24 shows the System States and which
events affect the states.

Ne%

Configuration.Status(OK) Configuration.Status(OK)
NotOK /\A m
(CR Invalid)
Configuration.Status(New)
v\ OK

(CR Valid)

_

Configuration.Status(NotOK)

Configuration.Status(NotOK)

Shutdown.Start(Execute)

U Configuration.Status(Invalid)

Figure 3-24: States of the network are shown, as well as the status of the Central Registry1

The network should be considered to be in a reset state directly following the broadcast of
Configuration.Status(NotOK) by the NetworkMaster. Following this event, all devices delete any
network configuration related information they may have (e.g., logical node address, Central Registry,
Decentral Registry).

Sections 3.3.3 NetworkMaster and 3.3.4 Network Slave describe device specific behavior in the
different System States, as well as making transitions between states.

! Shutdown. Start(Execute) will not cause the re-calculation of logical node addresses (see 3.3.2.1).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 156

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.2.1 System State NotOK

System State NotOK is always entered after an Init Ready event. In this state, communication must
not take place except for special applications that do not rely on a valid registry, in particular the
System Scan performed by the NetworkMaster and other optional features that may be done on a per-
device, position-dependant basis. The system can fall back into System State NotOK at any time by
declaration of the NetworkMaster.

Also, the system is regarded as being in System State NotOK after NetBlock.Shutdown.Start(Execute)
has been broadcast. An optional delay may be specified on a per-system basis between the broadcast
of this message and the point in time where the change of state becomes effective. The logical node
addresses are not re-calculated upon this implicit change of state; this is only done when the message
Configuration.Status(NotOK) has been received.

Event Transition to Cause Effect
Configuration.Status
NotOK No transition - Un-initialized NodeAddress in Network Configuration Reset:
NetworkMaster - Clear Central Registry
- Erroneous registration by network | - Clear Decentral Registries
Slave. - Recalculate NodeAddress
OK SystemState OK - Central Registry verified - Network configuration available
in Central Registry
- Set up Decentral Registries,
where necessary.
- (Re-) initialize applications.

Table 3-13: Events in System State NotOK (refer to Figure 3-24)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 157

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.2.2 System State OK

While in System State OK, the Central Registry is valid. So the exact set of FBlocks in the system,
each with its attributes InstID and DevicelD, is defined. Therefore, application communication (i.e.
messages with FBlockIDs other than NetBlock or NetworkMaster are allowed) may take place on
Control and Packet Data Channels. All the dynamic communication on application level within the
distributed system should be done only in System State OK.

Event Transition to Cause Effect

Configuration.Status

NotOK SystemState NotOK | - Erroneous registration by network Network Configuration Reset:
Slave. - Clear Central Registry

- Clear Decentral Registries
- Recalculate NodeAddress

OK No transition - Large update to the Central - Clear Decentral Registries
Registry

New No transition - New FBlocks are available - Notify application

Invalid No transition - FBlocks were removed - Notify application

Table 3-14: Events in System State OK (refer to Figure 3-24)

Table 3-14 shows the effects of a Configuration.Status(NotOK) event in System State OK from a
Network Management point of view. In addition, the following tasks have to be performed by all
devices:

e Empty Notification Matrix.
e Destroy all windows on LongArrays.

e Every FBlock containing streaming sinks: set the Mute property to "ON" for all sinks and
disconnect them.

e Every FBlock containing streaming sources: All sources must route zeroes (signal mute) to its
channels for a time tcieanchannels- After time tejeanchannets all streaming sources must de-allocate
the channels they have allocated and stop routing data to the network.

e The Connection Manager must delete its SyncConnectionTable.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 158

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.3 NetworkMaster

The device that contains the NetworkMaster FBlock is referred to as the NetworkMaster. There must
be one, and only one, NetworkMaster in a MOST Network.

The NetworkMaster controls the System State and administrates the Central Registry. The
NetworkMaster monitors the network for certain events and continuously manages incoming
information from Network Slaves about their current FBlock configuration and whenever necessary
informs all Network Slaves about updates to the Central Registry.

3.3.3.1 Setting the System State

The NetworkMaster distributes the System State by broadcasting Configuration.Status messages.
More information about the different System States and Configuration.Status messages is available in
section 3.3.2.

3.3.3.1.1 Setting the System State to OK

By setting the System State to OK, the NetworkMaster confirms the validity of the Central Registry.
Therefore, before setting the System State to OK, the NetworkMaster must make sure that all
functional addresses are unique in the system (section 2.3.2.3).

The NetworkMaster must do the following when setting the System State to OK:
1. Broadcast Configuration.Status(OK).
2. Trigger initialization of applications in own device.

3. Continue to maintain the Central Registry.

3.3.3.1.2 Setting the System State to NotOK (Network Reset)
By broadcasting Configuration.Status(NotOK), the NetworkMaster resets the system (from a network
point of view). Note that this does not necessarily imply a state change, as described in section 3.3.2.
The NetworkMaster must do the following when setting the System State to NotOK:

1. Broadcast Configuration.Status(NotOK).

2. Clear the Central Registry.

3. Derive and set the new logical node address (section 3.4.1).

4

Wait a time twaiseforescan after Configuration.Status(NotOk) was broadcasted and perform a
System Scan (section 3.3.3.4).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 159

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.3.2 Central Registry

The NetworkMaster generates the Central Registry during the initialization of the network and it
continues to administrate it until Network Shutdown (section 3.2.4.2). The Central Registry is an image
of the physical and logical system configuration. It contains the logical node address and the
respective FBlocks of each device:

RxTxLog RxTxPos FBlockID InstID

0x0100 0 AudioDiskPlayer 1
NetworkMaster 10
ConnectionMaster 1

0x0101 1 AudioDiskPlayer 2

0x0102 2 AM/FMTuner 1
AudioTapeRecorder 1

0x0103 3 AudioAmplifier 2

Etc.

MaxNode MaxNode HumanMachinelnterface 1

Table 3-15: Example of a Central Registry

3.3.3.2.1 Purpose

The Central Registry is used when the NetworkMaster checks the system configuration and when
devices are searching for communication partners.

3.3.3.2.2 Contents

The Central Registry must contain the logical node address and the respective functional addresses
(combination of FBlocks and InstIDs) of the FBlocks in each responding MOST device. This
information must be made available to all Network Slaves.

3.3.3.2.3 Responsibility

Any new information gained regarding the system configuration must be entered into the Central
Registry and distributed to all Network Slaves as described in section 3.3.3.6.

The NetworkMaster must only start supervising and store errors for those Network Slaves that have
answered requests and which are registered in the Central Registry.

3.3.3.2.4 Responding to Requests for Information from the Central Registry

The NetworkMaster must respond to requests for CentralRegistry.Get from the Network Slaves while
the System State is OK. This is described in section 2.3.7.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 160

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.3.3 Specific Behavior During System Startup

After the Init Ready event, the NetworkMaster must initialize the system. This process depends on the
availability of a valid® logical node address.

3.3.3.3.1 Valid Logical Node Address Not Available

If the NetworkMaster does not have a valid logical node address available at System Startup, it
assumes that the entire system must be re-initialized. The NetworkMaster must set the System State
to NotOK (section 3.3.3.1.2) and then start a System Scan (section 3.3.3.4).

3.3.3.3.2 Valid Logical Node Address Available

If the NetworkMaster has a valid logical node address at System Startup, it must restore its logical
node address and then start a System Scan (section 3.3.3.4).

The NetworkMaster must wait a time twajeforescan D€fOre scanning the system for the first time. This
latency time allows the system to stabilize after Init Ready event. This latency time must not exceed

twaitafterNCE-

! A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.1.4.1.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 161

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.3.4 Scanning the System (System Scan)

The NetworkMaster scans the system at System Startup and after a Network Change Event (NCE).
It may also be instructed to scan the system at any other time.

The NetworkMaster scans the system by requesting the FBlock configuration of each device. The
responses from the Network Slaves are interpreted as described in section 3.3.3.5. Any information
gained concerning the configuration of the network must be written to the Central Registry and
reported to all Network Slaves as described in section 3.3.3.6.

The NetworkMaster will set the System State to NotOK whenever an error is caused by a Network
Slave registration.

3.3.3.4.1 Configuration Request Description

During a network scan, the NetworkMaster requests NetBlock.FBlockIDs.Get from each Network
Slave.

3.3.3.4.2 Addressing

The NetworkMaster scans the system by node position addressing. The logical node address of the
requested Network Slave is contained in the response message.

3.3.3.4.3 Non Responding Network Slaves

The NetworkMaster must wait until the expiration of tyairoranswer fOr @ reply from a Network Slave.
The NetworkMaster must send another request to the Network Slave as described in section 3.3.3.4.4.

3.3.3.4.4 Retries of Non Responding Network Slaves

When a Network Slave does not respond to a request, the NetworkMaster must try again after
tpelaycigrequestt OF tpelaycigrequest2: pelaycigrequestn 1S Used for the first 20 request attempts after entering
NetInterfaceNormalOperation, after that tpeiaycigrequest2 IS Used.

Refer to section 3.8 for more information about timers.

3.3.3.4.5 Network Slave Continuous cause for System State NotOK

The NetworkMaster should ignore a Network Slave which has caused the NetworkMaster to broadcast
Configuration.Status(NotOK) three times in succession. The NetworkMaster should ignore the
Network Slave until the next NCE or the next System Startup.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 162

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.3.4.6 Duration of System Scanning

The NetworkMaster must continue to scan the system until all Network Slaves have answered the
requests. Refer also to section 3.3.3.4.4.

3.3.3.4.7 Reporting the Results of a System Scan without Errors

The NetworkMaster must report the result of the System Scan if it has any new information to
distribute, such as a change in System State or changes in the FBlock configuration of one or more
Network Slaves. Refer to sections 3.3.3.1 and 3.3.3.6.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 163

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.3.5 Invalid Registration Descriptions

The NetworkMaster interprets the incoming registrations and determines if the registration is accepted.
The following are considered to be invalid registrations, but all are not considered erroneous since
some may be corrected by the NetworkMaster.

3.3.3.5.1 Une-initialized Logical Node Address

If any Network Slave, at any time, registers an un-initialized logical node address (section 3.1.4.1), the
NetworkMaster must set the System State to NotOK (section 3.3.3.1.2), interrupting any ongoing
System Scan.

3.3.3.5.2 Invalid Logical Node Address

When the NetworkMaster receives a registration from a Network Slave in which its logical node
address is outside of the specified address range, the NetworkMaster must set the System State to
NotOK (section 3.3.3.1.2), interrupting any ongoing System Scan.

Refer to section 3.4.1 for more information about the valid address range.

3.3.3.5.3 Duplicate Logical Node Addresses

When the NetworkMaster receives a registration from a Network Slave in which its logical node
address has already been registered by another Network Slave, the NetworkMaster must set the
System State to NotOK (section 3.3.3.1.2), interrupting any ongoing System Scan.

3.3.3.5.4 Duplicate InstID Registrations

The NetworkMaster is responsible for the uniqueness of functional addresses (combination of
FBlockiDs and InstID) within the entire system. The NetworkMaster must try to resolve the issue of
two or more Network Slaves registering identical functional addresses.

The NetworkMaster decides a new InstID for the last registered FBlock. It then sets the new InstID in
the corresponding Network Slave, by using the logical node address. If the new InstID was accepted
by the Network Slave, the NetworkMaster enters the new value into the Central Registry. The
NetworkMaster must inform all Network Slaves as described in section 3.3.3.6 or by ultimately setting
the System State to OK.

If the request to change the InstID of a conflicting FBlock is not successful, the NetworkMaster must
not include the FBlock into the Central Registry.

3.3.3.5.,5 Error Response

A Network Slave that answers a request from the NetworkMaster with an error must be treated as a
non-responding Network Slave (section 3.3.3.4.4). The exception to this rule is the correct response of
a Secondary Node (section 3.2.3).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 164

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.3.6 Updates to the Central Registry

The NetworkMaster must inform all Network Slaves about changes of the system configuration. This
information may become available during a System Scan or as Network Slaves make additional
registrations, which are not requested by the NetworkMaster.

This section describes how the NetworkMaster handles changes to the system configuration while in
System State OK.

3.3.3.6.1 Disappearing Function Blocks in System State OK

If the NetworkMaster receives a registration from a Network Slave in which there is one or more
FBlocks missing compared to the last registration from the same Network Slave, the NetworkMaster
must update the Central Registry and inform all Network Slaves about the missing FBlocks. This is
done by broadcasting:

Configuration.Status(Invalid, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the previously registered but now invalid FBlocks. The
DeltaFBlockIDList must only contain five FBlocks. If there are more than five invalid FBlocks, several
single messages must be sent.

If the FBlock 0x03 (ConnectionMaster) is unregistered in the Central Registry, a
NetworkMaster.Configuration.Status(NotOk) must be broadcast. Afterwards, a System Scan is
performed (see section 3.3.3.1.2).

When one or more FBlocks have disappeared the NetworkMaster should inform all Network Slaves
about the missing FBlocks as quickly as possible, even if this information is gained while scanning the
network.

3.3.3.6.2 Appearing Function Blocks in System State OK

If the NetworkMaster receives a registration from a Network Slave in which there is one or more
additional FBlocks compared to the last registration from the same Network Slave, the NetworkMaster
must update the Central Registry and inform all Network Slaves about the new FBlock. This is done by
broadcasting:

Configuration.Status(New, DeltaFBlockIDList)

The DeltaFBlockIDList parameter is a list of the new FBlocks. The DeltaFBlockIDList must only
contain five FBlocks If there are more than five new FBlocks, several single messages must be sent.

If this information is gained while scanning the network, the NetworkMaster may continue to scan the
system before it informs all Network Slaves.

3.3.3.6.3 System scan without any change in Central Registry

The NetworkMaster shall broadcast a Configuration.Status(New) with an empty list when a network
scan that was triggered by an NCE did not detect any changes to the registry.

Note:
Configuration.Status(New) with an empty list can only be sent after the scan has been completed.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 165

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.3.6.4 Large Updates to the Central Registry in System State OK

If the NetworkMaster receives registrations, which result in large updates to the Central Registry, it
either broadcasts the respective sequence of New and Invalid messages or just a
Configuration.Status(OK). Both methods indicate to the Network Slaves that there is a new, updated
Central Registry available. The latter method requires the Network Slaves to fetch the differences
themselves.

3.3.3.6.5 Non-responding Devices in System State OK

If a Network Slave, which has registered in the Central Registry since startup, does not respond to the
request before twaitroranswer €Xpires, the NetworkMaster removes the Network Slave from the Central
Registry and informs all Network Slaves as described in section 3.3.3.6.1.

3.3.3.7 Miscellaneous NetworkMaster Requirements

3.3.3.7.1 Network Change Event (NCE)

When an NCE is detected, the NetworkMaster must start a complete System Scan (section 3.3.3.4)
after twainarernce. This also applies to a Verification Scan at System Startup (section 3.3.3.3). Any scan
in progress when the NCE is detected must be interrupted and restarted.

3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network

The NetworkMaster FBlock must be located in a MOST device with a hode position address such that
it fulfills the requirement of typrpeay (refer to section 3.8). The NetworkMaster FBlock is normally
located in the same MOST device as the TimingMaster.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 166

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.4 Network Slave

All devices that do not contain the NetworkMaster FBlock are called Network Slaves. A Network Slave
must keep the NetworkMaster informed about its current FBlock configuration.

3.3.4.1 Decentral Registry

Devices that control other devices should build a Decentral Registry in which it registers its
communication partners. A Decentral Registry contains the functional addresses and the respective
logical node address:

Functional Address Device Containing the FBlock
(FBlockID.InstID) (Logical Node Address = DevicelD)
AudioAmplifier.1 0x0105

AudioAmplifier.2 0x0103

AM/FMTuner.1 0x0107

AudioDiskPlayer.1 0x0107

Table 3-16: Example of a Decentral Registry

3.3.4.1.1 Building a Decentral Registry

The information stored in the Decentral Registry is gained from the Central Registry. The Decentral
Registries are only re-built on demand; that is, not directly following a transition to System State OK.

3.3.4.1.2 Updating the Decentral Registry

The FBlock entries stored in the Decentral Registry must match the entries of the respective FBlock in
the Central Registry. When the NetworkMaster informs of updates to the Central Registry, the
Decentral Registry must be updated accordingly for the registered FBlocks.

3.3.4.1.3 Deleting the Decentral Registry
The Decentral Registry must be cleared when the device enters or assumes state NotOKk.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 167

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.4.2 Specific Startup Behavior

Following the Init Ready event the Network Slave initializes its logical node address, and services
requests from the NetworkMaster.

3.3.4.2.1 Behavior When a Valid Logical Node Address is not Available at System Startup

If the Network Slave does not have valid" logical node address available at System Startup, it must set
its logical node address to the value of an uninitialized logical node address (section 3.1.4.1) and
services requests from the NetworkMaster until the NetworkMaster sets the System State.

3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup

If the Network Slave has a valid" logical node address stored from the previous system run, it uses
that logical node address and services requests from the NetworkMaster until the NetworkMaster sets
the System State.

3.3.4.2.3 Deriving the Logical Node Address of the NetworkMaster

The logical node address of the NetworkMaster must be derived from the Configuration.Status
message at each System Startup.

! A valid logical node address is any address within the dynamic or static address ranges as defined in
section 3.1.4.1.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 168

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.4.3 Normal Operation of the Network Slave

3.3.4.3.1 Behavior in System State OK

A Network Slave may communicate freely while the System State is OK.

3.3.4.3.2 Behavior in System State NotOK

While the System State is NotOK a Network Slave must not initiate any communication except for
special applications that do not rely on a valid Central Registry, such as optional features that can be
done on a per-device, position-dependant basis.

A Network Slave must not send a NetBlock.FBlockIDs.Status(FBlockIDList) message in System State
NotOK without being requested explicitly by the NetworkMaster.

3.3.4.3.3 Responding to Configuration Requests by the NetworkMaster

The Network Slave responds to requests for FBlock configuration from the NetworkMaster at all times,
regardless of the current System State. The response must be sent before the expiration of tanswer-

The Network Slave must report all FBlocks that are currently active from a network point of view. The
FBlocks 0x00 (Network Service), 0x01 (NetBlock) and OxOF (Enhanced Testability) are neither listed in
NetBlock.FBlocklDs.Status messages nor in the Central Registry. In general, it is not recommended to
include FBlocks whose InstiIDs are coupled with the current node position in the
NetBlock.FBlockIDs.Status list or the Central Registry.

If the Network Slave does not have any active FBlocks, it must respond with an empty FBlockIDList.

3.3.4.3.4 Reporting Configuration Changes to the NetworkMaster

When the FBlock configuration of a Network Slave changes, it must report this change to the
NetworkMaster; however, it must not do so if the current System State is NotOK (section 3.3.4.3.2).

3.3.4.3.5 Failure of a Function Block in a Network Slave

This behavior is described in section 3.2.5.4.

3.3.4.3.6 Failure of a Network Slave Device

This behavior is described in section 3.2.5.4.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 169

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.3.4.3.7 Unknown System State

If the Network Slave does not know the current System State, it must assume that the System State is
NotOK. For determining of System State, refer to section 3.3.4.3.8.

Note: The device also has to assume state NotOk when the NetInterface enters normal operation.

3.3.4.3.8 Determining the System State

The current System State must be determined from the Configuration.Status message, which is
broadcasted by the NetworkMaster. The Configuration.Status (NotOK) implies the system status being
NotOK. All other Configuration.Status messages imply the System State is OK, for example,

e Configuration.Status(Ok)
e Configuration.Status(New)
e Configuration.Status(Invalid)

e Configuration.Status(New, <empty>)

3.3.4.3.9 Finding Communication Partners

The Central Registry must be used if the application of a device seeks a logical node address. Note
that this must be done only if the information is not already available in a Decentral Registry (section
3.3.4.1).

3.3.4.3.10 Reaction to Configuration.Status(OK) when in System State NotOK

When the NetworkMaster sets the System State to OK the Network Slave:
1. Uses its current Decentral Registry or rebuilds a Decentral Registry when necessary.
2. (Re-) initializes the application.

The System State is set to OK. For additional information, refer to section 3.3.2.

3.3.4.3.11 Reaction to Configuration.Status(OK) when in System State OK

The NetworkMaster sends this message to inform all Network Slaves that there is a large update to
the Central Registry. All Network Slaves must:

1. Clear any Decentral Registry.
2. Rebuild a Decentral Registry when necessary.
3. The application must secure all streaming data associated with any disappearing FBlocks.*

The System State remains in OK. For additional information, refer to section 3.3.2.

! Generally it is more efficient to send individual updates.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 170

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK

The NetworkMaster sends this message to reset all Network Slaves from a network point of view. All
Network Slaves must:

1. Clear any Decentral Registry.
2. Derive and set the new logical node address (section 3.4.1).

The System State remains in NotOK. For additional information, refer to section 3.3.2.

3.3.4.3.13 Reaction to Configuration.Status(NotOK) when in System State OK

When the NetworkMaster sets the System State to NotOK, the Network Slave must: Also add to
GeneralPlayer?

1. Clear any Decentral Registry.
Derive and set the new logical node address (section 3.4.1).

2
3. Empty Notification Matrix.

4. Destroy all windows on LongArrays.
5

Every FBlock containing streaming sinks: set the Mute property to "ON" for all sinks and
disconnect them.

6. Every FBlock containing streaming sources: All sources must route zeroes (signal mute) to its
channels for a time tcieanchannels- After time teieanchanners all streaming sources must de-allocate
the channels they have allocated and stop routing data to the network.

7. Service requests from the NetworkMaster while waiting for the System State to be set to OK.

The System State is set to NotOK. For additional information, refer to section 3.3.2.

3.3.4.3.14 Reaction to Configuration.Status(New)

One or more FBlocks have entered the system and the Central Registry has been updated with the
FBlocks supplied in the message. These FBlocks should be added to the Decentral Registry, if they
are used by the device.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.3.2.

3.3.4.3.15 Reaction to Configuration.Status(Invalid)

One or more FBlocks have left the system and the FBlocks supplied in the message have been
removed from the Central Registry. These FBlocks have to be removed from the Decentral Registry if
entered. The application must secure any streaming data associated with the disappearing FBlock.

If a device receives a Config_Invalid with (part of) its own FBlockID(s) and InstID, it has to reinitialize
either the announced applications or all applications of the device. If it reinitializes all of its
applications, the device sends an empty FBlockID-List to the NetworkMaster.

When reinitializing, the device has to secure the streaming and packet data connections, as well as to
clear all notifications.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 171

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

The device has to clear its routing table and furthermore has to be able to handle the periodic update
of the allocation table. After the reinitialization is done, the device has to register its FBlocks again.

This message is only sent in System State OK. The System State remains in OK. For additional
information, refer to section 3.3.2.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 172

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.4 Accessing Control Channel

3.4.1 Addressing

In a MOST network, nodes in a ring are addressed. The MOST Network Interface Controller provides
five different types of addresses, which are described below.

Internal Node Communication Address
This address is reserved for internal communication in a node

Node position address (RxTxPos)

The node position address is made up by the physical position of the MOST Network Interface
Controller. The node position address is called RxPos for a receiving node and TxPos for a
transmitting node.

Logical node address (RxTxLog)
User definable address. It must be unique in the system and is called RxLog for receiving
nodes and TxLog for transmitting nodes.

Group address
Provides access to a group of devices.

Broadcast address
All devices.

Addressing is done in the following way:

Node Position Address:

A node position address is unique by definition but it has the disadvantage that the receiving
MOST Network Interface Controller does not report the sender’s node position address, but
the sender's logical node address. This happens only when using node position addressing.
For this reason, node position addressing is not used under normal operation conditions. It is
used by the NetworkMaster only for administrative tasks, such as during initialization. A node
position address can be determined using the NodePositionAddress function in the
NetBlock. It consists of an offset plus the physical position value:

RxTxPos = 0x0400 + Pos

Pos = 0 for TimingMaster
Pos = 1 for first device in ring...

Logical Node Address:

Logical node addressing is used by all nodes to address a single node. The section below
describes the default procedure for assigning logical node addresses.

A logical node address must be unique even if there are multiple devices of the same type.
Therefore, it is derived from the unique node position address. During initialization of the
network, the logical node address is calculated by each device as follows:

RxTxLog = 0x0100 + Pos

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 173

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

The device containing the TimingMaster is located at physical position zero; it will have the
logical node address 0x0100. A device at position five in the ring will have address 0x0105.

Another approach, using the static address range, is to assign certain address ranges with
respect to the functionality of devices. That means, for example, that the first video display
module in a network gets address 0x0200, the second 0x0201, etc., while the first active
amplifier gets address 0x0188.

The logical node address can be requested from the function NodeAddress in the NetBlock.

The same logical node address must be used between two successive system runs unless the
device is removed from power. If the device is removed from power it is optional to store the
logical node address. After first power up, the logical node address is normally set to OxFFFF
(refer to sections 3.3.3.3 and 3.3.4.2) but it may also be set to a predefined system specific
value.

Group Address:

The group address can be requested from function GroupAddress in the NetBlock and can
be modified using this function if required. The default procedure for deriving a group address
is to take the FBlockID of the FBlock that is most characteristic for the device:

GroupAddress = 0x0300 + FBlockID

The FBlocklID that is reported first in case of a request for the FBlockIDs is typically the most
descriptive for the device.

Another approach for example, is that the System Integrator may choose to use a hard coded
group address for the whole system, that is, that each device comes up with the same group
address.

Groups can be built dynamically by modifying group addresses.

If the device is removed from power it is optional to store the group address in non-volatile
memory. The group address can be recovered when the system starts up the next time.

If the group address is stored in volatile memory, it is lost if the device loses power for some
time. In that case, the default value (FBlockID) must be restored.

Broadcast Address:

Broadcast addressing requires a great deal of system resources and therefore should be used
for administrative tasks only.

FUNCTIONS
FktID OPType [Sender Receiver Explanation
NodePosition Get Controller NetBlock Requesting node position address
Address
Status NetBlock Controller Answer
NodeAddress Get Controller NetBlock Requesting logical node address
Status NetBlock Controller Answer
GroupAddress Get Controller NetBlock Requesting group address
Status NetBlock Controller Answer
Set Controller NetBlock Setting group address

Table 3-17: Functions in NetBlock that handle addresses

Specification Document

Page 174

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.4.2 Assigning Priority Levels

Despite the high capacity of the Control Channel, temporary overload situations are possible, for
example, during system initialization. Nevertheless, it must be possible to send important messages in
that case. To do this, a fair arbitration mechanism is implemented in the MOST Network Interface
Controller. For each Control Message a priority level can be assigned (range 0x00, ..., OxOF with
value 0x00 = lowest priority).

3.4.3 Low Level Retries

In case the sending of a Control Message is not successful, the MOST Network Interface Controller
can re-send the message automatically. The MOST Network Interface Controller may allow specifying
the number of retries and the delay between the retries. Typically, these values should not be
changed, however, they can be modified to fine tune the system.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 175

MOST Specification 10/2006

MOST®

Specification

3.4.4 Basics for Automatic Adding of Device Address

Since applications know only functional but not device addresses, a protocol that is transported must
be complemented by the device address (DevicelD). There are two possible ways to achieve this.

One way is when the application answers a request. In this case it already has the DevicelD of the
target node because it was reported during the request. The other way is when the application is
sending a protocol and does not know the DevicelD of the target. In this case it sets the DevicelD to
OXFFFF. The ID is complemented by the Network Service and inserted into the MOST telegram as
TxAdr. Refer also to sections 3.3.3.2 and 3.3.4.1 for information regarding the Central Registry and

the Decentral Registries respectively.

Please note:

When seeking the logical node address of a communication partner, a device performs the

following flow:

Need for sending an
application message

Logical Node
Address of partner

Registry

no

yes

available in De-central

Request Logical
Node Address of
partner from Central
Registry

partner found?

Logical Node Address of

Error! Report to
application

yes)
Store adress in De-

central registry.

 J

MOST

Send message

A

End

Figure 3-25: Seeking the logical address of a communication partner

Specification Document
Page 176

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.4.5 Handling Overload in a Message Sink

The MOST Network Interface Controller informs the sender's Network Service by a NAK error
message indicating that the receiving node has rejected a telegram although the low level retries were
used. This is an indicator for a momentary overload or a defect. The Network Service passes the NAK
error message through to the application, which has to decide what needs to be done (retry, reject,
postpone). The error is stored as Error_NAK.

If that telegram belongs to a connection where data is sent continuously from a sender to a receiver,
an optional mechanism can be implemented which adapts the telegram transfer rate to the speed of
the data sink. A simple mechanism may look like this:

Adapting transfer rate
in connections

.

A

Sending a telegram

Telegram
rejected?

Retry telegram?

No
Y

Last Telegram Yes
processed?

Postpone
message

Yes

>
-

A \— Reject entire message

End

Figure 3-26: Possible mechanism to adapt transfer rates to the speed of a data sink

It is assumed here, that errors due to incorrect address, or CRC error are handled “on top” of that
mechanism. “Message” refers to the entire amount of data to be sent. A telegram is that portion of
data which can be transported on the Control Channel. It transports a part of the entire message.
Rejecting a telegram means that the target node could not process it due to an occupied receive
buffer. In that case, the MOST Network Interface Controller has already run its low level retries. Now
the application has three selections:

1.) The telegram can be sent again, thus having additional low level retries available.
2.) The entire message can be rejected, for example, because it is no longer relevant.

3.) The entire message can be postponed, that is, sent later.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 177

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.4.6 MOST Message Services

3.4.6.1 Control Message Service

Via the MOST Network Interface Controller, MOST telegrams can be sent and received which consist
of a sender or receiver address respectively (RxTxAdr), and a maximum number of 17 data bytes.

Data area of MOST Network Interface Controller = 17 bytes

16 bits
RXTxAdr

The Network Service provides a mechanism which is called Control Message Service (CMS).
It handles the setting and reading of the registers of the MOST Network Interface Controller.

3.4.6.2 Application Message Service (AMS) and Application Protocols

MOST Network Service provides three different types of transmissions via the Control Channel. Two
of them are mandatory for each device:

Control Control
Channel Channel

Application Message Service MOST
(Single + Segmented) High
Protocol

Control Message Service

Network Service

Figure 3-27: Network Service: Services for Control Channel

e Single Transfer: Data packets up to 12 bytes are transmitted in a single telegram.

e Segmented Transfer: Commands and status messages with a length greater than 12 bytes
are transported by multiple telegrams. These segmented transfers have a maximum length of
65536 bytes.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 178

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

Single as well as segmented transfers are based on the Application Message Service (AMS), which is
mandatory for all MOST Network Services. In addition to that, a third transmission procedure is
defined:

e MOST High Protocol: For connections, that is, the transmission of data streams or the
transmission of larger data packets, a higher transport protocol, the MOST High Protocol can
be used, which is derived from the well-known Transport Control Protocol (TCP). It uses some
of the mechanisms defined by TCP but can only be used for communication within the MOST
network. MOST High Protocol transports data and could be used for transporting data coming
from the external world (GSM) that is secured by the “real” TCP.

As already described in section 2.3.2 on page 28, protocols of the following type must be transmitted:

DevicelD.FBlockID.InstID.FktlD.OPType.Length (Parameter)

The Application Message Service (AMS), is based on the Control Message Service (CMS). MOST
telegrams transport application protocols. Each telegram is divided up as follows:

Data area of MOST Network Interface Controller = 17 bytes

16 bits 8 bits 8 bits 12 bits | 4 bits | 4 bits 4 bits 8 bits 8 bits 8 bits
DevicelD FBlock Inst. Fkt OP Tel Tel Data O | Data 1l Data 11
ID ID ID Type ID Len

The parts of the application protocol are cross-hatched. The length of the application protocol is not
transmitted directly. It has no meaning on telegram level, since several telegrams may be required to
transport one protocol. Nevertheless, length is transmitted indirectly via TelLen and MsgCnt and must
be restored on the receiver’s side.

The telegram length (TelLen) is not an upper bound for the data length instead it is mandatory that the
TelLen is the exact length of the valid data.

TellD: Identification of kind of telegram
Meaning TellD Data 0 =
MsgCnt
Single Transfer 0 Data 0
1> telegram Segmented Transfer 1 0x00
2" telegram Segmented Transfer 2 0x01
2
2 OxFF
2 0x00
2
(n-1). Telegram Segmented Transfer 2 0x(n-1)
Last telegram Segmented Transfer 3 0xn
MOST High Protocol User data 8
MOST High Protocol Control data 9
TelLen: = 0...12 the number of data bytes that are valid in the telegram.
Data 0-Data 11: Data bytes
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 179

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.5 Handling Streaming Data

3.5.1 MOST Network Service API

The MOST Network Interface Controller provides mechanisms for administrating Streaming Channels.
In addition to that, the Network Service provides an API to simplify the use of those mechanisms.

Control Control Streaming
Channel Channel Channel
Application Message Service MOST Allocation
(Single + Segmented) High Service
Protocol

Control Message Service

Network Service

Figure 3-28: Network Service for the Streaming Channel

On the network, streaming and packet data can be transported within a MOST frame. Definition:

e A Streaming Channel corresponds to a byte (8 bits) in the MOST frame

A certain number of these channels can be used for streaming data transfer.

Several channels can be clustered into a streaming connection for an application. Each connection is
assigned a Connection Label.

The NetInterface connects the channels within a device to the MOST Network.

MOST25

On the network, 60 bytes for streaming and packet data transport are available per frame. A certain
number of these channels can be used for streaming data transfer. Here, several channels can be
clustered to a streaming connection for an application. Channels are grouped together into groups of
maximum 8 channels. Every group is then assigned a Connection Label, which is the number of the
lowest channel in the group. Using connection labels makes it easier to handle connections spanning
several groups.

Access to the channels within a device (putting data onto the channels, or getting data from the
channels) is done through the source data ports of the MOST Network Interface Controller in several
different modes. Connecting the source ports with the channels is controlled via the Routing Engine
(RE).

MOST50

Bandwidth is allocated implicitly by creating a socket where the size of the socket denotes the amount.
By simply destroying the socket, the allocated bandwidth is de-allocated.

This approach relies on a connection label (16-bit word) combined with bandwidth information (also
16-bit word), instead of a long list of single byte channels.

Furthermore, the routing and the low-level allocation are entirely encapsulated by the Network
Interface Controller and of no influence to the application.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 180

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.5.2 Function Block Functions

On the application level, different basic functions in sources and sinks are realized, which serve the
administration of streaming connections. They themselves access the routines of the Network Service.
The FBlock functions can be categorized into three categories:

e Functions that represent the whole device and are located in NetBlock.
e Functions that provide information about both sources and sinks within an FBlock.
e Functions that deal specifically with only sources or sinks within an FBlock.

3.5.2.1 NetBlock
NetBlock provides the following method to the network:

e SourceHandles
A Controller can request information of which FBlock is using a specific connection. To get the
information it asks:

Controller -> Slave: NetBlock.Pos.SourceHandles.Get (Handle)
Since there can be several FBlocks in a device using the same connection, the answer is:

Slave -> Controller: NetBlock.Pos.SourceHandles.Status
(Handle, FBlocklID.InstlID,
Handle, FBlocklID.InstlID,

--)

In case the handle is not used, the following error is reported:

Slave -> Controller: NetBlock.Pos.SourceHandles.Error (0x07, 0x01, Handle)

If the Controller specifies OxFF as handle, it gets the handles of all connections used in the
device and the IDs of the FBlocks using them.

Please note: the SourceHandles function should only be used for debugging purposes.

3.5.2.2 General Source / Sink Information
An FBlock containing a source or sink provides the following function:

e SyncDatalnfo
Function SyncDatalnfo can be used to get information of how many connections the FBlock
may serve as source (SourceCount) or as sink (SinkCount). Sources and sinks are numbered
in ascending order starting from 1. There can be no gaps between different source/sink
numbers. A request is sent:

Controller -> Slave: FBlockID. InstlID.SyncDatalnfo.Get

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 181

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

The answer contains the number of sources/sinks in this FBlock:

Slave -> Controller: FBlocklID. InstlD.SyncDatalnfo.Status (SourceCount,
SinkCount)

3.5.2.2.1 Streaming Source

Some of the functions that a streaming source provides to the network are shown below. The
functions are requested with parameters from the ConnectionMaster and will return a corresponding
list of parameters.

e Sourcelnfo
Property Sourcelnfo contains detailed information about the kind of streaming source data that
the source can handle. The source information is specific for each source number.

On a request with the SourceNr:

Controller -> Slave: FBlocklID. InstlID.Sourcelnfo.Get (SourceNr)

The following is received:

Slave -> Controller: FBlocklID. InstlID.Sourcelnfo.Status (SourceNr, DataType,
[DataDescription])

The DataType parameter describes the kind of streaming data stream that is sent by the
source. Depending on DataType, a DataDescription may follow. Information about data types
can be found in the corresponding Stream Transmission specification.

Note that DataDescription is basically static, but with one exception: the element ChannelList.

e SourceName
Property SourceName holds the name of the streaming source.
It is requested with the SourceNr as parameter:

Controller -> Slave: FBlockID.InstlD.SourceName.Get (SourceNr)

The answer is a string containing the name:

Slave -> Controller: FBlocklD. InstlD.SourceName.Status (SourceNr, SourceName)

e SourceActivity'
Some streaming source applications require either to start or to stop transmission of stream
data controlled by superior layers. In general, there are specific functions that need to be
called for performing the starting or stopping. It is easier for the Controller if this specific
information is not needed. Therefore, for every streaming source data stream, the abstract
method SourceActivity is defined.

Controller -> Slave: FBlockID.InstlD.SourceActivity.StartResult (SourceNr,
Activity)

Through parameter Activity = [On/Off/Pause], streaming data transfer can be started, stopped,
or paused.

! The SourceActivity is optional.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 182

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

After completion of the respective action, the following reply will be generated:

Slave -> Controller: FBlockID. InstID.SourceActivity.Result (SourceNr,
Activity)

There are two approaches of connecting a source to the network, SourceConnect and Allocate.

MOST25
Both approaches are valid.

MOST50

Routing and low-level allocation are entirely encapsulated by the Network Interface Controller and of
no influence to the application. The ConnectionMaster cannot apply the SourceConnect approach; the
Allocation approach must be used when building streaming connections.

A source drop is detected by the Network Interface Controller on data link layer. This leads to
automatic de-allocation of unused bandwidth.

In addition, such an event is signaled to applications that were connected to this channel.

SourceConnect uses the Connection Manager to reserve resources, which thereby, have total control
of resource usage. Allocate is a more decentralized approach with less control of resource usage. The
ConnectionManager must only use one approach per FBlock. But devices may support both methods.

1. SourceConnect Approach
e SourceConnect
A Controller can use method SourceConnect to connect a source to already reserved
channels. These channels are administrated by the Connection Manager.

The ConnectionManager sends:
Controller -> Slave: FBlockID. InstlD.SourceConnect.StartResult
(SourceNr, ChannelList)

Upon successful execution of the method, the following is reported:

Slave -> Controller: FBlockID. InstlID.SourceConnect.Result (SourceNr,
SrcDelay)

e SourceDisConnect
SourceDisConnect is used to disconnect a source from its channels. Usage of this
method does not deallocate the channels that were used. These channels are
administrated by the Connection Manager.

Controller -> Slave: FBlockID. InstlD.SourceDisConnect.StartResult
(SourceNr)

After the method has finished, the following is reported:

Slave -> Controller: FBlockID. InstlID.SourceDisConnect.Result
(SourceNr)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 183

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

2. Allocate Approach
e Allocate
To make the source first allocate channels and then connect to them, method Allocate
is used.

Controller -> Slave: FBlocklID. InstID.Allocate.StartResult (SourceNr)

On success, the channels the source now occupies and the relative delay to the
TimingMaster is reported.

Slave -> Controller: FBlockID.InstID.Allocate.Result (SourceNr,
SrcDelay, ChannellList)

If the allocation was not successful due to a lack of enough free channels, an error is
generated with the error code “Function specific” and as Error Info the SourceNr and
the number of required channels. An allocation must never be done partially. Unless
all channels can be allocated, no allocation is done.

The resulting error will be:

Slave -> Controller: FBlockID.InstID.Allocate.Error
(“Function Specific”, SourceNr, RequiredChannels)

e DeAllocate
DeAllocate is used by a Controller wishing to cancel that which was done by Allocate
before. This means that the allocated channels will be deallocated and that the source
no longer is connected to them.

Controller -> Slave: FBlockID.InstID.DeAllocate.StartResult (SourceNr)

On success, the channels are no longer occupied and the source is disconnected from
the channels.

Slave -> Controller: FBlocklID.InstlD.DeAllocate._Result (SourceNr)

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 184

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.5.2.2.2 Streaming Sink

A FBlock that is used as a sink for streaming data supports similar functions to those for a source.
Error handling is also done in an analogous way.

Some of the functions that a streaming sink provides to the network:

e Sinkinfo
Property Sinkinfo contains detailed information about the kind of streaming sink data that the
sink can handle. The sink information is specific for each sink number.
On a request with the SinkNr:

Controller -> Slave: FBlockID.InstID.SinkInfo.Get (SinkNr)

The following is received:

Slave -> Controller: FBlockID.InstID.SinkInfo.Status (SinkNr, DataType,
[DataDescription])

Information about data types can be found in the corresponding Stream Transmission
specification.
Note that DataDescription is basically static, but with one exception: the element ChannelList.

e SinkName
Property SinkName holds the name of the streaming sink.
It is requested with the SinkNr as parameter:

Controller -> Slave: FBlockID.InstID.SinkName.Get (SinkNr)

The answer is a string containing the name:

Slave -> Controller: FBlockID. InstlD.SinkName.Status (SinkNr, SinkName)

e Connect
A Controller uses Connect to connect the sink to specified channels.

Controller -> Slave: FBlocklID. InstID.Connect.StartResult (SinkNr, SrcDelay,
Channels)

SrcDelay is the relative delay to the TimingMaster. It is used to provide the possibility of delay
compensation. The sink returns as result;

Slave -> Controller: FBlockID.InstID.Connect.Result (SinkNr)

e DisConnect
Method DisConnect is used to disconnect a sink from channels it is currently using.

Controller -> Slave: FBlocklID. InstID.DisConnect.StartResult (SinkNr)
After the method has finished, the following is reported:
Slave -> Controller: FBlockID. InstID.DisConnect.Result (SinkNr)

e Mute
The output of streaming data from a sink can stopped by using the property Mute.

Controller -> Slave: FBlocklID. InstID._Mute.SetGet (SinkNr, Status)

Status is On or Off to turn mute on or off.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 185

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.5.2.2.3 Handling of Double Commands

Normally a repeated streaming control command (this means: allocate / deallocate / connect /
Disconnect / SourceConnect / SourceDisConnect) should not occur. This handling should be done by
the Connection Manager. But in an error case the behavior of the device is defined in the following
way:

e Source methods
1. SourceConnect Utilization

e SourceConnect
If there is a SourceConnect.StartResult command with a source number of a currently
connected source and the ChannelList contains the same channels that it is
connected to, a normal result message will be sent. If an already connected source is
to be connected to different channels the device will first disconnect the old
connection and then make the new one. Following this it sends out a result message.

e SourceDisConnect
If there is a SourceDisConnect.StartResult command, with a source number of a
currently not connected source, a normal result message with the disconnected
source number is sent back to the caller.

2. Allocate Utilization

e Allocate
If there is an Allocate.StartResult command with a source number of a currently
allocated source, a normal result message with the already allocated channels is sent
back to the caller.

e DeAllocate
If there is a DeAllocate.StartResult command with a source number of a currently not
allocated source, a normal result message with the source number is sent back to the
caller.

MOST25
Both the SourceConnect and Allocate approach are valid.

MOST50
Only the Allocate approach is valid.

e Sink methods

e Connect
If there is a Connect.StartResult command with a sink number of a currently connected
sink and the same channels that it is connected to, a normal result message will be sent. If
an already connected sink is to be connected to different channels the device will first
disconnect the old connection and then make the new one. Following this it sends out a
result message. If a new value of SrcDelay is passed to the sink, this must be used
instead of the old one.

e DisConnect
If there is a DisConnect.StartResult command with a sink number of a currently not
connected sink, a normal result message with the disconnected sink number is sent back
to the caller.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 186

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.5.2.2.4 Order of Streaming Channel Lists

Lists of Streaming Channels must always be in ascending order. Devices that receive a list in any
other order must perform error handling rather than trying to re-sort the list.

MOST25
If an unordered Streaming Channel list is encountered, error code 0x06 will be returned.

3.5.2.3 Compensating Network Delay

MOST25

Every node in the ring may generate a deterministic delay for the source data (caused by internal
processing). The MOST system provides mechanisms that allow compensation for this delay. Every
MOST Network Interface Controller is provided with the information about the general delay of the
entire system ATnework, @nd the delay up to its own node ATy.ge With respect to the TimingMaster. In
addition to that, the delay of the active source device ATsquce Must be made available by Control
Messages.

Based on that information, the delay ATc,mp, Which must be compensated for, can be calculated with
the help of the formula below (calculated in number of frames):

ATcomp = ATNode - ATSource - 2[Samples] for ATSource < ATNode
ATcomp = ATNetwork - ATSource + ATNode -2 [Samples] for ATSource > ATNode
(AT« = Contents of the respective register in the chip * 2 Samples Delay)

MOST50
The effective network delay is negligible (delay has to be smaller than 1 us per node). No network
delay compensation is required.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 187

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.6 Handling Packet Data

The data field is significantly longer than that of the Control Channel. Unlike the Control Channel, no
ACK/NAK mechanism or low level retries are required since they are not necessary for most of the
applications. Nevertheless, the telegram is checked. A transport protection must be implemented on a
higher level.

MOST25
In every node (MOST Network Interface Controller) the priority for packet data transfer can be
assigned. There are different priority levels.

3.6.1 MOST Network Service

The Network Service has a mechanism, called the Packet Data Transmission Service, by which the
data packets described above can be sent and received.

3.6.1.1 Securing Data

For certain applications, it may be useful to implement securing mechanisms. For each application it
has to be decided whether such mechanisms are required. In that case, a protocol has to be chosen,
for example:

e MOST High
e TCP/IP over MAMAC

The telegram structure, quite alike that of the Control Channel could be used by setting TellD to 4 bits
and TelLen to 12 bits.

Data Area MOST Network Interface Controller = 48 bytes (Data Link Layer 48 Bytes Mode)

16 bits 8 bits 8 bits 12 bits | 4 bits 4 bits 12 bits 8 bits 8 bits 8 bits
DevicelD FBlock Inst. Fkt OP Tel Tel Data O | Data 1 Data 41
ID ID ID Type ID Len

Data Area MOST Network Interface Controller = 1014 bytes (Alternative Data Link Layer)

16 bits 8 bits 8 bits 12 bits [4 bits 4 bits 12 bits 8 bits 8 bits 8 bits
DevicelD FBlock Inst. Fkt OP Tel Tel Data O | Data 1l Data 1007
ID ID ID Type ID Len
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 188

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

TellD:

TelLen:

Data X:

Identification of telegram type

Meaning TellD
MOST High Protocol 8
User data
MOST High Protocol 9
Control data
MAMAC PacketsEthernet frames A B

= up to 1008 (42)
Specifies the length of the data field, that is, the number of bytes after TelLen

Data bytes

For securing data, MOST High Protocol is used here.

Control
Channel

Message Transfer
(Single + Segmented)

Control Messag

Control Streaming
Channel Channel
MOST Allocation
High Service
Protocol
e Service

Network Service

Packet Data
Channel

MOST
High
Protocol

Packet Data Transmission
Service

Figure 3-29: Network Service: Services for the Packet Data Channel

3.6.1.2 MOST Asynchronous Medium Access Control (MAMAC)

To be able to run commonly used network protocols like TCP/IP (including IPX, NetBEUI and ARP)
through the Packet Data channel of MOST, MOST Asynchronous Medium Access Control (MAMAC)
was defined. MAMAC can be used simultaneously with the Most High Protocol.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 189

MOST® MOST

Specification COOPERATION

3.7 Connections

3.7.1 Bandwidth Management

In section 2.1.4 Managing Streaming/Packet Bandwidth, the Boundary Descriptor was introduced.
Since the Boundary is dynamically changeable during runtime, the system can be adopted to the
needs which occur in temporary or persistent situations (e.g., data download, transfer of big amounts
of data like MP3 or navigation maps). In both situations a change sequence shall be performed
without loss of the bus signal.

In order to adapt to the new situation all devices must implement appropriate mechanisms. Therefore
they may have to notify itself to the property Boundary of the TimingMaster device.

Adjusting sequence:
For managing the Boundary, the ConnectionMaster provides the method MoveBoundary.

Controller -> ConnectionMaster: ConnectionMaster.1l_MoveBoundary.StartResult
(BoundaryDescriptor)

With the aid of this method any initiator can request an adjustment of the Boundary. After the
ConnectionMaster has received such a request it locks itself and rejects all subsequent connection
requests.

Additionally it may inform initiators of rejected connection requests about the reason of the
unavailability. After an optional delay it uninstalls all established connections. If all connections are
removed, the ConnectionMaster forwards the request for shifting the Boundary to the TimingMaster.
This is achieved by setting the property Boundary with OPType SetGet in the device containing the
TimingMaster, that is, NetBlock with InstID 0. The TimingMaster internally sets the Boundary to the
requested value and re-initializes the low level allocation mechanisms in all devices in the network. If
the function Boundary.SetGet returns, the ConnectionMaster forwards the result to the initiator by the
respective Result or Error message, unlocks itself and accepts subsequent connection requests.
Depending on the configuration the ConnectionMaster may rebuild the previously removed
connections.

3.7.2 Streaming Connections

3.7.2.1 ConnectionMaster

Streaming connections are managed by a Connection Manager. All requests for establishing
connections must be directed to this Connection Manager. It could be implemented in any device.
The Connection Manager shall supply functions defined in FBlock ConnectionMaster (0x03).

For building a point-to-point connection, FBlock ConnectionMaster provides a method
BuildSyncConnection.

Controller -> CManager: ConnectionMaster.l1l.BuildSyncConnection.StartResultAck
(SenderHandle, Source, Sink)

Source in the method above refers to any source:
Source = FBlockID.InstID.SourceNr.

Sink refers to any sink:

Sink = FBlockID.InstID.SinkNr.

CManager is the DevicelD of the Connection Manager.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 190

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

After a successful connection is built, the ConnectionMaster returns:

CManager -> Controller: ConnectionMaster.1l.BuildSyncConnection.ResultAck
(SenderHandle, Source, Sink)

Error handling:
If the connection fails, the ConnectionMaster answers with OPType “ErrorAck” (0x9) and the
ErrorCode “ProcessingError” (0x42), and returns the parameters Source and Sink.

CManager -> Controller: ConnectionMaster.1l._BuildSyncConnection.ErrorAck
(SenderHandle,”ProcessingError”, Source, Sink)

Removing a connection is done in an analogous way, by using the method RemoveSyncConnection.

The ConnectionMaster generates an array of all existing connections including sources and sinks,
where it adds more information. This array is accessible in function SyncConnectionTable.

Controller -> CManager: ConnectionMaster.l.SyncConnectionTable.Get

CManager -> Controller: ConnectionMaster.1l.SyncConnectionTable_Status
(Source, Sink, SrcDelay, NoChannels, ChannellList,
Source, Sink, SrcDelay, NoChannels, ChannellList
Source, Sink, SrcDelay, NoChannels, ChannellList, ...)

The parameters are the same as those described above. SyncConnectionTable cannot be set directly.
Building and removing connections is done only with methods BuildSyncConnection and
RemoveSyncConnection.

After switching off the network, the contents of SyncConnectionTable are deleted, leaving no
streaming connections in the system. They must be rebuilt by new requests of the initiator(s).

The SyncConnectionTable is deleted also when Configuration.Status(NotOK) is received by the
Connection Manager since all connections are removed in this case. See section 3.3.2 for more
information.

FUNCTIONS
FktID OPType Sender Receiver Explanation
BuildSyncConnection StartResultAck | Controller Connection Request for building connection
Manager
ResultAck Connection Controller Answer with result
Manager
SyncConnectionTable Get Controller Connection | Request of that property, where the
Manager Connection Manager stores all active point-to-
point connections
Status Connection Controller Answer
Manager
RemoveSyncConnection | StartResultAck [Controller Connection | Request for removing connection
Manager
ResultAck Connection Controller Answer with result
Manager

Table 3-18: Functions in ConnectionMaster in conjunction with the administration of streaming connections

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 191

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Deadlock prevention:

In order to prevent potential deadlocks in the connection building process, tcwm peadiockprev IS US€d.
tem peadiockprev 1S Started as the Connection Manager makes a request to a source/sink FBlock. If the
timer expires the action will be regarded as failed.

This timer should not be used as a maximum time for the source/sink to carry out their respective
operations since this must be done much faster; it is merely used to prevent deadlocks and should
only be effective in the special cases where a source/sink device has malfunctioned after receiving the
command from the Connection Manager.

3.7.2.2 Establishing Streaming Connections

When building a streaming connection, the Connection Manager uses method Allocate or
SourceConnect in the Source FBlock to connect it to the network. After a positive answer from the
source, the Connection Manager uses the method Connect in the Sink FBlock to connect it to the
same channels as used by the source. This mechanism is explained in the following figure, and the
text below.

MOST50
SourceConnect is not available for MOST50.

Initiator
1 8
Source -2 Connection 55— Sink
. 6 .
Device 4—p Manager «—7 Device

Figure 3-30: Building a streaming connection step by step

Explanation of Figure 3-30:

1) Method BuildSyncConnection is started by an initiator, for building a connection between a source
and a sink. If the source uses the method SourceConnect to connect to the network, the
Connection Manager is responsible for the channels being unoccupied. If the method Allocate is
used by the source, the source must allocate its own channels.

2) Connection Manager sends a command to the source device to connect its streaming output to
network channels. The source must support at least one of the methods Source Connect or
Allocate.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 192

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3)

4)
5)

6)
7
8)

The Source handles the request differently depending on if it uses method Allocate or
SourceConnect

a) Allocate:
The source tries to allocate channels. The following results are possible:

e Enough free channels. Reply to Connection Manager (4) as Allocate.Result with
parameters SourceNr, SrcDelay and Channels.

e TimingMaster is busy on processing other allocation/deallocation requests. The source
shall perform 20 retries. If these are not successful, Allocate is regarded as failed by the
Connection Manager. The rate at which the TimingMaster can be asked is regulated by

tResourceRetry-

¢ Not enough channels. Reply to ConnectionMaster (4) as Allocate.Error with parameters
SourceNr and RequiredChannels.

b) SourceConnect:
A SourceConnect node does not need to allocate channels. It connects to the ones supplied
by the Connection Manager when invoking the SourceConnect method. The result is sent
back to the Connection Manager (4).

The Result is sent to the Connection Manager.

If the result is ok, the Connection Manager starts method Connect of the sink, communicating
parameters Channels and SrcDelay. The sink has then all the information needed of the source.

The Sink connects to the channels.
The result is sent to the Connection Manager as Connect.Result.

The ConnectionMaster reports the result of establishing the connection to the initiator by using
BuildSyncConnection.ResultAck. If the building of the connection was successful, the
ConnectionMaster internally stores the connection data. This way, if another sink is connected to
this source, only the allocation data needs to be sent to the new sink.
In case of a failure, BuildSyncConnection.ErrorAck is sent and all changes to the network are
unmade. That means that if an error occurred in the Connect process, the source is disconnected
and the channels are freed again.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 193

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.7.2.3 Removing Streaming Connections

The initiator terminates a connection previously built by the Connection Manager. The Connection
Manager commands the sink to disconnect from the channels that it is currently using.

After a positive answer, and if the channels are not in use by another sink, the Connection Manager
disconnects the source from its channels. Depending on whether the source uses SourceConnect or
Allocate to connect to the network, the Connection Manager uses method SourceDisConnect or
Deallocate.

After that, the Connection Manger reports the result of the termination to the initiator.

MOST50
SourceDisConnect is not available for MOST50.

Initiator
1 8
Source +——5—— Connection 22— Sink
Device 7—» Manager «——4 Device

Figure 3-31: Step by step removal of a streaming connection

Explanation of Figure 3-31.:

1) Method RemoveSyncConnection is started by an initiator, for removing a connection between a
source and a sink.

2) The Connection Manager starts method DisConnect in the sink FBlock, this makes the sink
disconnect from the previously used channels.

3) The sink disconnects from the used channels.

4) The sink reports the result to the Connection Manager by DisConnect.Result.

5) If no other sink uses the channels in the connection, the channels will be freed. Otherwise
continue at 8. Freeing the channels is handled differently depending on if the source uses
Allocate or SourceConnect. The respective method for releasing the channels is called by the
Connection Manager.

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 194

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

6) The source disconnects or deallocates and disconnects upon reception of SourceDisConnect
or DeAllocate.

a) DeAllocate:

The source has to deallocate the used channels. Upon trying to do this, the following results
are possible:

e Successful de-allocation. Positive answer by DeAllocate.Result (7).

e The TimingMaster is busy handling other allocation/ de-allocation requests. Retries may
be tried until tcm_peadiockerev Nas expired, at which time DeAllocate is regarded as failed by
the Connection Manager. The rate at which the TimingMaster can be asked is regulated

by tResourceRetry-

b) SourceDisConnect:
A SourceConnect node does not need to deallocate channels. The connection manager is
responsible for handling the channels. The source node disconnects from the channels and
reports the result to the connection manager (7).

7) The result is sent to the Connection Manager as SourceDisConnect.Result or
DeAllocate.Result depending on the method used.

8) If the Connection Manager has received a positive answer from the source, the connection is
removed from its internal connection table. The Connection Manager sends an answer,
RemoveSyncConnection.ResultAck, to the Initiator. The message contains the status of the
requested termination of the connection.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 195

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

3.7.2.4 Supervising Streaming Connections

Every streaming sink is responsible of supervising the validity of its output. If a source malfunctions
and the data on the channels is rendered invalid the sink has to secure its streaming output signals.

3.7.2.4.1 Enabling Streaming Output

A sink that cannot detect the validity of the data on the channels has to verify if a device is currently
putting out data. If a sink cannot make sure that it receives valid data it must use RemoteGetSource if
it cannot make sure that it receives valid data by other mechanisms.

3.7.2.4.2 Source Drops
A source that malfunctions might drop from the network, thus generating a Network Change Event.

If part of the device is still operational, the source device must route zeros (signal mute) to the
channels of the malfunctioning FBlock for a time tcieanchannels- 1N this way it will be as if the sink muted
its output. After time tcieanchannels the source must be disconnected from the network. Then the device
must send out an FBlocklDs.Status without the malfunctioning source FBlockID. This informs the
network that the source FBlock is no longer available.

When this is detected by a sink it has to verify that a source is still connected to the channels and if
not secure its streaming output. Sinks with automatic noise detection do not need to use this method.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 196

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

3.8 Timing Definitions

T= Timer. If expired, the implementation has to invoke an error handling as defined in the
respective section of the specification.

C= Timing constraint. The implementation has to fulfill this timing requirement in order to
be compliant to this specification.

Name | Min Value | Typ Value | Max Value | Unit | Type | Definition

Initialization

tcontig 1975 2000 2015 ms |T Time that may pass after

initialization of the MOST
Network Interface Controller in
a master or a Slave device until
transition to NetOn state.
twakeup - 6 25 ms |[C Maximum time between start of
activity at the Rx input of the
device and start of activity at
the device’s Tx output.

(63 e tWakeUp) + twaitNodes * TLock
tBoundary < tConfiq

twaitNodes - - 100 ms |[C Time that may pass between
start of activity at the Rx input
of a device and the deactivation
of its bypass. This timer is valid
only when starting up the
network.

tgoundary - - 20 ms |C MOST25

Time after which a change of
the Boundary must be detected
while waiting for the Init Ready
event.

MOST50

Not relevant for MOST50.
twaitBeforeScan 100 100 500 ms [T Time between broadcast of
Configuration.Status(NotOK) or
an Init Ready event and start of
a new scan by the
NetworkMaster.

tWaitBeforeScan E tWaitAfterNCE
tpelaycigrequestt 500 500 550 ms |T Time after which the
NetworkMaster starts to query
nodes again that did not answer
within tWaitForAnswer-

This time is used for the first 20
system scans since the network
entered the NormalOperation
state.

tDeI.’:\nygRequestZ 10 10 11 S T Same as tDeIanygRequestl: but from
the 21 attempt on.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 197

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Name

| Min Value | Typ Value | Max Value | Unit | Type | Definition

Shutdown

tShutDown

15

ms

C

Time between a shutdown
event (i.e. stop of activity at the
device’s Rx input during normal
operation or ring break
diagnostics mode or start of
activity at the input when in
Slave wakeup mode) and the
stop of activity at the device’s
Tx output.

tSuspend

1975

2000

2100

ms

Time the PowerMaster waits for
a ShutDown.Result(Suspend)
message after broadcast of
ShutDown.Start(Query).

tShutDownWait

15

Time the PowerMaster waits
between broadcasting
ShutDown.Start(Execute) and
switching off the Tx output.

tRetryShutDown

9.9

10

10.1

Time the PowerMaster waits
between
ShutDown.Start(Query)
broadcasts.

tRestart

275

300

350

ms

Time after switching off the Tx
output until the device is ready
to switch on the Tx output
again. Note: This timing applies
to networks with up to 19
nodes. For networks with more
nodes, the following formula
applies:
1. trestartmin = (Number of
nodes) e tshumpown — 10Ms
2. trestartmax = (Number of
nodes) e tshupown + 65MS

3. 1:RestartMin < tRestartTyp <

tRestartMaX

thwrswitchoffDelay

device
specific

Time between switching off the
Tx output and changing to state
DevicePowerOff

tSIaveShutdown

16

Time a Slave device shall wait
after ShutDown.Start(Execute).
If the modulated signal was not
switched off within tgjaveshutdowns
a Slave device may switch off
the modulated signal.

tWaitAfterOvertempShut
Down

20

60

Time the PowerMaster waits
after an overtemperature
shutdown before it may restart
the network.

Specification Document

Page 198

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Name

| Min Value | Typ Value | Max Value | Unit | Type | Definition

General

tLock

75

100

115 ms

T

Time during which no lock
errors must occur, before the
lock is declared “stable”. Note:
While a ring break diagnosis is
pending, tpiag_Lock has to be
used instead.

tUnlock

60

70

100 ms

Accumulated time of unlocks
that lead to the detection of a
critical unlock.

tMPRdeIay

200 ms

Time between a Network
Change Event (NCE) and the
notification of applications for
which NCEs are relevant.*

tMPRdeIav 2 tLock

twaitafterNCE

200

200

500 ms

Time between a NCE and the
start of the network re-scan by
the NetworkMaster.

tMPRdelay < twaitafternce <
tDelanyqReg_uestl

tBypass

50

70

100 ms

Time the bypass of a device
must stay closed after being
closed. This timer is not
required when starting up the
network. It is only required
when a node drops out of the
network.

tBy[)ass < tWaitNodes

tAnswer

50 ms

Time during which a network
Slave must respond to a query
by the NetworkMaster.

tWaitForAnswer

100

200

700 ms

Time a NetworkMaster waits for
an answer from a queried
Slave.

tResourceRetry

10 ms

Time between attempts of
allocating or deallocating
streaming resources

tProperty

200 ms

Time between complete
reception of a query to a
property and the start of the
response message.

tWaitForProperty

250

300

350 ms

Time a Shadow waits for the
reception of a query to a
property. The maximum value
is a default value and may be
adjusted by individual FBlock
specifications.

tF'rocessingDefaultl

100

150 ms

Time a device waits before
sending the first Processing
message.

! Devices containing such applications must only be used in node positions where this requirement

can be fulfilled.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 199

MOST®

Specification

MOST

COOPERATION

Name

Min Value

Typ Value

Max Value

Unit

Type

Definition

tProcessingDefauItZ

100

100

ms

Time a device waits between
sending subsequent Processing
messages.

tWaitForProcessint;]l

200

200

250

ms

Time a Shadow waits for the
reception of the first Processing
message, if not specified
otherwise for the respective
message in the FBlock
Specification.

tWaitForProce:;singZ

200

200

ms

Time a Shadow waits for the
reception of the following
Processing messages. The
timer should be set to 100 ms

more than tProcessingDefaultZ-

tCleanchannels

3.5

25

ms

Time during which a source
must route zeroes onto
Streaming Channels before it
stops using them.

tCM_DeadIockPrev

1000

ms

Timer to prevent deadlocks in
the connection building
process.

tWaitForNextSegment

4975

5000

10015

ms

If the next segment of a
segmented message does not
arrive before this timer elapses,
garbage collection is initiated.

tMngesponse

15

ms

Maximum time after which a
device must have read a
Control Message from the Rx
buffer of the MOST
Transceiver. This determines
the frequency by

which the NetServices must be
called.

tBoundary(:h.amge

100

500

5000

ms

Delay between sending the
Boundary change notification
and start of performing the
actual change.

Specification Document

Page 200

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Name | Min Value | Typ Value |Max Value | Unit | Type | Definition

Ring Break Diagnosis

Note: The following definitions represent the range within System Integrators can choose the timings
for a specific system. Tolerances that are applied to these values for nodes of the same system are:

+15ms, -25ms.

tDiag_SignaI 0

0

100

ms

T

Time a node waits for activity at
its Rx input before switching to
ring break master mode.

tDiangaster 2

28

58

Time a node stays in ring break
master mode before generating
the result of the diagnosis.

tDiagfslave 4

30

60

Time a node stays in ring break
slave mode before generating
the result of the diagnosis. In
addition,

tDiag_SIave 2 tDiag_Master + 2s must
be true.

tDiag_Lock 250

250

260

ms

Same as t o, but valid during
ring break diagnosis.

tDiag_Start 0

10

If using SwitchToPower to
trigger ring break diagnosis, the
diagnosis has to be started
within tDMt-

tDiag_Restart 0

10

This is the time a device has to
wait after an unsuccessful
diagnosis (ring broken) until it
can be restarted by network
activity.

The value of this timer should
be greater or equal to the
maximum difference between
the startup of ring break
diagnosis in different devices. If
this time is unknown, the
maximum value can be used.

Table 3-19: Timing Definitions

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 201

MOST® MOST

Specification CODPERATION

4 Hardware Section

4.1 Basic HW Concept

The fundamental hardware structure of a MOST device is displayed in the block diagram below. There
are blocks that are not mandatory, since, for example, a simple MOST device does not always need a
micro controller (active speaker). Areas that are not mandatory are displayed in gray. A MOST device
consists of:

¢ Interface area

e MOST function area
e uC area

e Application area

e Power supply area

A MOST network can be awakened by activity on the bus line. They activate a sleep mode if required.
If a device is in sleep mode, the power consumption should be reduced as far as possible. A typical
value for quiescent current is below 100 pA. Exact parameter and environment conditions, as well as
the measurement setup is system-integrator specific. It must be taken into consideration that no
parasitic currents will flow via signal lines between inactive and active sections.

The individual areas are explained below.

——©0 App.Power Supply

Continuous
Power (+)
Power Supply Area ———o0 Dig. Power Supply

Ground o—
0 Cont.Power Supply

— . 3 = 4 A U<ov | 4A
Status SwitchToPower; Reset WDTrig| Hold U>16\/ SA
PwrSwitch
, Dig.P. /
Cont.P. Dig.P. Dig.P. Cont.P. App.P.
LT I | [i
 E— - » 47
Bus Bus MOST —_ L.
RX . uCReset uController Application
Interface |- » Function |« A A
Area % Area Control = Control e

4 SourceData 4
—

Figure 4-1: Example of the structure of a MOST device, the different functional areas and their
interfaces

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 202

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

4.2 MOST Function Area

The MOST function area consists of the following components:

e MOST Network Interface Controller
e Crystal
e PLL-Filter

The MOST Network Interface Controller communicates with a micro controller via I°C (as Slave), SPI,
MLB or parallel bus. Source data is exchanged with the application via the source data bus.

Reset:
On a reset, the MOST Network Interface Controller activates bypass mode and switches to Slave
mode.

For devices with uC area it must be possible in any case, that the MOST Network Interface Controller
can be reset by the respective pC as well (UC reset or Watchdog Reset), since here the MOST
Network Interface Controller is not controlled and initialized via the network, but by the uC.

Please note:

During Reset (not software reset), the clock signals generated by the Network Interface
Controller are not valid. If these clock signals are used as device clock, this must be taken into
consideration.

4.3 uC Area

The micro controller (uUC) area mainly consists of the uC and some memory and is not mandatory for a
MOST device. In the case of devices with a uC area, there may be applications that are tightly coupled
to the network activity. They need to realize a low standby-current Istgy, SO in PowerOff mode of the
network, the uC must be switched off.

At the same time there are devices that must be active even if there is no network activity. Here the
HC area must be connected to a continuous power supply.

In addition to that, there are devices that are to be arranged in between. They are active without
network activity but are not connected to continuous power (for example, the power supply of a CD
changer during eject of disc).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 203

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

4.4 Application Area

Application area refers to the application peripherals such as receivers, amplifiers, drives, etc. The
way of implementing an application area is very device-specific. In some devices, especially those with
application peripherals that have high power consumption, it makes sense to supply the peripherals
separately from the logic, that is, the uC area and the MOST function area, in order to switch them on
and off separately. In other applications, the application area must be connected to a continuous
power supply.

If internal communication is required, the MOST Network with all devices connected to it is powered.
Since this may happen also in such cases where the vehicle is parked, the power consumption in this
communication mode (Logic_Only_Mode) must be kept as low as possible (not only in sleep mode).
This means, that it must be possible to remove the Application Area from power (if procurable).

4.5 Power Supply Area

Please note:

The voltage levels shown in this section here could vary between the systems. Therefore, they
are non-normative and not specified in detail. Binding values must be defined in the
specifications of the System Integrators. The definition and relation between voltage levels can
be found in section 4.6. This chapter describes the power supply for a device that is usually
active when the network is active, so a low standby-current Istgy must be achieved. This is the
most complex case. Figure 4-2 shows an example for the implementation of a Power Supply
Area.

To meet these requirements, a MOST Network Interface Controller, micro controller (uC), and
application peripherals are completely separated from power. In addition to that, the application
periphery is powered separately, so that it can be switched off although the logic is still running
(e.g., drive).

The implementation of the power supply area, as shown in Figure 4-2, mainly consists of:

e Filter, unload-protection, EMI/EMC protection
e Micropower regulator (Cont.P.)

e SwitchToPower detector (optional)

e Power on logic

o Digital power supply (Dig.P.)

e Application power supply (App.P.)

e Bad power condition comparator

e Reset generator

e Watchdog timer

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 204

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Continuous
sD SA
power (+))
Filter o—c
Unload Protection !
o EMI/EMC Protection !
Ground |
Digital
Power
<=50pA
Bad Power U>Ugoma
Condition
¢ d U<UNorma\
>—‘ MicroPower
Comparator
U>UL0W
Status -
‘e.g. Receiver)
Manual
Reset
optional
fop) Dig.P. Dig.P.
9 7
Watchdog Watchdog Reset
On/Off Timer Generator
Power Supply Area

Figure 4-2: Block diagram of power supply area

App.P. (Application Power Supply)

SA (Application Switch pC)

Dig.P. (e.g.MOST & C)

U= Ugyper (HC)

Uu=u orU, (HC)

Critical

Cont.P. (e.g. Receiver)

Hold(uC)
SwitchToPower (uC)

U>U, (O

Reset (uC, MOST)

WDTrig (uC)

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 205

MOST® MOST

Specification COOPERATION

Filter and EMI/EMC-Protection filters the power supply and protects the device from incoming
radiation or it prevents the device from sending out radiation. The Unload-Protection provides the
overcoming of short periods of low voltage.

Connector Fuse Unload.
Protection
Continuous
power (+)

Ground —E

Figure 4-3: Input section of power supply area

The Micropower Regulator provides power supply for components with wake-up functionality and of
the Power On logic, if the device is switched off on an inactive bus. Furthermore, it can be used to
supply volatile memory devices. In total, the device has to meet a manufacturer-specific standby
current Istgy. In case of the devices that stay active on an inactive network or that become active from
time to time on an inactive network, the Micropower Regulator must be dimensioned to provide more
power.

The SwitchToPower Detector is used for ring break diagnosis, where the location of an interruption
of the ring is localized. This is not done during normal operation, but in the car repair or at the
assembly line. Note that the SwitchToPower Detector is optional.

Since the bus cannot work properly on a ring break, the devices must get a trigger in another way.
Such a trigger is set through a defined switching off of the power supply of all devices for some
seconds by a central power switch. The switched-off state should be maintained for some seconds
because all devices should be completely unloaded.

Ring break diagnosis is started by switching on power by the central power switch. The
SwitchToPower detector recognizes that the device powered up and generates a pulse by which
power of the device stays activated for a certain time. After the reset phase, the micro controller (uC)
recognizes with the help of the SwitchToPower signal that the device was powered and switches to
ring break diagnosis mode. Before this, Hold must be activated to prevent the device from being
switched off again.

If no communication is started on the network, the uC must deactivate Hold so the device can switch
back to sleep mode.

The SwitchToPower detector must be implemented so that the SwitchToPower pulse is generated
only if the power sinks below a certain threshold. Under no circumstances should short breakdowns
on the supply voltage (e.g., by the starter) lead to a SwitchToPower pulse.

Therefore, the SwitchToPower detector gets armed only if the device was separated from power for at
least 2 seconds and at most 4 seconds (2 sec < tl1 < 4 sec). Only then will it generate a pulse when
the device is connected to power. This must be made sure of with the help of suitable measures
(unload protection diode, and individual electrolyte capacitor at the power supply line of the detector).

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 206

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

In addition to that, the SwitchToPower detector must supervise the power supply before unload
protection, since, caused by the switching off of all function areas, the voltage will decrease very slow.

The SwitchToPower pulse must have a minimum length t2, which must be long enough for the uC to
safely recognize the pulse.

This is shown in the figure below for ideal signals (vertical edges). The SwitchToPower detector
should be implemented at low cost and in a way so that it works as shown in the figure below. It
should not be tried (at high cost) to meet the timing exactly, even on non-ideal conditions, since
imprecise behavior of devices can be compensated for by the duration of the real trigger and it is not
very critical if, on an alleged trigger (e.g., caused by starting the engine), a device inadvertently
switches to diagnosis mode.

Continuous
power (+)
] SwitchToPower
Switch Detector armed
To

Power
2s <t1<4s t>t2
« » D

Figure 4-4: Timing of the output signal of the SwitchToPower detector depending on voltage at continuous power
input

The Power On Logic checks to see whether the bus is active or if the SwitchToPower detector
indicates that the device is freshly connected to power. If, in addition to that, the U > U,,,, comparator
indicates a sufficient supply voltage, switch SD is closed and Digital Power Supply is connected to
power. Digital Power Supply then supplies the MOST Network Interface Controller and the micro
controller (UC). As soon as the UC is started, it keeps switch SD closed by an additional input to the
Power On Logic (Hold).

Later on, the uC decides if and when the application periphery (application area) will be powered, and
activates SA.

The Uy, comparator indicates whether the input voltage is above the U,,, range or not. It is
important to implement a hysteresis here, since when switching off the supply voltage due to low
voltage, the voltage at the input of the comparator will suddenly be increased again. Without
hysteresis, the device would be switched on again, leading to an oscillation of the Uy, comparator,
and of the entire digital supply voltage.

Please note:

The hysteresis must be implemented in a way that the output signal of the U,,, comparator is
switched off, when the voltage drops to U_o,. The output signal of the U.,, comparator must
then be switched on again only, if the voltage rises to Unormar-

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 207

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

The U, comparator must behave in a defined way, even if the voltage keeps decreasing and the
micro power regulator does not stabilize its output voltage but follows the input voltage only. That
means that the U,,, comparator must prevent the device from switching on even when reaching low
voltages (e.g., < 2V...3V).

The Bad Power Condition comparator recognizes critical voltage (Uciiicar) and super voltage (Usyper)
on the supply power so that appropriate actions can be taken. For the Bad Power Condition signals, a
hysteresis is not mandatory, since they do not control switching off power. The signals are evaluated
only by the micro controller (uC).

The Reset Generator generates reset for the MOST Network Interface Controller and eventually for a
uC if available. It is mandatory for all devices! Possible sources for reset are:

e Device connected to power

e Transition between low voltage to normal operation
e Low voltage on power

e Manual reset (reset button)

e Watchdog timer

The maximum length of the reset pulse is 300ms.

If a uC is available, a Watchdog Timer (eventually with an integrated reset generator) is mandatory.
The watchdog timer initiates a reset at the reset generator, when not triggered by the uC for a certain
time (WDTrig). This closes the bypass of the MOST Network Interface Controller. Even if the
application processor does not restart, the device behaves in a neutral manner with respect to the bus.
If a device has no pC, no watchdog timer is required.

Please note:
It must be made sure that the HOLD mechanism (by which the pC keeps the device powered) is
reset as well. The MOST Network Interface Controller can be reset by the pC as well.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 208

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

4.6 Voltage Levels

In general, a device in sleep mode must not wake the bus caused by low voltage or super voltage.
Four voltage ranges are defined:
Normal operation (Unormal):
Device works normally, all functions are within the specified tolerances.
Super voltage (Usuper):

The device is in a safe operation state, which must be defined for each device individually.
A typical value for Ugyper is 16V.

Critical voltage (Ucitical):

The device is in a safe operation state, which must be defined for each device individually.
A typical value for Uchicar is 9V. The Netinterface works normally, the device can
communicate. On a recovery from this state, the network does not need to be initialized again.

Low voltage (U ow):

The device is in a safe operation state, which must be defined for each device individually.
A typical value for U, is 7V. The voltage has dropped to a value where the device cannot
communicate for long. The Netinterface does not work any longer, so a device that cannot
communicate safely has to shut down its bus interface in a safe way.

The following relation holds between the different levels: U ow < Ucritical < Unormal < Usuper

A safe operation state means that the device must take measures for avoiding failure, overheating, or
destruction of its own or connected functional sections. In addition, it must switch to a state from which
it can resume working normally if normal voltage is restored.

Examples:

e Muting and eventually switching off of amplifiers (danger of overheating, protection of
loudspeakers when switching off caused by low voltage).

e Switching off the servo units of CD/MD player (protecting the optical PickUp).

Remarks:

1. The device must be able to work between Ucritica @nd Usyper, and the critical voltage area reaches
down to U,,,. It could be tried, for example, to enter Low Voltage as late as possible. Particularly
when using switched power supplies, it can be possible to drop the Low Voltage threshold to a
lower value.

2. Hysteresis ranges must be implemented to avoid oscillation!

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 209

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Low voltage for a short period of time:

Some devices need a long time for initialization (Operating system, system communication...). If such
a device would be reset even at short pulses of low voltage, it needed to be initialized after that. The
interruption that would occur with respect to the entire system would be recognizable by the customer
(e.g., interruption of audio when starting the engine). Such a device should be able to survive short
Low Voltage periods without the need of being re-initialized. Especially the initialization status of the
MC must be secured. This may be done, for example, by using buffer capacitors, unload protection
diode, a separate power supply for the digital section, releasing of the application peripherals,
stopping the uC, etc. Also the operation of the Netinterface can be reduced, for instance, by resetting
the MOST Network Interface Controller, which will then close its bypass (except a device containing
the TimingMaster). After the Low Voltage period the MOST Network Interface Controller will be re-
initialized (in total < 100ms). For more information about the behavior of the software in case of Low
Voltage please refer to section 3.2.5.5 on page 150.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 210

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

5 Appendix A: Network Initialization

This Appendix contains some behavioral examples regarding Network Management. Requirements
regarding Network Management behavior of the NetworkMaster and the Network Slaves can be found
in section 3.2 and MOST Dynamic Specification.

5.1 NetworkMaster Section

This section contains scenarios of the behavior of the NetworkMaster during network initialization.

5.1.1 Flow of System Initialization Process by the NetworkMaster

The flow in Figure A-5-1 shows how the NetworkMaster initializes the system. Refer also to Figure
A-5-2 for a flow of how the NetworkMaster performs the configuration requests from the Network
Slaves during the system configuration.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 211

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

(NetOn Event >

yes

First address
initialization?

NetworkChange Event
occurred

v

Set address in MOST Delay (twaitatterncE)
Network Interface Controller ‘

<
L}

Delete Central Registry

1 ‘

Broadcast:
ConfigurationStatus(NotOK) Check
X System Configuration.
Check all nodes first, then
missing nodes only

Derive logical node address
from position, store it, and
write it to the MOST Network
Interface Controller

A

Delay (tpelayctgrequest)
or

Del ay (tDelanygRequeSlZ)
A

[
-

yes

Configuration
NotOK?

New information
received?

Broadcast:
1st round:
Configuration.Status(OK)

Otherwise:
Configuration.Status(New/
Invalid,FBlockIDList)

no

All nodes answered
request?

Normal Operation
(Application)

Figure A-5-1: Flow of initialization on application level in a NetworkMaster

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 212

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

yes

Checking System
Configuration

Node
already requested since
NetOn or NotOK?

Request FBlockIDs

Set Timer
(tWa\(ForAnswer)

——————————————————
no

Timeout?

tWailForAnswer

Answer?

yes

Un-initialized
NodeAddress?

NodeAddress no

available in existing
registry?

NodeAddress
duplicate?

NodeAddress
and function block
mismatch?

Enter in new Central
Registry

-l

/

[

Y

In case a node
caused NotOK the
third time, ignore
node until next
startup or next
network change
event.

Y

Broadcast
Configuration.Status
(NotOK)

Node = Node + 1

no
All nodes

requested?

yes
New information

received?

no Broadcast
Configuration.Status
(OK/New/Invalid)

- e]

A

End

Figure A-5-2: Flow in NetworkMaster during requesting system configuration

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 213

MOST® MOST

Specification CODPERATION

5.2 Network Slave Section

The flow in Figure A-5-3 shows how a Network Slave behaves during System Startup and when

receiving Configuration.Status messages.

Set Logical Node
Address of last run,
or OXFFFF in the
MOST Network
Interface Controller

4

y

no

Configuration
Status received?

Configuration Status yes
5 P
received
Y
Configuration

Status NotOK?

yes

Y

Derive Logical Node
Address

v

Clear De-central
Registry

v

Set Logical Node

Address in MOST

Network Interface
Controller

-l

v

SystemCommunicationinit:
Init Notification...

Normal operation

(Application)

Figure A-5-3: Flow of initialization on application level in a Network Slave

Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 214

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

6 Appendix B: Typical Data Rates of Current
Implementations (informative)

MOST25
At a system sample frequency of 44.1 kHz, 2,756 messages per second are transmitted, which
corresponds to a gross data rate of 705.6 kBit/s.

Since 2 out of 64 messages are used for a system wide distributing of the allocation information by the
network, the number of messages per second available for control messaging is 2,670. When
subtracting the data used for control and data securing, the net data rate (user data plus addressing)
is 405.84 kBit/s, which corresponds to 19 bytes per message that can be read from the MOST
Network Interface Controller.

A MOST device can arbitrate every third control frame. Therefore, a single device has a maximum
message rate of 890 per second, or a net data rate of 135.28kBit/s.

MOST50
At a system sample frequency of 48.0 kHz, the gross data rate is 1.536 MBIt/s, which results in up to
8000 messages per second for control messaging, depending on the message length.

In case all messages have the maximum size of payload (TelLen equals 12) the result is 5,333
messages per second. 8,000 Control Messages per second is the best case, if none of the messages
transport additional payload (TelLen is 0).

When subtracting the data used for control and data securing, the net data rate (user data plus
addressing) corresponds to up to 19 bytes per message:

Max: 810.62 kBit/s, in case of TelLen 12 (maximum payload)
Min: 448.00 kBit/s, in case of TelLen 0 (minimum payload)

A MOST device cannot immediately arbitrate again. Therefore, the maximum message rate is
typicially reduced to 1/3. In case of maximum payload, a single device has a theoretical maximum
message rate of 1,778 per second or a theoretical net data rate of 270.21 kBit/s. In case of minimum
payload, a single device has a theoretical maximum message rate of 2,667 per second or a theoretical
net data rate of 149.33 kBits/s.

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 215

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION

7 Appendix C: List of Figures

Figure 1-1: MOST DOCUMENT STIUCTUIE.......ciiuiiiiiiiitiiie ittt ettt e e e e e e ine s 15
Figure 2-1: Model Of @ MOST GEVICEoiiiiiiiiiiiieiie ettt e e sanee s 19
Figure 2-2: Communication with a function via its function interface (FI)ccooooiiiiniiiics 19
Figure 2-3: Structure of an FBlock consisting of functions classifiable as methods, properties and

(VL] 01 TP PTPTPTPRPTPRPROR 21
Figure 2-4: Setting a property (temperature setting of a heating)ccccccee v, 22
Figure 2-5: Reading a property (temperature setting of a heating)cccccccoeviiiiieeie e 23
Figure 2-6: Status report of property temperature SEtHNQccceeiiiiiiiiiiiiie e 23
Figure 2-7: Example for a function interface (F1).......cueee i r e e 24
Figure 2-8: MOST NEIWOIK SEIVICEuvviiiieiiiiiiiiiieii e e e s e ssittie et e e e e e s sste e e e e e e e s enanteeeeeaaeessansnnreneeeesnanes 27
Figure 2-9: Processing of messages including error check on different layers..........cccocccvviiiienninen. 40
Figure 2-10: Sequences when using Start with and Without errorcccociiiin e, 41
Figure 2-11: Flow for handling communication of methods (Slave’s side).........ccccccceiiiiiiiiniiiiiciiinenn, 42
Figure 2-12: Flow for handling communication of methods (Controller's side)c.ccoooeuviiieeiieinnnnns 43
Figure 2-13: Virtual communication between two devices on application layer and real comm. via

01T 1Yo 4 TP RPPT 53
Figure 2-14: Device with MOST address CDC, an FBlock CD Player with FBlockID CD, and its

L1813 o] R RSTPT 54
Figure 2-15: Communication between two devices via the different layers........ccccccccviiiiiiiienne i, 55
Figure 2-16: Example for @ SIAVe GEVICEceuviiiiiie ettt s e e e e e e e s e e e e e nnnnes 56
Figure 2-17: Virtual illustration of the controlled properties in the control device............ccccvvvveereeennnns 57
Figure 2-18: Unambiguous assignment between protocol and variableccccceeeeviiicciieene s 58
Figure 2-19: Controlling MUIIPIE DEVICESoiiiiieiie e 59
Figure 2-20: Controlling two identiCal deVICES..........cooiiiiiiiiii e 60
Figure 2-21: Hierarchical structure of the protocol filter (command interpreter)cccccevvveeernnnenn. 61
Figure 2-22: Routing answers in case of multiple tasks (in one Controller) using one function 62
Figure 2-23: Reading the FBlocks of a device from NetBIOCK............c...oeiiiiiiii e 64
Figure 2-24: Requesting the functions contained in an application block.............ccccciiiiiic s 64
Figure 2-25: Requesting the function interface of a fUNCtioN............cccciieiie e 65

Figure 2-26: Meaning of position x in record (above) and of position y in a record with array (below). 79
Figure 2-27: Position x in case of an array of basic type (left), y in case of an array of record (right).. 80

FIQUrE 3-1: MOST25 fTrAIME.....ueeiiiii e i iiciiiiiee et e e e e s e e e e e s e st e e e e e e e s s asstaeareeeeessnnssnneaeeeeannnnes 108
FIgure 3-2: MOSTS50 fTAIME. ... ueeiiieiii ittt e e e e s e e e e e s e st e e e e e e s e s ssntaaereaeeessnnssnneaeeeeannnnes 109
Figure 3-3: Packet/Streaming Data usage eXample ... 111
Figure 3-4: Layer Model Of @ EVICEiiiiiiiii et 120
Figure 3-5: Flow chart “Overview of the states in NetInterface”...........occoceiiiiiiiii i 122
Figure 3-6: Behavior of a Master device in state Netlnterfacelnitccoociiiiiiis 125
Figure 3-7: Behavior of a waking Slave device in state Netlnterfacelnit.............cccccciniiiiiinnns 126
Figure 3-8: Behavior of a woken Slave device in state Netinterfacelnit..............cccccoiiiiiiiii s 127
Figure 3-9: Behavior in state NetinterfaceNormalOperationccccvveveeeeiiiiciiieee e e e 129
Figure 3-10: Localizing a fatal error with the help of ring break diagnosis...........cccccccoviiiiieeiecnnnnn, 130
Figure 3-11: Behavior during ring break diagnosis in a TimingMaster (part 1)ccccocccvvveeeeeeennnns 132
Figure 3-12: Behavior during ring break diagnosis in a Slave (part 1).........cccccvvvevreeiiniiiiiieeneeeseennns 133
Figure 3-13: Behavior during ring break diagnosis in a TimingMaster and Slave (part 2).................. 134
Figure 3-14: Behavior during ring break diagnosis in a TimingMaster and Slave (part 3).................. 135
Figure 3-15: Secondary NOAe, SCENATO L.......ccciiuiiiiiiiiiiie ittt 137
Figure 3-16: Secondary NOAE, SCENANO 2........cciiuiiiiiiiiiiee ittt ibre e e anns 138
Figure 3-17: Secondary NOAe, SCENANO 3.......ccciiuiiiiiiiiiiee ittt e e 139
Figure 3-18: Example (2 devices) for waking of the MOST network via a modulated signal on the
(1] 1T o4 PP PTUPR TP PRPRPPRN 141
Figure 3-19: Switching off MOST Network via starting method ShutDown in every NetBlock, and
signaling to every application, and switching off modulated signal..............ccccoveeieeiiiiiiinnenn.n. 142
Figure 3-20: Prevention of switching off MOST Network via ShutDown.Result (Suspend)................ 142
Figure 3-21: Examples of the behavior when unlocks OCCUF...........ccuvviviiiie e 147
Figure 3-22: Behavior of a device depending on supply VOItageccccceeeeiiiciiiieiee e 151
1o T T R S AN 1= T o I Y RSP EERR 152
Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 216

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
Figure 3-24: States of the network are shown, as well as the status of the Central Registry............. 156
Figure 3-25: Seeking the logical address of a communication partner............cccccceeeeeeiiciiiieeeneeeeeeee 176
Figure 3-26: Possible mechanism to adapt transfer rates to the speed of a data sink....................... 177
Figure 3-27: Network Service: Services for Control Channel...........cccoeveiiiiiiiiiiie e 178
Figure 3-28: Network Service for the Streaming Channel...........cccoooiiiiiii e 180
Figure 3-29: Network Service: Services for the Packet Data Channelcccccccveeiiiiiciiieeee e, 189
Figure 3-30: Building a streaming connection Step DY StEPcvvveeiiiiciiiiiiie e 192
Figure 3-31: Step by step removal of a streaming CONNECLION...........ccevveveiiiiiciee e 194
Figure 4-1: Example of the structure of a MOST device, the different functional areas and their
11 0= = T = PP 202
Figure 4-2: Block diagram of POWET SUPPIY @I a........ciiuuiieiiiiiieeiiiiee ettt 205
Figure 4-3: Input Section Of POWET SUPPIY @I Aeeiiiiii ittt e e e e e e 206
Figure 4-4: Timing of the output signal of the SwitchToPower detector depending on voltage at
CONLINUOUS POWET INMPULvuviiiieeeeeseeiiiieie e e e e e e s ettt e e e e e e e e sasstabeeeeeeeesssassataeeeeeeesssassnraneeaeesssnnrnteaeeens 207
Figure A-5-1: Flow of initialization on application level in a NetworkMasterc..ccccooecvvvieeeeeeennns 212
Figure A-5-2: Flow in NetworkMaster during requesting system configuration..............cccccceveeeeereenns 213
Figure A-5-3: Flow of initialization on application level in a Network Slavecccccccovvvcivieeeieeeenins 214
Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 217

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

8 Appendix D: List of Tables

=L o] L= Il = FoTod | L (=g A) U 29
Table 2-2: FBIOCKIDS (PAIT 2)ccciiiiiiieiee ettt e e e sttt e e e e e e e s e e e e e e s e saab b e e e e e e e e s e asannbnaeeeeessnnnrnrnnes 30
Table 2-3: Responsibilities for FBIOCKID and FKtID ranges..........ccccuvveieeeeiiiiiiiiiieece e 34
Table 2-4: OPTypes for properties and MethOdSccuuiriiiii i 35
Table 2-5: Error codes and additional information (PAart 1)..........ccccuvirirreeeisiiciieeer e e 36
Table 2-6: Error codes and additional information (PArt 2)..........ccccuvieerreeeii i 37
Table 2-7: The different modes of the bit field Channel TYPe ... 66
Table 2-8: Classes of functions with a Single Parameter............coeoi i 68
Table 2-9: AVAIIADIE UNIESeiiiiiii et e e e e e e s e e e e e e e s nnbate e e e e e snnnreneees 71
Table 2-10: Classes of functions with a multiple parameters. ..o 77
Table 2-11: Classes of functions for @ MEthOd.cooiiiiiiiii e 100
Table 2-12: Notification Matrix (x = notification activated)ccccveeeree i 102
Table 2-13: Parameter CONLIOL..........ocuuiiiiiiiiiie ittt sttt e e s st ae e e s st e snnreees 103
Table 2-14: Protocols with different controls for making entries in the Notification Matrix, and the

(TSI L] o =T (1= PSPPSR 103
Table 3-1: Structure of the MOST25 fraMEccuuiiii e 108
Table 3-2: Structure of the MOSTS0 fraMEcoouuiiie e 109
Table 3-3: NetBlock.Boundary influence in MOST25 and MOST50 SYStemMS........cccovvieeiniieeeniinnenn. 112
Table 3-4: Structure of a frame of packet data (48 bytes data link layer) ..., 115
Table 3-5: Structure of a packet data frame in the packet data area (alternative data link layer) 115
Table 3-6: Structure of a control data framMe............oooi i 116
Table 3-7: Addressing MOdes VS. addreSS FANQJE........oiiuuuiiiieiee ettt a e et e e e e e e e reeeea e e e e aaes 118
Table 3-8: Events in state NetlnterfacePowerOff..... ... 123
Table 3-9: Events in state NetINterfaCelnitc..oviiiiiiiiiiii e 123
Table 3-10: Events in state NetinterfaceNormalOperationcccccceveeeeiiiiiiiieeiee e 128
Table 3-11: Events in state NetinterfaceRingBreakDiagnOoSiScccuuveieeeiiiiiiiiiieiee e eccinreee e e e e 130
Table 3-12: Ring break diagnoSis FESUILSuviiiiiiie e e e e s s r e e e e e s s e e e e e e ennnes 131
Table 3-13: Events in System State NotOK (refer to Figure 3-24)........vveeiiiiccieieeeee e ceciiieeeee e 157
Table 3-14: Events in System State OK (refer to FIgure 3-24)cccccveveee i eesviieeeee e 158
Table 3-15: Example Of & Central REGISIIYoouuiiiiiiiiiiiiiiee et 160
Table 3-16: Example of a Decentral REGISIIY.........cuiiiiiiiiiiiei et 167
Table 3-17: Functions in NetBlock that handle addresses..........ooociiiiiiiiiiii e 174
Table 3-18: Functions in ConnectionMaster in conjunction with the administration of streaming

[oTo] a1 g [=Tex 1 o] o P PP 191
Table 3-19: TimIiNg DefiNItiONS........ccciiiiiie e e e e e e e e e e e e e s rrrrreeeeeeaesanes 201
Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 218

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

INDEX

V1
L AT .ttt 18£8 £ bt bt bttt bt bt nnnnnnn e 202, 203
7
LAY A &0l 11] =1 = L (o] PP P PP 207
A
Y oo o TP PPRPPPPPP P 45
F Y o0 7o PP PP PP PPRPPPPPR 45
A CK e e s s 17
Addressing
Modes (MOST Network Interface CONIOIEI)........ooi i e e e e tre e e e e e 118

MOST Network Interface Controller
NEWOTK ...
Physical Address
ADS ..o
Allocating Streaming Channels...................
Allocation

Application

T L= 1[4 L1 o] o TR TP PRSPPI
F oY o] o] [Tor= (o] o Y (=T NPT PURU S SPPUPRPR
YY) o] [Tor=1 1 To] o I T o] SO SRR PSPPSR
Application Failure
APPIICALION MESSAGE SEIVICE....cciitiie ettt ettt ettt e ettt e bt e e et e e ettt e s ab et e e sa b et e e e b b e e anbe e e e s nne e e e anbneeenanees 178
L1 o1 = L1 To] I TSP P PP PP PRPPPPPP 117
Area

PN o] o [1or= 1oL g Y £ N PR PT PP

Micro Controller Area.........

MOST Function Area.........

Optical Interface Area

Lo N =T ST U o] o] YA AN £ =T R

ArrayWindowlns
(011 =YY g = 1ALV [o To [0 AU U T PPPPPPRPPN 86
(DS 1 £0) V7N g = VAoV T o [0 1 RSO UPRTP 86
[0V N = YAV T To (o PR UPSTR 86, 89

Bad Power CONditionN COMPATALOTciiiuiiiiietee et ieititee e e e e e e asibaereaeeaasetbbeeeaaeassastbaaeeeaeeesaasstsseeeaesssbaseeaessasnssseees 208
Bandwidth
IVTBINAIGEIMIENT. .. R R bR R e R bbbt s e s annntn b s nnrnnne 190
SHrEAMING VS. PACKEL ... ettt e e e e ettt e e e e s s bbbt e e et bbb e e e e e e s abbaneeeeeeeaan 18
2T =Y o OSSR

Boundary
2o]N o Pl A B Lo T Yol o] (o] (TP PP UOUPPPPR

[foF o [or- 1= A PP U PP PPPPPRTOPPP
Broadcast Address
BuildSyncConnection

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 219

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION
2 ST T PSP OPUPPPRPP 106, 208
C
(02T o= o113V e)T = L TP PP TRPTUPPRPTN 140
(021 7= 1o o U TP PP PP TURPPPPPPP 52
(01T gL Tl R d=To] (YRR 14, 63, 149, 160

APPEAING FBIOCKS 1N OK ...ttt ettt e e e e e ettt et e e e e e e e aasbeeeeeeeeeaaaneeeaeesaannnseeaaaaeaannes 165

CONEINTS ... 160
Disappearing FBIOCKS 1N OKoiiiiiiiiiiiiie ettt e ettt s et e e et e enr e e e st e e e anre e e nnees 165
Large UPates iN OKiiiiiiiiii ettt e ettt e e e e e e st e e e e e e e e s st b b et eeeee e s s ssbeaeeaeaesstbeeeaeesaassseseeaeeenanses 166

NON-respoNdiNg DEVICES IN OKuuiiiiiiiii ittt e e e e s st e e e e e s st b aaeeeaeaessatbaaseesaassssseeaeessanses 166

PUI OGS . e R R R e R e Rt b e n e st st s bbb n b et e nnnnnnnne 160
RESPONAING TO REOUESLESceiiiiiiititiie ittt e ettt e e e e e e bbb e et e e e e e e s a bbbt e e e e e e e snbbeeeeesasbbeeeeeeesannes 160
LRYCTS] o To T] o] 1RO UUP T OPPPPPPPPTN 160
SY=Tolo] g o b= TV [0 To [P PRRR 136
System SCan WItNOUL CRANGES.......c.iiieiiiii ettt e e e ettt e e e e e e s a b bee e e e e e e s aantaeeeaeaeesaasaeeeaeeaannsnneeaaeaan 165
Updates

(1 F= 1T =1 IO
Allocation
Unused

Classooovvviiieieeeieiiieee e,

Classified Stream

CMS e,

Communication

Comparator
T N e

Connection Label

(7] 0] 4 T=Tet 10 011 = 1S =1 PP ERRRP 14,190
(B L=T=To [0 Tod Q2 (5AVZ=T 011 o] o [PPSO URPPPPTPPRN 192
MoveBoundary

[©00]4] 7= 11 1= SO RN

(O00] 411 ¢0] I =1 £ SRR

Control Dataccoeeeeeeennnn.

Control Data Interface
Description...
Framecccocvvvvvvvvvvvinnnnnnnns

Control Message Service

Addressing (MOST Network Interface Controller)
Control Messaging Interface
Controller.......coovevveeiniicce,

CrEAtEATTAYWINUOW ...ttt e ettt e ok et e e aa bt e e o bt et e e aab et e e et bt e e e e e e e e nb e e e e anbr e e e nnnn e e e nnnnas
Critical Voltage
(oL g1 Tor- Y o] r= Vo [T - TaTo [T SRR PPRPTN
(61571 = | LT TP PPTTUPPUPPRPTN

DIALA LINK LBYET .. eeeitiiteeteie ettt ettt ettt e ke e e e ekt e e sttt e 4R et e ek b et e e e b e e e e e ae e e e anEb e e e e be e e e e nne e e eanreeenan 188
(D= = W = 1 1] o Lo ST PP PR PP 107
Data Types
271 (][T T O T TP T TP OO PR PP URR VPR PUPPTRI
Boolean

T =T 1 1 PP PP
String
Unsigned Byte
Unsigned Long

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 220

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Unsigned Word..................
Decentral Registry
Building.......coeevvviiiiieneeenn,
Deleting
Updating
Decrement
1= - PRSP
(7] g1 01=] g T 11 To] o KU PP PRRR
SrcDelay
(D= 1= 1 2] (o Tod |] P UPT SR PPRPTN
[T 1o)X g =\ YATA Y1 o [0 PRSP PPRPRN
DevVviCeooovviiiiiiiieeeic
DevicelD......
Malfunction
Shutdown.....
DevicelD ..o
DeviceNormalOperation
DeviceStandBy..........cc..cc......
DiagnosiS.........ocevivieveee e,
Diagnosis Error Shut Down
D] F=Te | g[Sy S =TT | PP UPP T SPPPPPPPPTN
Diagnosis Start
DT [I o) =T S T o] o | U PPT S UPPRRTN
DY g = Lo (ol Y o - PR PRRRRRN
End Linecooovivivieiieeis
Dynamic Behavior
Dynamic FBlock Registrations

E
ELECIIICAI BYPASS ... oietiteeeeee ettt oottt ettt e e 4o e a bbbttt e e oo e 4Rk b bttt et e e o4 oAb bbbttt e e eh bbb et e e e e e e nnbr et e e e e e e antneees 106
0T 01T (42T PRSP 50
End Line
DYNAMIC AITAY ...ttt ettt e et e e a et e e 4a ket ookt e ook bt e e aa kbt e e ek et e 4ok et e eb bt e e e abe e e e e bn e e e enne e e e nnns 94
ENUM oo

Enumeration.....

Application Error
DEVICE MAITUNCLION ..ottt ettt e oo e ekttt et e e e e s e e bbbt e e e e e etbbb e e e e e e e anbbreeeeeeeaan 39
[o] @S T=Teto] oo F= T VAN N o o = PRSP 38
(CT=T LT o I (=T o U 1o T = (o] R EERTRS 38
/1= 1 oo Y o To 5 £=To [PSPPSR
P AT AIMIETET ETTON ...ttt ettt sttt et e et e e e e e e e e e e eeee
Segmentation Error
Specific Execution Error
Temporarily NOt AVAIIADIE EFTOF.........ooiiiiiiiiie ettt e e e e e et e e e e s st b ee e e e e e e annnes 38
Device Malfunctionccccceeiieeiinnins
Fatal Error (Network).........
Infinite LOOPSvvvvveeeeeiiinee.
Managing Errors (Network)....
Method Aborted..........ccceeviiiieiiiieeciie,
Network Change EVENt (NETWOIK)oiieiieiiiie ettt et e st et e e e e e 145
SY=Tolo] o F= 1 V0 [Lo [OSSP OSPPPRPRN
Segmentation Error
)11t N = (o] T TN
UNIOCK (NEEWOTK) ...ttt e e e ettt et e e o4 ekttt e e e e e e e e anbb ettt e enbbb e e e e e e e e anntnneeas
Voltage Low (Network)
Error Checking (Flow Chart)
EFTON SRUE DOWN ...ttt ettt e e e e e ettt e e e e e e a st b e et e e e e e e e ntbea e e e e e e e aansseteeeee e nsbaeeeaeeeesnnsbeneaaeeassnnse
ErrorAck
Ethernet

DiagnOoSIS ErrOr SNUL DOWNN ..ottt e e e e e e e bbb et e e e e e e abbeee e e e s enbbbreeeeeennens
D] F=Te | gl RS S =T o | PP UUPT O PPPPPPRPTN 130
(D] F e | g[S S = L TP UOUPPPRRPN 123

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 221

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Error Shut Down................
Init Error Shut Down
Init Readyccvvvveeeeennns
Normal Shut Down
StartUp ..o,

[0 010] =T o | OO PP PP P PP PP PPPPPPPPPPPPPIRE

Fatal Error (Network)..............
FBIOCK ...ooovieiiiiiiiciiccie
FBlock Shadow....
FBIOCKID........coeviieiiiiiiiieiinee
List Of FBlockIDs...............
FI (Function Interface)
FINAING COMMUNICALION PAIMNEIScoiiiiiiiiiiei ettt e ettt e e e e e e tb e et e e e e e e s ntbeeeeeaeaeeannaseeeeeasansbeeeeaeeeaansaneeas 155
L OO OP PO PPOTPRUPROPN
Ranges
[LSOO PPRPPPRUPRPR

Function (FKt)cccccovniinnne.

Function BlocK....................... See FBlock
Ve Tor [N OF=1 =1 [o Lo IR PP P P PP PPPRPPPPPPN 52
T [Tox [T T O F= TR 66

(DY g =0 T (oF Y = | R US TP PRRP

[10 0 (=] = Lo o AT 68, 72
[l oY \Y/ (=1 { oY PN 100
[O U o (o] g W O =TT T P 67
LLONQATTAY ...ttt ettt et et e e e e e e e e e e eeernee 85
> o PPt 94
(VU] 0] 0T TR 68, 70
(2 =Yoo] (o OO PRSPPI 78
S Y=To 01T g o= =1 { oo o PR RPRRR 101

STeTe (U=t ol ol e fo] o =T | T PPN
51 (o PO P P PP RPPPPP

Trigger Method

[T lei o] g [0 (=T g 7= oT PP PPPRPPPPPPPN 19, 24, 65
Functional Address
(0] [0 [=T =T ST PP PRSP PPPPPPTN 31

(1[0 TSIT= o P UPP PSPPI 14
(€1 (e] 0] oI Ao [0 [=21 OO TP P PP UPPRPTTP 173, 174
H
[210 111V T TP

[1A R RRRRRRRPRRTN
[(o] [o LY/ =Tl o F= T a1 o RO

Human Machine Interface
[NS G (=] [PPSO PPRPTN

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 222

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

[o] 1T 0 0T o | PP PP P P OPPRP PPN
Init Error Shut Down
Init Readyceevvvveeeiiiinnne.

Init Ready Event....................

0] 5 PR
LRSS [o | 0011 ST PP P PP PP PPPPP PPN
EnhancedTestability
[N =31 2] o Tox SO PTPRPPOPPPP
N Ao - U] (=] S ST PTPRPPOPPP
Wildcards

10T 1 = o PPN

INEEIACE fOr SOUICE DALAceiiiiiiiiiiiiiei ettt ettt e et et e e et e e e e eeaaeeeaesaaaasaeeaaaaaaaaaeaaaaaaaaaaaeaaaens

Invalid Registration.................
Duplicate InstID
Duplicate Node Address....
Error Response
Invalid Node Addressccccovvvveeeiinen.

Layer Model

Length
Lock

Stable
(oo [@] a1 Y/ Yo Lo = TSRS 204
(oo (o= 1Yo (o | 1T S PP PP UUP R UOTPPPRPPNt 173, 176
LongArray
LOW LEVEI REIMES ...ttt ettt e ettt e e e e et e e e e e e e e e et e e e e e e e e e st eeeeeeessaesbaan e aeeesesssssnnaeeeerensrenn 175
[0 1AV - To = TSRO UPPRPP 151, 207
LOW VOITAGE RANGEeeeeiiiieiiteee ettt ekttt ekt e e st e oo b et e e ek b et e e aa b et e e s s e e e asbb e e e sabee e e s nneeeabreeenans 209

M

IS To [N [0 11 ToF= o o H PSRRI 102
Message Sink

(@Y= ¢ (o - o USRS 177
Y=Y 1 Lo o [T 14, 21
MELNOT ADOTTET ...ttt ettt b bt s e s e e e e bt e e b e e e bt e e b et e b e e eb e e s ab e e sar e e st e e naneesibeesanee e 39
IMBENOUS ...ttt b ekt e bt s ke e h e s et e e e bt e e e b e e e et e Rt e e bt e r e st p e e nr e eenare e 62
Micro Controller Area............. 202, 203
MICTOPOWET REQUIBLONeeiiiiiiieitee ettt ettt e e e e e e bbbttt e e e e e e ekt bt e et e e e e e e bbe e e e e e e e nbbb et e e e e e e annbnneeas 206
Y ToTe (U] Eo Y C=To IS To [F= L i SRR RSTRR P 146
Y T (=N a1 (o] 1 14 F= 11 [0] o OO URPT PR 2
MOST Asynchronous Medium ACCESS CONLIOL.........ociiuiiiiiiiie ettt e et e e e e
MOST Device
MOST Frame

Boundary Descriptor

MOST25

MOST50

Preamble
MOST Function Area.............
MOST High Protocol..........cccccoocveeiiinirennnne
MOST NetWork INtErfaCce CONIIOIET.........uueiiieeeeeeee et e e e e e e e e e e e e e e s e e s b ae b e e e e e e eerebaanans

MOST SYSEEIM SEIVICES ...uuviiiiiieeiiiiiieit e e e es ettt e e e e s e et tee e e s s b tbeetaaeeaass et aeteaaeessassaaasaeaeeesansaesaeesaassssaseeeensanssses 27
[0 1=T N = P UPR O PRPRRN 85
L [0V N = N YA AV T Lo (o AP UTP T OPPPPPPPPRN 86, 89
Y [o)V=T 1o 8 Lo =T oY O TP P PP PPPPPPPRPTNt 190
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 223

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
N
N Y PP PPPPPPPPPPN
Name...............
NCE....ccoovvvvnnnns
NetBEUI
NetBlock
Y10 (o7=Y i F=T o [T 181
NetInterface
N[(=T = o<1 LT PP PPPPPPPPP 123
N[(=T = (o= oo LY =Y O i PP PPPPPPPP 123
LT (O IS 7= (= T UPPPRUPPIPRN 14
Network
INIEAIIZALION ...ttt ettt e e e e ettt e e e e e e e e e e e e eeeeeasaa s eeeee s e s s bt e aaaeeaeesestbanaeeeseensssaanaaaarens 154
Y1 (od o1 o @ 3 PRI 141
LT = 1 Lo U RRTR R 140
NEIWOIK ChanQe BEVENL..... .. ittt e e e e ettt et e e e e s et bttt et e e e e aaasatbeeeeaaesatbeeeeaeeesanssaneaaaeesannse 148
Network Change EVENT (NETWOTK)coiiiiiiiiiiiee ettt a bt s st e e st et e s e e s nannee s 145
Network INterface CONLIOIEr FAIIUIEuuuuuuieiiiiiii e s e e e e e e e e e s sssasnsasasa s ssssssssssssnssssrnrnrnrens 149
N o QY =T aF= Vo (=T 0 =T o | PP PR PP UPPRPTN

NEIWOIK RESEL ...ttt et e ettt e e et e e et eeeeeee e e bt e e eeee e e s bt e e e e e e e s s baa s s eeeeesesabaanneeeesessrrannsnns
Network Service
Network Slave

BUIlAING DECENLIAI REGISIIYeiieiiiiieiiiei ettt e e e e ettt e e e e e e et e et e e e e e e s ntbeeeeaaeaeaanbeeeaeesaanneneeeaeasaannes

[BLCToteT oL = U (T o 151 (Y TP O P PP PP PP PPPRPO 167
Deleting DECENTIAl REGISIIYci.urieiiiiii ettt e e et e e bt e e e bt e e et bt e e e e e e asbe e e e anbr e e e nanees 167
Derive LOGICAl NOUE AGUIESSccoiiiiiiiiie e ettt ettt e e e e e et e e e e e e s ettt e e e e e e s s sbbaeeeaeeesssaaaeeesassrseeeaeesannses 168
DetermMinNiNG SYSIEM STALEeiiiiii it e e e e s e e e e e e st aeeeaeeasssbbateeaeeessasbeaeeesasbraeeeeeessnnses 170

Finding COMMUNICALION PAITNETScoiiiiiiiiiiiee ettt e e e e e bbbt e e e e e e e aabbb e e e e e s abbbneeeeeeennees 170

N\ o] g T @ o T=T = L1 T o PO UPT T SPPPPPPPPTN 169
Reaction to Configuration.StatUS(INVAlIA)oeii it e e e et e e e e e nneee e e e e e e anees 171
Reaction to Configuration.STAtUS(NEW)eueiiiiieiiie ettt e e e e st e e e e e e e et eeeeaeeanneeeeeaeeeanees 171
Reaction to Configuration.Status(NOtOK) in NOTOKccoiiiiiiiiiiiii it 171

Reaction to Configuration.Status(NotOK) in OK
Reaction to Configuration.Status(OK) in NotOK
Reaction to Configuration.StatuS(OK) iN OK........iiiiiiiiiiiiiie et e e e s e e e e e e st e e e e e e asbareeaeesaanses
Reporting Configuration CHANGESccoii ittt e e e e ettt e e e e e e s bbe et e e s s bbereeeeeeaanees
Responding to Configuration Requests...
Startup Behavior..........cccccoeviiiiiiieiinnns
Startup With Valid Node Address
Startup Without Valid Node Address
System State NOtOKccooeviiiiiiiiiiiinn,
System State OK...................
System State Unknownc.ccceenes
Updating Decentral Registry....................
NEWOIK SIAVE FAIUIE ...ttt e e e oottt et e e e e s b bbb et e e e easbbe e e e e e e e sanbbbneeaaeesantes
NEEWOTKIMABSTET ...ttt ettt ettt e e oo ettt et e e e e e e o an bt aeeeeaeaeeanebeseeeeaeeaaanntbeeeeesannnseeeaaeeaanns
Addressing during System Scan
APPEAING FBIOCKS 1N OK....oiiiiiiii ittt et e e e e e ettt e e e e e e e e nt b et e e e e e e e aanbeeaeeesasneseeaaeasaannes
CNITAI REGISIIY ..ttt eit itttk e ekt e e e b et e ek et e e aa b et e a4k bt e e ek b et e e na b et e e s b e e e e aab et e e nnnr e e e et e e e nan
Central Registry Updates..........coocvveeiiieeeiniiieeenieee e
Configuration Request during System Scan..................
Continuously Non Responding Slaves
Disappearing FBlocks in OK....................
Duplicate InstID Registration
Duplicate Slave Node Address................
Invalid Registration
Invalid Slave Node Address...

Network Monitoring
NOJE AAAreSS AVAIIADIE ..ottt e ettt e e e e e e bbbt et e e e e e s abbe e e e e e s asbbnreeeeeeanens
Node AdAress NOt AVAIIADIE...............e e e e et e e e s e e e e e e anees
Non Responding Slaves during System Scan
NON-responding DEVICES IN OKottt e e e e ettt et e e e e e e st beeeeeaeaeaantbeneeeseannneeeeaeasaannes

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 224

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
L0 1S 111 o 1 PR UOTPPSRRRN 166
RepOorting SYStEM SCAN RESUILSuiiiiiiiiiiiiee ettt e e e e et e e e e e e s e tbatreeaeeessnsaeaeeesaanseneeeaeeeannnes
Retries during System Scan....................

Setting System State NotOK
Setting System State OK...........cccceeenne
Slave Error Response

SYSTEIM SCAIN ..ot
YV (T IS Tor= Lo T DW= L1 o] SRR
System Scan without Changes
SYSLEM STAMTUDP BENAVIONeiieiieieeeit ettt et e e bt e e s e e et b e nnbe e e s nneeeaabneeenan
Un-Initialized SIave NOGE AGAIESSccouuiiiiiiiie ettt s bbb e et bt e e e aabb e e e s breeabb e e e abbeeesnnees 164
[N\ [0 [PPSR OT PP OUUPPPPI 14
N[00 (=N [0 | (=TSO PPP R PRPTUPPRPTN 173
F Y2 11 =L o = O PP P PP PPPPRPPP 161
N0 QAN V=TI = o TP UOUPPPRRTN 161

[N LoTo (Sl =01] 1 o] o IR 118

NOUE POSIION AGUIESSeieieiie ettt ettt e e e e e ettt e e e e e s s n b bt e eeee e e e s ntbeeeeeaeeeaanbeeeeeeeaanssseeaaaens 119,173
Normal Operation (VOIAGE RANGE)eeiiiiiiiiiiiiiiii e ettt ettt e e e e e e st e et e e e e e s asebeteeaeeesaasssseeeeeesaasssseeeaeasannses 209
N [oT g0 =TI o 1U1 B o)V o P PO PT P RPPPRT 128
[N [o] g aF= 1 @] o 1T =i o] o PP PPRPTN 128
[0 011 [0%= Lo] o TN 21, 102
Errors
REACLION ON SYSIEIM BEVENTS ...ttt ettt e e e e e e ettt et e e e e e e st beeeeeaeaeaansbeeeeeeanneneeeaeasaannes 105

Notification Matrix

(O] o] 1T o TP PP UP PR PTPPPPPPP 33
(©]07= 7= 1 1[0 o 1R PP TUPPRRTN 146
(O] 0T=T = 14 [o] ¢ I 1N/ o 1R 20, 28
(O] o) [ox= 1l [a1 (=14 1= Tl I AN (=T PP PPRRTN 202

O T Y DS e ———————————— 67
OVEr0Ad IN A MESSAGE SINK ...cieiiiiiiiiiiii ittt e e e e ettt e e e e e e a b b e et e e e e e e s s bbb et e eeeeeaanbeeeeeesaasbbnreeeeesaannns 177
OVEI-TEMPEIALUIE ...t e e e 152

o To L A D L= | c- PR 14, 113, 115
(o o I D= = N O g T Vo o1 DO PPN 18
Packet Data TranSMISSION SEIVICEcouuitiiiuiiee ettt ettt ettt e e ettt e sttt e et e e e tb e e e s aabe e e e sbeeeeaabbeeebbeeeabbeeesnbbeeenans 188
Parameter Error.........ccocevveeeiiiieeesiiieee
Parity Bit........ccooviiiiiiieies
PermissionToWake
Physical Interface...................
Physical Position
OSSR
[0 Y1) PPN
Power Management
Lo N V=T @ T o T o T o PR PR SO PPRPTN
POWET SUPPIY ATBAL.... ettt e e oottt e e e e oot e e et e e e e e s bbb bt e e e e e e eabb e e e e e e e ansnebeeeeeeaan
PowerMaster
L ST 101 0] - PUPRPS
Priority Levels
Control Channel ON NEtWOIK LEVELcoooiiiieiee e, 175
Packet Data Transfer
[(o ToT =TI o H PO TSSO P PP OT PP PUPPPRPPIN
[o ToT= TS g T 1o PO PPRRPRN
Property ...
Containing Multiple Variables
LR TCT= T[] o T PR PP P PPPPPPPRPTN

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 225

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Setting
Single

Retries

LOW LEVEI RELIES ... ettt ettt oottt e e oo e ot bttt e e e e e e e a et e e e e e e e e e s e s bbeeeeeeannbsseeaaeesannsneeeaeasaannes 175
LRyC 1Y I 111 TP O PP ST OO PP RPPPRP PP 116
RING BreaK DIBGNOSIS ... eeeeteeteiittee ettt ettt ettt e ettt e e st e a4 b et e e s b et e e ea et e ookt ee e am b et e e easeeean bbb e e ebb et e s nnn e e s neneee s 130
R et E e E Rt E b et e E e e R et e E e Rt e e b e b e e e e e e e r e e e e nre e 64
[0 10 o [P PPPRPRN 62
ROULING ENQINE ...ttt e oottt e oo oo e a b ettt e e e e oo a bbb e et e e e e e e s bbb e e e e e e ansbbe e e e e e e e aanbbneeeeaeeeannnns 114
R0 oI =T oo 11 o I = g ote o [T Vo OO PP PP TPPPPPPPPTN 64
L S AN | S PR PPPRPTN 14
RXTXLIOQ -ttt 5555555555555 £ s s s s s s e e s e e s e e rnrnennnee 14
RXTXPIOS ..t £ 5555555t £ttt s et sttt e e et e e e e e e nenee 14

S

SY=Tolo]gTo F= 1 Y20 N[To [TSP ERRPPPP
Securing Data.........cccccceeeennee
Seeking Logical Address
Segmentation Error
ST=To aaT=T o1 =T B =) = PP SRUPPRPTN
SeleCting ArTaY EIEMENTSoiiiiiiiie ettt e ekttt e e s bt e e ek b et e e et e e s et e e et e e e enr e e e s 82
SenderHandle
SY=To (01T ool =1 =1 i T Lo [UPRPPPP 67, 101
T=To [T gt c i (o] o =T TSN 99
Sl
SetGet
Shadow
Short Stream ...
Shutdown
Signed Byte
Signed Long
Signed Word........
Single Transfer

ST 124 {0 TSP UPOUPRRSURPPPIN

N T g IVl o TP PUTPPPRRTN
Sleep Mode
Source Data
Bandwidth MANAGEIMENTciii ittt e e e e et e e e e e s st a et e e e e e e s stbaateeaeeessssbaeaeesaassssreeaeessanses
Handling BY The NEIWOIK SEIVICEueiiiiiiiiiiiiiiie ettt e ettt e e e e ettt e e e e e et a e e e aeesasastbaeeaesaasseseeaeesaannes 180
Handling IN FUNCLION BIOCKooiiiiiiiiie ettt e e e ettt e e e e e e s s e e e e e e s esbbereeeeesanens
Interfaceccccveeeeeeiiiiinnnn,
Source Drops...
SourceActivity......
1o 101 (o110 0] o] o1 o) N TP
Yo 0T o= 1 o) {0 SRR PPRRTN
Specific Execution Error
S 0 =T=To] - Vo [P UP PSPPI

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 226

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Start Up
StartAck

NormalOperation
SEBUS e ———————

Streaming Channel
Y= (gl o I @foT gl T=T o 1 o] o BT UPPTTROUUPPRPTN
=gt o] [T O 11 11 o 11| ST POTPPSRRTN 196
Ly = o] 1R 1 o [PPSR 192
[RL=T 10101V o o TR TP R PP PPRPTPPPPO 194
Source Drops...
Supervising......
SHEAMING DALA.......uuiiiiiieii it e e e e et e e e e e s st a e e e e e e s s stbbareaaeeaaan See Streaming Data Channel
Streaming Data ChanNEloooiiiii et e et e e e e e s et e et e e aab b e e e e e e e e s nenneeas 17, 113
Channel Lists Order
Double Commands HaNAIINGuuiiiiii ettt e e e ettt e e e e e e e atbe et eaa e e e antbeeeeesaansnseeeaeasaannes 186
S PR RPRRR
Source
L4100 P PO PP UPRP P OPPPPN
Structure Of Data Packet
48 BYLES DAt LINK LAYETciiiiiiiiiei ettt ettt e e e e ettt e e e e e s ettt e e e e e e s e e atb b e et e e e e e e satbaeeeeannbaeeeeeeeesnntbaees 115
AIEINALIVE DAL LINK LAYc ittt ettt ettt e e e e e e ekttt et e e e e e abb bt e e e e e e e aareeaeeeaanbbeneeaaeeanntns
Super Voltage..........cccccceeeeennnnne
Super Voltage Range
Supplier Specific
S| PP UP TP PPPPRN

L o] o PRSP
Switching Off Network
SWIECRTOPOWET ...ttt ettt b et bt e bttt e be e e skt e e be e e s be e e ebs et et e b e e e b e e e beenan e e eaneenine s
SwitchToPower Detector
SyncConnectionTable
Syntax Error.........coeeeieeieenn.
System Lock Flag..................
System Scanooeeeeeeeeennn.
Addressing.........cccocveeennnne
Configuration Request
Continuously NON RESPONAING SIAVESciieiiiiiiiiiee ettt e e e et e e e e e s e st e e e e e s e ssbaaaeeesasnsraeaaaeean 162
Duration
NON RESPONAING SIAVES ...ttt e e e ettt e e e e e e a b b e et e e e e e e aantbe e e e e e anbbeeeeeeeennnes 162
REPOMING RESUILS ...ttt ettt e e e e oo h b e et e e e e e e s a bbb et e e e e eanbbseeeeeesanbbbneeeeeaennnns 163
LS (=T PR SUOTPPRTRTN 162
System Specific
FKEIDIS ...ttt ettt eh e h e Rt e e ARt e e e R et e et e e R R et e e et e e e b a e e e e nn e e e s 33
SYSTEIM STALE ...ttt e oo e e et e e e e e et e et e e e e e s e b ettt e e e e e et e e e e e e et e e e e e a e e eenean 14
[N [0 PP PP PPPR 157
L PP 158
SYSIEIM STALES ... 156
SYStEMCOMMUNICALIONINIT.......eeiiii ittt e e ettt e e e e et e et e e e s e e s s bbb et e e e e e e abbeeeeeesanbnneeeaeeeaannns 155
L S P PP PP PP PP PP PPPP 199
EBOUNGANY «+++vrsseeeemetestee e ettt e st st e ettt e s bt e s at e e s et e e sh e e s et e e shb e e s s s e e s e b e e o ab e e o a b e £ 4 s e e £ a R e e SR e e e R e e e R e e R e e R e e R R e e b e s b e e s n e sane e 197
tBoundaryChange 200
tBypass .. 199
LT Yo Tt L 200
LM DEAUIOCKPIEV« + -+t ereteeaatret e sttt e e sat et e ekttt e skt e e 4a ket e ettt e ookt e e 4t Rt e e e s et oo e e R e e e e e Rt e e ea R et e e e R e e e e Rt e e e e e e e e 200
e 17> TN 197
Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 227

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

tDe|anygRequestl .. 197
tDe|anygReques'[2 .. 197
tDiag_Lock

L MESIET e vesvesevesesesesesesesesssesssessssssssssesssesssesssesssessses s essses e es s eeesesesee s et e seeeseee st et et e e e seee e st eese et enee e 131, 201
EDiagRESIAI ««vxeveeeseresesssessseeeseseseeeseeeseeesee e ee e ee e ee e ee e ee e ee e ee e ee e ee e ee e ee e e et ee e e e e e e e e 201

tDiagiSignaI

tDiag_Slave
tDiag_Slave
tDiag_Start

TeXt oo
Time DiVISION MURIDIEXINGeveeeiiieee ettt e e et e e st e s b et e e et e e s et e e s br e e e anbne e e nanees
THIMING DEFINITIONS ...ttt e st e e st e e ek et e e st et e e s b e e aab et e e eane e e e s anb e e e aabne e e naneee 197
LI Lo RS oY= ST 106
I Lo = T (=] P UPP T POPPPPRRP 14, 106
127010 0o F= 1 PO UUP T UPOPPPPRPPN
BLOGK teenenerinetieen e ett e et e e e e s e eaeeeneeeaeenas
L P PP
LT o N
tMngesponse
Lt o o T RSP 199
tProcessingDefau|’[2 .. 200
tProperty
LT 110 e BTSSP
L LT 1TSS o] o TP UPP PSPPI
Transparent Channels
tFiesourceRetry
tRestart ...
tRetryShutDown
tRetryShutDown
LI AT To [1YL 1=3 1 o Lo IO SR UPPRSOUPPPRPP
tshu[Down ...
LS NUIDOWNW It e« e+ e e erernenseneneenrnssrenenernenrenenns
TSIAVE e vrenrrrnitiii et earaaaes
1S 1AV SUIOWN - ++ v e v ereenenrenenennenreeeneneenenranenns
tSuspend
TURIOGK + e evneemeeneeneenreneeteesnesneeneseeneeneenaenns
TV QIATEINCE -+ v e eneenrenrenennerneenerneenrenernnenns
tWaitAfterOvertempShutDown
tWai[BeforeScan ...
tWaitForAnswer ..
LT L £
tWaitForProcessingl
tWaitForProcessingZ

tWaitForProperty ...
tWaitNodes
tWakeUp ...

U
(8o F= RS | {T=To I\ =11 g T Yo OO PPUPORRRUPPNt 67
(8] g To P T I o (o o 1= 4 PP PRPRRTN 67
L LT TP 47,70

UNIOCK (INEEIWOTK) ...ttt et e e s bt e e st e e et e e sr e e e e anbr e e e enne e e e snnnee s 145, 147
Unsigned Byte
Unsigned Long
(8] g IS T o [=To VAN o] o [T PP PR TUPUPPPPPTN 49

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 228

MOST Specification 10/2006

MOST® MOST

Specification

COOPERATION

Virtual Communication

Voltage
(g1 Tor= Y o] =T [T TP PSPPSR PPPPPN
Critical Voltage Range
Handling Low Voltage
(I LAY o] 7= To [O TP PP O PPRPPPPPPP
Low Voltage Range
Normal Operation VOIRAGE RANGE........cciiiiiiiiiiiii ettt e e e e e e e e st a et e e e e sesatbeeeeassassbaeeeaeessannes 209
YU o1 Y o] =T [PR SPPRP
Super Voltage Range

Voltage Low (Network)

WaKING Of THE NEIWOTKeeeiiiiieiiiiee ettt e e et e e e bt e e s e e e e et et e e e e e s anreeeannneeenans 140, 146
Watchdog Timer
WDTrig

DT 10 ST (Y T 4T TSP PPPTRPUUPPRPTN 116

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 229

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Document History (Previous Revisions)

Changes MOST Specification 2V3-00 to MOST Specification 2V4-00

Change Section
Ref.

Changes

2V4_001 General

Old chapter 4.2.2 deleted.

2V4_002 General

Old chapter 4.2.3 deleted.

2v4 003 |2.1.1

Removed sentence about asynchronous channel administration.

2v4 004 |2.2.1

Changed description for CD player.

2v4 005 |2.2.8

System Service changed to Network Service.

2V4 006 |2.3.2.5

Complemented table.

2V4_007 2.3.251

New wording for Segmentation error with Error Info 0x04.

2V4_008 2.3.251

Clarified ErrorCode 0x01.

2V4_009 2.3.251

Reserved error code for supplier specific error codes.

2v4_010 23.251

Improved language

2v4 011 |2.3.25.1

For clarification, ErrorCode 0x02 is also explained

2v4 012 |2.3.25.1

Error codes removed 0x08 and 0x09 removed from paragraph “Application error — Parameter
error”.

2V4_013 2.3.251

Added examples to ‘Syntax error’ and ‘Error secondary node’.

2V4 014 23.251

Updated figure 2-15.

2V4_015 2.3.255

Added timer twaitForProperty-

2v4 016 |2.3.25.7

Ad ded t| mer tWa\tForProperty-

2v4 017 |2.3.2.5.10
2.3.2.5.11

Changed description for Abort and AbortAck.

2v4 018 |2.3.2.7
2.3.2.7.13

Added data type short stream.

2v4 019 |2.3.2.7.2

Representation of Boolean Data Types

2V4_020 2.3.2.7.12

Clarification that there is no coding Byte before the string and the string is always coded in
ASCII.

2v4_021 2.35

InstID changed from O to 1.

2.3.6
2V4_ 022 0 Added OPTypes SetGet and Get to function classes Switch and Number in table.
2V4 023 231121 Updated tables that describe IntDesc.

2.3.11.2.2

2V4_024 2.3.11.2.3

Deleted El4 in example.

2V4_025 23.11.24

Completed tables with lost data.

2V4_026 2.3.11.24.2

Changed wording for ArrayWindow.

2V4_027 2.3.11.3.2

Updated parameter list for Interface in table.

2V4_028 2.3.12

Increased description of deletion of entries.

2V4_029 2.3.12

Notification changed to FktID.

2v4 030 |3.1.1

Section name Electrical Bypass changed to only Bypass.

2v4 031 |3.11

Changed description for electrical bypass.

2v4 032 |3.1.4.1

Reserved device address 0xOFFO as optional for debug purpose.

Specification Document
Page 230

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V4_033 3.1.3.34 Removal of MOST transceiver register references.
3.2.2.2
3.2.2.3
3.2.24
3.6
6
2V4_034 3.2.2.2 Replaced tyaster aNd tsiave With teonfig.
3.251.2
2V4_035 3.224 Replaced t_off by t_restart in Figure 3-14.
2V4_036 3.24 Changed description.
2Vv4_037 3.24.2 Added timer tsjaveshutdown-
3.8
2V4 038 3.243.1 Increased description for “Request Stage”.
2V4_039 3.253 New definition of NCE.
2V4_040 3.3.2.2 Wording changed in bullet number 4.
2V4 041 3.3.2.2 The Connection Manager must not de-allocate channels.
2V4_042 3.3.3.1.2 Changed timer twaiaferneton O twaiseforescan @aNd €xtended timer to cover
33334 Configuration.Status(NotOKk).
3.8
2V4_043 3.3.34.7 Changed description.
2V4_044 3.3.3.6.3 Changed the headline.
2V4_045 3.3.3.6.3 NWM should send a Config.New with an empty list when a network scan that was triggered by
an NCE could not detect any changes to the registry.
2V4_046 3.3.4.3.13 Chapter updated.
2V4_047 34.1 Group Address part extended.
2V4_048 34.1 Four changed to five.
2V4_049 3.4.2 Reduced chapter about control message priority.
2V4_050 3.5.21 Improved language.
2V4 051 3.5.2.2 Channel lists must always be in ascending order.
2V4 052 35221 Increased requirements for Connection Manager.
2V4 053 3.5.2.2.3 Sink changed to source.
2V4 054 3.7 Deleted part that describes Boundary.
2V4_055 3.7.21 InstID changed to 1.
2V4_056 3.7.21 Extended parameter lists.
2V4_057 3.7.2.2 ResultAck changed to Result.
2V4_058 3.8 Added new timer twairorproperty-
2V4_059 3.10 A third scenario added, where primary node handles Ctrl + Stream and the secondary node
handles Packet.
2V4_060 3.10.2 Extended for clarification.

Changes MOST Specification 2V2-00 to MOST Specification 2V3-00

Change Section Changes

Ref.

2V3 001 General NetServices replaced by Network Service

2V3 002 General MOST Transceiver replaced by MOST Network Interface Controller
2V/3 003 General Function Catalog replaced by FBlock Specification

2V3 004 General Differentiation between all-bypass and source data bypass.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

Page 231

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V/3_005 General Old chapter 3.1.5.2 removed.

2V3 006 General Old chapter 3.1.5.7 removed

2V3 007 General Old chapter 3.3 moved to 3.4 and some contents distributed to other chapters.

2V3 008 General 3.3.8 “Direct Access to 0S8104” and 3.3.9 “Remote Control” were removed.

2V3_009 1 Chapter reworked, new document structure.

2Vv3_010 21.2 Connection Manager introduced.

2V3 011 214 MOSTSet Boundary removed

2V3 012 2.2.8 Is now MOST Network Service overview. Picture changed.

2V3 013 2.3.2.2 Connection Master not mandatory. FBlock Enhanced Testability added.

2V3 014 2323 Description of InstIDs improved. Section on handling InstID of FBlock Enhanced Testability
added.

2V3 015 2.3.2.3.2 Added Note: Wildcard must not be used for InstlD assignment.

2V3 016 23234 InstID NWM added

2Vv3_017 23251 Error codes 0x08 and 0x09 deprecated. Application notified when segmentation error occurs.
No ErrorAck on segmentation errors.

2Vv3_018 2.3.25.3 Added t_ProcessingDefaultl, t_ProcessingDefault2, t_ WaitForProcessingl,
t WaitForProcessing2 to text and pictures.

2v3 019 2.3.255 tpropeny iNtroduced.

2V3 020 23257 tproperty iNtroduced.

2V3 021 2.3.2.7 Reference to MOST High removed.

2V3 022 2.3.2.7.10 DAB Charsets added.

2Vv3 023 2.3.8 FBlock Enhanced Testability does not need to be listed.

2V3 024 2.3.11.2 Overview table added.

2V3 025 2.3.11.2.4.2 Reference to Layer 2 of NetService removed.

2V3 026 2.3.11.2.5 Function Class Sequence Property added.

2V3 027 2.3.11.3 Overview table added.

2V3 028 2.3.11.3.2 Function Class Sequence Method added.

2V3 029 2.3.12 Error handling extended.

2V3 030 3.1.1 Changed “Rx pin” to “Tx pin”

2V3 031 3.1.442 Remote Access removed. Transceiver register reference removed. Standalone mode
removed. Remote GetSource added.

2V3 032 3.15.1 SAl removed. Table changed.

2V3 033 3.1.5.2 Standalone mode removed.

2V3 034 3.1.5.3 Transceiver specifics removed

2V3 035 3.1.54 Transceiver specifics removed. Time estimation removed.

2V3 036 3.1.5.8 Rewritten without transceiver registers.

2Vv3_037 3222 As soon as the initialization of the MOST Network Interface Controller starts, the logical node
address in the MOST Network Interface Controller has to be set to OXOFFE.

2V3_038 3.2.2 Setting logical node address in MOST Network Interface Controller has been added to Figure
3-4, Figure 3-5, and Figure 3-6. Note that Figure 3-5 and have switched places from previous
version.

2V3 039 3.2.2.4 t Diag_Start and t Diag Restart added

2V3 040 3.2.24 Figure 3-10 and Figure 3-12, Diagnosis Normal Shut Down replaced by Diagnosis Ready.

2V3 041 3.24 Power Management section reworked. The Shutdown procedure has been divided into
Network Shutdown and Device Shutdown. The Device Shutdown procedure is new.

2V3_042 3.25 Configuration.Status NotOk added as a case for securing synchronous data. Also changed so
that sinks have to mute in case of an error. Not sources.

2V3 043 3.254 New definition of Network Change Event.

2V3 044 3.2.5.5 Note rewritten and maximum changed to 11 Bytes. NWM has InstID changed to 1

2V3 045 3.2.5.7 Failure of a Network Slave Device added.

2V3_046 3.25.8 Figure 3-17, Application may PowerOff in “Device Standby”. Voltage levels are no longer
exact. Application removed from power states. Note added.

2V3_047 3.3 Network Management section is new. This section replaces section 3.2.3 and 3.3.5 of MOST
Specification V2.2.

2V3 048 3.3.3.3.4 Introduced a new timer twaitasterNeton-

2V3 049 3.3.4.3.2 Deleted : The exception...(rest of paragraph)

2V3 050 3.3.4.3.8 Determination of System State clarified

2V3 051 3.4 This is old chapter 3.3

2V3 052 3.4.1 Address descriptions changed and Internal Node Communication Address added.

2V3 053 3.45 Section contains an example of Basics For Automatic Adding of Physical Address. This
section is compiled from parts of section 3.3.5 of MOST Specification V2.2.

2V3 054 3.5 Chapter reworked and SourceConnect added. Mute was changed to SetGet.

2V3 055 3.5.1 NetServices routines removed.

Specification Document

Page 232

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V/3 056 3.5.2.1 Added remark that the SourceHandles function should only be used for debugging purposes.
2V3 057 3.5.2.2 Added that sources and sinks are numbered in ascending order starting from 1.
2V3 058 3.6.2.1 Ethernet Frames replaced by MAMAC Packets.
2V3 059 3.7 Boundary is now SetGet and NWM has InstID 1 in example.
2V3 060 3.8 Reworked. t_DeadlockPrev added. t_CleanChannels added and RemoteGetSource
mentioned in Supervising Synchronous Connections.
2V3 061 3.8.1.4 Reworked supervising synchronous connections
2V3 062 3.9 New Timing Definition table.
2V3 063 4.1 Picture is only an example solution.
2V/3 064 4.2.2 Table removed.
2V3 065 4.3 Standalone mode removed.
2V3 066 4.6 Absolute power values removed from the picture. Relative values introduced. SwitchToPower
detector is optional.
2V3 067 4.7 Absolute power values replaced by relative values. Application changed to device.
2V3 068 Appendix A: Added. Contains information from old chapter 3.4.
Network
Initialization

Changes MOST Specification 2V1-00 to MOST Specification 2V2-00

Change Section Changes
Ref.
2V2_001 Bibliography - Added [9] MAMAC Specification.
2V2_002 1 - Figure 1-1 updated with MAMAC. Function catalog has been split
2V2_003 2.2.2 - Events are only generated if requested.
2V2_004 2.2.4.2 - SetResult changed to SetGet. Incrementing/decrementing added to the table.
2V2_005 2.2.10.1 - Removed a table and the surrounding text.
2V2_006 2.3.2.2 - Added Mandatory to Table2-2. Added the following function blocks to Table 2-2 and
Table 2-3:
Handsfree Processor: 0x28
DVD Video Player: 0x34
TMC Decoder: 0x53
Bluetooth: 0x54
2Vv2_007 2.3.23 - Changed default instance ID to 0x01. Removed two sentences that had to do with the old
way the instance ids worked.
2V2_008 2.3.2.4 - Added NoatificationCheck.
2V2_009 23251 - Re-numbered the list correctly. Added text to Method Aborted
2V2_010 23252 - Removed Result and Processing from the headline. Rephrased the text.
2V2_011 2.3.253 - Figure 2-16 and Figure 2-17 now use “yes” and “no”.
2V2_012 2.3.257 - Added information about the Get part of SetGet.
2v2_013 2.3.25.9 - Added Status, Error to the headline.
2v2_014 2.3.25.10 - Added Error/ErrorAck to the headlines.
23.2.5.11 - Added references to Method Aborted.
2V2_015 2.3.2.7 - Classified stream added. Also a note about MOST High was added.
2V2_016 2.3.2.7 - Values of example 2 corrected. The first sentence on the same page was re-written.
2V2_017 2.3.2.7.10 - RDS character set added and a warning about RDS strings size.
- Also added warning that character sets can’t contain null characters.
- Added example of empty RDS string.
- Added Reserved and Proprietary string types.
- Added Unicode to the UTF8 lines and UTF16 to the Unicode lines.
- Removed the ASCII code type.
2V2_018 2.3.2.7.12 - Classified Stream type added.
2V2_019 234 - Removed the paragraph that provided information about Protocol Catalogs in OASIS
tools.
2V2_020 235 - Changed instance ID to 1. Since default instance ID was changed.

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 233

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V2_021 23111 - Changed to a table.

- Added Channel Type and Reserved bitfields.

- Added that Unicode is not ASCIl compatible

- Added Table 2-9 and descriptions about the different modes that can be set through
Channel Type.

- Added Function Class Container (0x1B)

- Changed 0x1A to BitSet

2V2_022 23.111.2 - Changed mils to miles in Table 2-10.
2Vv2_023 2.3.11.1.7 - Added Function Class Container.
2V2_024 2.3.11.2.3 - Changed <> to = in front of “0x01not allowed, no access to Tag”
2.3.11.2.4.2
2V2_025 2.3.11.2.4.3 - Clarified that parameters are not used in mode Top and Bottom.
- Clarified what happens when an invalid position of the ArrayWindow is reached.
2V2_026 2311244 - Added Re-synchronization of ArrayWindows.
2V2_027 2.3.12 - Removed the requirement of three entries.
2V2_028 3.2.2.3 - Added text and Figure 3-7 to better explain how devices behave when unlocks occur.
2v2_029 3224 - Changed timer from tyock tO tpiag Lock
2V2_030 3.2.3.1 - Added chapter about Configuration Status Events
2V2_031 3.232 - Added information about tgypass Which is set to 200ms.
- Changed Figure 3-14 to include a new timer.
2V2_032 3.2.33 - Removed the requirement to store the Decentral Registry in buffered RAM.
2V2_033 3.25.1 - Added information about electrical wakeups.
2V2_034 3.2.6.3 - Added a sentence to explain that the behavior applies to all sinks.
2V2_035 3.2.64 - Added that the status message may not be sent before the NetworkMaster has asked
the device.
2V2_036 3.2.6.6 - Removed the Power Save Mode and altered the text to fit the new structure.
- Figure 3-21 was redrawn.
2V2_037 3.2.7 - Included a chapter about Over-Temperature Management.
2V2_038 331 - Changed the text about Node Position Address.
2V2_039 3.3.5.3 - Changed a “nein” to "no” in Figure 3-23.
2V2_040 3.3.6 - Added a “yes” to Figure 3-24.
2V2_041 3.3.7.2 - Added a maximum length to segmented transfers.
2V2_042 3.4.1.1.2.1 - Changed the second parameter to RequiredChannels.
- Added that allocation must not be done partially.
2V2_043 3.4.1.13 - Added “Handling of Handling of Double (De)/Allocate/(Dis)Connect Commands”
2V2_044 3521 - Added TellD “B” for MAMAC48
2V2_045 3.5.3 - Removed chapter about MAMAC and included a short overview and a reference to [9].
2V2_046 3.7.1.2 - Point 5 was updated to RequiredChannels. Point 7 was removed.
2v2_047 |38 - toonig Changed to 2000ms.
- - tgypass added.

- twaiaternce Changed to 200ms, and it is now a minimum

- Added the Sentence “This time also applies to a shutdown after a slave-wakeup.” to
tShuIDown-

- trestart Changed to 300 ms or MPR*15 ms. Added “The 300ms minimum applies to
networks containing up to 20 devices. For larger networks the time can be calculated as
follows: trestat > MPR * 15ms”.

- tpelaycigrequest @dded to complement the Figure 3-14.

2V2_048 5 - This chapter was removed.

Specification Document

Page 234

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification 2V0-01 to MOST Specification 2V1-00

Change
Ref.

Section

Changes

2v1_001

- Added paragraph introducing object oriented approach

2v1_002

2.3.2.2

- FBlocklIDs “System Specific” and “Supplier Specific” added (WG-DA 2000-09-12)

2v1 003

2324

- FktlDs “System Specific” and “Supplier Specific” added (WG-DA 2000-09-12)

- Handling of proprietary Functions/ Function Blocks by controller added
(WG-DA 2000-02-09)

2V1_004

2.3.2.2

- Speech output Device added (WG-DA 2000-09-12)

- Speech Database Device added (WG-DA 2000-09-12)

- Corrected FBlocklDs DAB Tuner (0x43) and TMCTuner (0x41)
- FBlock Satellite Radio (0x44) added

- FBlock HeadphoneAmpilifier (0x23) added

- FBlock Auxiliarylnput added (0x24)

- FBlock Microphonelnput added (0x26)

- FBlock (0x51) "Telephone mobile" replaced by "Phonebook"

- FBlock Router added (0x8) (WG-DA 2001-01-17)

2v1_005

23.251

- Specification of “Error Secondary node” revised

- Specification of “Error Device Malfunction” added (WG-DA 2000-05-04)

- Specification of “Segmentation Error” added (WG-DA 2000-09-12)

- Hint to avoiding “infinite loops” added

- "No error replies allowed in case of reception of broadcasted messages" added
- Specification of “ Error Method Aborted” added (WG-DA 2000-11-22)

- Added remark that methods in general should be aborted only by that application, which
has started the method.

- Code 0x05 and 0x06: Returning of the value of first incorrect parameter is optional
(WG-DA 2001-01-17).

2V1_006

2.3.25

- Renamed StartAck -> StartResultAck (0x6) and adapted every occurrence in
specification document.

- Added AbortAck (0x7)
- Added New StartAck (0x8)

2v1_007

2.3.254

- Added New StartAck (0x8)

2v1 008

2.3.2511

- Added AbortAck (0x7)

2v1_ 009

2.3.2.6

- Maximum value for LENGTH changed to 65535

2v1_010

2.3.2.7

- Encoding of signed values added

- Codes for ISO 8859/15 8 hit and UTF8 added

- Maximum value for LENGTH changed to 65535
- Examples enhanced

- Data type Boolean revised

- Data type BitField added

- Description of String enhanced (Null Strings)

2v1 011

2.3.253

- Flow chart “Flow for handling communication of methods (controller’s side)”. Error
handling for “Timeout = YES” added

- Changing of timeout (100ms) for "PROCESSING"

2v1 012

2.3.111.2

- Specification of NSteps extended
- Units for Speed (m/s), Angle and Pixel added

2v1 013

2.3.111.4

- Interpretation of Increment and Decrement added

2v1 014

2.2.6

- Handling of dynamic changes of Function Interfaces through Notification added

2v1 015

General

- MMl replaced by HMI (Human Machine Interface)

2v1 016

3.9

- Description of Secondary Node added

2v1 017

3.2.6.8

- Section completely removed, due to an overlapping with the MOST Function Catalog

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 235

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes
Ref.
2V1 018 3.2 - Generally revised
3.2.2 - Figure 3-3 “Diagnosis Normal Shutdown” changed to “Diagnosis Ready”
3.221 - Table 3-6 changed
3.2.32 - “Network Slave” removed,
“Requesting System Configuration — Network Master” added
3.233 - “Network Master” removed,
“Requesting System Configuration — Network Slave” added
2V1 019 3.24 - Dynamic Behavior of Secondary Nodes added
2V1 020 3.2.64 - "Failure Of A Function Block" added
2V1 021 3.8 - Timeout trynime added
- Timeout teigsaws Changed
- Timeout tanswer Changed
- Timeout tpiag master changed
- Timeout tpiag siave Changed
2V1 022 2.3.12 - Error handling in case of property failure added
- Notification of Function Interface (Fl) added (WG-DA 2001-01-17)
- Error handling added, in case of values in property not yet available during subscription
(WG-DA 2001-01-17)
2V1_023 2.3.2.2 - Note about FBlockID OxFF added
2V1_024 2.3.11.24.2 - Added parameters CurrentSize and AbsolutPosition to description of ArrayWindows
- Added PositionTag, and descriptions for PositionTag and WindowSize
(WG-DA 2001-01-17)
2V1_025 2.3.25.10 - Added remark that methods in general should be aborted only by that application, which
has started the method.
2V1_026 2.3.25.11 - Function Class BoolField added
- Function Class BitField added
- Description of parameter "OPType" enhanced
2V1 027 23111 - Start of Ring Break Diagnosis revised
2V1 028 3.25.1 - Note about wakeup methods added
2V1 029 4.6,4.7 - Voltage levels and Implementation of Power Supply Area are no longer normative.
2V1 030 General - Eithernet replaced by Ethernet
2V1 031 3.2.2.2 - Behavior of a waking Slave device (Figure 3-6)
2V1 032 3.5.3 - "MOST Asynchronous Medium Access Control (MAMAC)" added
2V1 033 3.4.3.3 - Equation for delay compensation revised (Tsource < Tnode)
2V1 034 424 - Hint Added. Description of pig tail is only one of the possible implementations.
2V1 035 341121 - Method SourceActivity added
2V1 036 3.2.6 - General handling of errors. Synch. connections are removed in case of Fatal Errors.

Specification Document

Page 236

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Changes MOST Specification 2V0-00 to MOST Specification 2V0-01

Change Section Changes
Ref.
2V01_001 | General Document no longer specified as “Confidential”; Legal Notice inserted.

Changes MOST Specification 1V0 to MOST Specification 2V0

Change Section Changes
Ref.
2V0_001 3.3.1 Equation modified; Startup address OxFFFF
2V0_002 2.1.2/2.25 Section 2.2.5 moved to 2.2.2
2V0_003 2.2.1 NetBlock “functions related to the entire device.”
2V0_004 2.3.2.2 Table 2-5: Proprietary FBlocklDs 0xF0..0xFE
2V0_005 2.3.23 Completely revised
2V0_006 2324 Minor modification
2V0_007 2.3.25 Completely revised
2V0_008 2.3.2.6 Completely revised
2V0_009 2327 Boolfield introduced; Definition of STRING expanded, Examples for Exponent, Step and Unit
2V0_010 2.35 Minor modification
2v0_011 2.3.6 Distinguishing Properties and Methods; Communication with routing revised
2V0_012 2.3.10 Transmitting function interfaces. Introduced.
2V0_013 2311 Function Classes (completely revised)
2V0_014 2.3.12 Notification for array properties; Notification re-build at system start
2V0_015 3.2.2.2 Error_t_slave replaced by Error_NSInit_Timeout
2V0_016 3.223 Completely revised
2V0_017 3.2.24 Completely revised
2V0_018 3.2.3.2 Completely revised
2V0_019 3.23.2 Completely revised
2V0_020 3.251 Completely revised
2V0_021 3.2.6 General rules added
2V0_022 3.26.1 Completely revised
2V0_023 3.2.6 Completely revised
2V0_024 3.35.3 - Table 3-14;

- sample for receiving logical node address;

- section below Table 3-15
2V0_025 3.3.7.2 TellDs for MOST High Protocol removed
2V0_026 3.38.1 Figure 3-25; Set STX bit added
2Vv0_027 34.11.1 Replaced “.0.” by “.Pos.”
2V0_028 3.4.1.1.2 Completely revised
2V0_029 3.4.3.3 Equations
2V0_030 3521 TellD and TelLen changed; One ID reserved for Ethernet frames
2V0_031 3.7.11 Revised (OPTypes)
2V0_032 3.7.1.2 Revised (OPTypes)
2V0_033 3.7.1.3 Revised (OPTypes)
2V0_034 3.14.2 Table 3-1
2V0_035 3.1.4.2.2 Revised
2V0_036 3.1.43.1 Handling of Isochronous data removed

Specification Document

© Copyright 1999 - 2006 MOST Cooperation
Page 237

MOST Specification 10/2006

MOST®

Specification

MOST

COOPERATION

Change Section Changes

Ref.

2V0_037 3.1.4.3.6 Table 3-2; Table 3-3 added, Handling of Isochronous data removed
2V0_038 3.1.442 Completely revised

2V0_039 4.1 Figure 4-1

2V0_040 42.1 Completely revised

2V0_041 4.2.2 Revised

2V0_042 4.2.4 Completely revised

2V0_043 4.3 Revised

2V0_044 4.5 Completely revised

2V0_045 4.6 Completely revised

2V0_046 4.7 Completely revised

2V0_047 General changes in Structure:

- Chapter 2.1 removed, contents included within 2.2.9

- Detailed descriptions of Control Channel (2.2) moved to 3.3
- Introduction of CMS/ AMS moved to 3.3.7

- Chapters 2.6 up to 2.12 moved to 3.2 up to 3.8

- Chapter 2.5 and 2.13 moved to Chapter 5

Specification Document

Page 238

© Copyright 1999 - 2006 MOST Cooperation

MOST Specification 10/2006

MOST® MOST

Specification COOPERATION
Notes:
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 239

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Notes:

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 240

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION
Notes:
Specification Document © Copyright 1999 - 2006 MOST Cooperation

Page 241

MOST Specification 10/2006

MOST® MOST

Specification CODPERATION

Specification Document © Copyright 1999 - 2006 MOST Cooperation
Page 242

MOST Specification 10/2006

	Glossary
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 MOST Document Structure
	1.4 References
	1.5 Overview

	2 Application Section
	2.1 Overview of Data Channels
	2.1.1 Control Channel
	2.1.2 Streaming Data Channel
	2.1.3 Packet Data Channel
	2.1.4 Managing Streaming/Packet Bandwidth

	2.2 Logical Device Model
	2.2.1 Function Block
	2.2.1.1 Slave, Controller, HMI
	2.2.1.2 First Introduction to MOST Functions

	2.2.2 Functions
	2.2.3 Methods
	2.2.4 Properties
	2.2.4.1 Setting a Property
	2.2.4.2 Reading a Property

	2.2.5 Events
	2.2.6 Function Interfaces
	2.2.7 Definition Example
	2.2.8 MOST Network Service

	2.3 Protocols
	2.3.1 Protocol Basics
	2.3.2 Structure of MOST Protocols
	2.3.2.1 DeviceID
	2.3.2.2 FBlockID
	2.3.2.3 InstID
	2.3.2.3.1 Responsibility
	2.3.2.3.2 Assigning InstID
	2.3.2.3.3 InstID of NetBlock
	2.3.2.3.4 InstID of NetworkMaster
	2.3.2.3.5 InstID of Function Block EnhancedTestability
	2.3.2.3.6 InstID Wildcards

	2.3.2.4 FktID
	2.3.2.5 OPType
	2.3.2.5.1 Error
	2.3.2.5.2 Start, Error
	2.3.2.5.3 StartResult, Result, Processing, Error
	2.3.2.5.4 StartAck, StartResultAck, ProcessingAck, ResultAck, ErrorAck
	2.3.2.5.5 Get, Status, Error
	2.3.2.5.6 Set, Status, Error
	2.3.2.5.7 SetGet, Status, Error
	2.3.2.5.8 GetInterface, Interface, Error
	2.3.2.5.9 Increment and Decrement, Status, Error
	2.3.2.5.10 Abort, Error
	2.3.2.5.11 AbortAck, ErrorAck

	2.3.2.6 Length
	2.3.2.7 Data and Basic Data Types
	2.3.2.7.1 Boolean
	2.3.2.7.2 BitField
	2.3.2.7.3 Enum
	2.3.2.7.4 Unsigned Byte
	2.3.2.7.5 Signed Byte
	2.3.2.7.6 Unsigned Word
	2.3.2.7.7 Signed Word
	2.3.2.7.8 Unsigned Long
	2.3.2.7.9 Signed Long
	2.3.2.7.10 String
	2.3.2.7.11 Stream
	2.3.2.7.12 Classified Stream
	2.3.2.7.13 Short Stream

	2.3.3 Function Formats in Documentation
	2.3.4 Protocol Catalogs
	2.3.5 Application Functions on MOST Network (Introduction)
	2.3.6 Controller / Slave Communication
	2.3.6.1 Communication with Properties Using Shadows
	2.3.6.2 Communication with Methods
	2.3.6.2.1 Standard Case
	2.3.6.2.2 Special Case Using Routing

	2.3.7 Seeking Communication Partner
	2.3.8 Requesting Function Block Information from a Device
	2.3.9 Requesting Functions from a Function Block
	2.3.10 Transmitting the Function Interface
	2.3.10.1 Principle
	2.3.10.2 Realization of the Ability to Extract the Function Interface

	2.3.11 Function Classes
	2.3.11.1 Properties with a Single Parameter
	2.3.11.1.1 Function Class Switch
	2.3.11.1.2 Function Class Number
	2.3.11.1.3 Function Class Text
	2.3.11.1.4 Function Class Enumeration
	2.3.11.1.5 Function Class BoolField
	2.3.11.1.6 Function Class BitSet
	2.3.11.1.7 Function Class Container

	2.3.11.2 Properties with Multiple Parameters
	2.3.11.2.1 Function Class Record
	2.3.11.2.2 Function Class Array
	2.3.11.2.3 Function Class DynamicArray
	2.3.11.2.4 Function Class LongArray
	2.3.11.2.4.1 MotherArray
	2.3.11.2.4.2 ArrayWindow
	2.3.11.2.4.3 Positioning an ArrayWindow on a MotherArray
	2.3.11.2.4.4 Re-Synchronization of ArrayWindows

	2.3.11.2.5 Function Class Map
	2.3.11.2.6 Function Class Sequence Property

	2.3.11.3 Function Classes for Methods
	2.3.11.3.1 Function Class Trigger Method
	2.3.11.3.2 Function Class Sequence Method

	2.3.12 Handling Message Notification

	3 Network Section
	3.1 MOST Network Interface Controller and its Internal Services
	3.1.1 Bypass
	3.1.2 Master/Slave
	3.1.3 Data Transport
	3.1.3.1 Frames
	3.1.3.1.1 Preamble
	3.1.3.1.2 Boundary Descriptor
	3.1.3.1.3 MOST System Control Bits

	3.1.3.2 Control Data Transport
	3.1.3.3 Source Data
	3.1.3.3.1 Distinction between Source Data and Control Data
	3.1.3.3.2 Differentiating Streaming and Packet Data
	3.1.3.3.3 Source Data Interface
	3.1.3.3.4 Transparent Channels
	3.1.3.3.5 Streaming Data
	3.1.3.3.6 Packet Data

	3.1.3.4 Control Data
	3.1.3.4.1 Control Data Interface
	3.1.3.4.2 Description

	3.1.4 Internal Services
	3.1.4.1 Addressing
	3.1.4.2 Support at System Startup
	3.1.4.3 Automatic Allocation Mechanism

	3.2 Dynamic Behavior of a Device
	3.2.1 Overview
	3.2.2 NetInterface
	3.2.2.1 NetInterfacePowerOff
	3.2.2.2 NetInterfaceInit
	3.2.2.3 NetInterfaceNormalOperation
	3.2.2.4 NetInterface Ring Break Diagnosis

	3.2.3 Secondary Node
	3.2.3.1 Scenario 1
	3.2.3.2 Scenario 2
	3.2.3.3 Scenario 3

	3.2.4 Power Management
	3.2.4.1 Waking of the Network
	3.2.4.2 Network Shutdown
	3.2.4.3 Device Shutdown
	3.2.4.3.1 Performing Device Shutdown
	3.2.4.3.2 Waking from Device Shutdown
	3.2.4.3.3 Persistence of Device Shutdown
	3.2.4.3.4 Response when Device Shutdown is Unsupported

	3.2.5 Error Management
	3.2.5.1 Fatal Error
	3.2.5.1.1 Handling of Modulated Signal Off
	3.2.5.1.2 Waking
	3.2.5.1.3 Operation

	3.2.5.2 Unlock
	3.2.5.3 Network Change Event
	3.2.5.4 Failure of a Network Slave Device
	3.2.5.4.1 Failure of the Network Interface Controller
	3.2.5.4.2 Failure of an Application

	3.2.5.5 Supply Voltage
	3.2.5.6 Over-Temperature Management
	3.2.5.6.1 Levels of Temperature Alert
	3.2.5.6.2 Re-Start Behavior

	3.3 Network Management
	3.3.1 General Description of Network Management
	3.3.1.1 System Startup
	3.3.1.1.1 Initialization of the Network
	3.3.1.1.2 Initialization on Application Level

	3.3.1.2 General Operation
	3.3.1.2.1 Finding Communication Partners
	3.3.1.2.2 Network Monitoring
	3.3.1.2.3 Dynamic Function Block Registrations

	3.3.2 System States
	3.3.2.1 System State NotOK
	3.3.2.2 System State OK

	3.3.3 NetworkMaster
	3.3.3.1 Setting the System State
	3.3.3.1.1 Setting the System State to OK
	3.3.3.1.2 Setting the System State to NotOK (Network Reset)

	3.3.3.2 Central Registry
	3.3.3.2.1 Purpose
	3.3.3.2.2 Contents
	3.3.3.2.3 Responsibility
	3.3.3.2.4 Responding to Requests for Information from the Central Registry

	3.3.3.3 Specific Behavior During System Startup
	3.3.3.3.1 Valid Logical Node Address Not Available
	3.3.3.3.2 Valid Logical Node Address Available

	3.3.3.4 Scanning the System (System Scan)
	3.3.3.4.1 Configuration Request Description
	3.3.3.4.2 Addressing
	3.3.3.4.3 Non Responding Network Slaves
	3.3.3.4.4 Retries of Non Responding Network Slaves
	3.3.3.4.5 Network Slave Continuous cause for System State NotOK
	3.3.3.4.6 Duration of System Scanning
	3.3.3.4.7 Reporting the Results of a System Scan without Errors

	3.3.3.5 Invalid Registration Descriptions
	3.3.3.5.1 Un-initialized Logical Node Address
	3.3.3.5.2 Invalid Logical Node Address
	3.3.3.5.3 Duplicate Logical Node Addresses
	3.3.3.5.4 Duplicate InstID Registrations
	3.3.3.5.5 Error Response

	3.3.3.6 Updates to the Central Registry
	3.3.3.6.1 Disappearing Function Blocks in System State OK
	3.3.3.6.2 Appearing Function Blocks in System State OK
	3.3.3.6.3 System scan without any change in Central Registry
	3.3.3.6.4 Large Updates to the Central Registry in System State OK
	3.3.3.6.5 Non-responding Devices in System State OK

	3.3.3.7 Miscellaneous NetworkMaster Requirements
	3.3.3.7.1 Network Change Event (NCE)
	3.3.3.7.2 Positioning of the Function Block NetworkMaster in the MOST Network

	3.3.4 Network Slave
	3.3.4.1 Decentral Registry
	3.3.4.1.1 Building a Decentral Registry
	3.3.4.1.2 Updating the Decentral Registry
	3.3.4.1.3 Deleting the Decentral Registry

	3.3.4.2 Specific Startup Behavior
	3.3.4.2.1 Behavior When a Valid Logical Node Address is not Available at System Startup
	3.3.4.2.2 Behavior When a Valid Logical Node Address is Available at System Startup
	3.3.4.2.3 Deriving the Logical Node Address of the NetworkMaster

	3.3.4.3 Normal Operation of the Network Slave
	3.3.4.3.1 Behavior in System State OK
	3.3.4.3.2 Behavior in System State NotOK
	3.3.4.3.3 Responding to Configuration Requests by the NetworkMaster
	3.3.4.3.4 Reporting Configuration Changes to the NetworkMaster
	3.3.4.3.5 Failure of a Function Block in a Network Slave
	3.3.4.3.6 Failure of a Network Slave Device
	3.3.4.3.7 Unknown System State
	3.3.4.3.8 Determining the System State
	3.3.4.3.9 Finding Communication Partners
	3.3.4.3.10 Reaction to Configuration.Status(OK) when in System State NotOK
	3.3.4.3.11 Reaction to Configuration.Status(OK) when in System State OK
	3.3.4.3.12 Reaction to Configuration.Status(NotOK) when in System State NotOK
	3.3.4.3.13 Reaction to Configuration.Status(NotOK) when in System State OK
	3.3.4.3.14 Reaction to Configuration.Status(New)
	3.3.4.3.15 Reaction to Configuration.Status(Invalid)

	3.4 Accessing Control Channel
	3.4.1 Addressing
	3.4.2 Assigning Priority Levels
	3.4.3 Low Level Retries
	3.4.4 Basics for Automatic Adding of Device Address
	3.4.5 Handling Overload in a Message Sink
	3.4.6 MOST Message Services
	3.4.6.1 Control Message Service
	3.4.6.2 Application Message Service (AMS) and Application Protocols

	3.5 Handling Streaming Data
	3.5.1 MOST Network Service API
	3.5.2 Function Block Functions
	3.5.2.1 NetBlock
	3.5.2.2 General Source / Sink Information
	3.5.2.2.1 Streaming Source
	3.5.2.2.2 Streaming Sink
	3.5.2.2.3 Handling of Double Commands
	3.5.2.2.4 Order of Streaming Channel Lists

	3.5.2.3 Compensating Network Delay

	3.6 Handling Packet Data
	3.6.1 MOST Network Service
	3.6.1.1 Securing Data
	3.6.1.2 MOST Asynchronous Medium Access Control (MAMAC)

	3.7 Connections
	3.7.1 Bandwidth Management
	3.7.2 Streaming Connections
	3.7.2.1 ConnectionMaster
	3.7.2.2 Establishing Streaming Connections
	3.7.2.3 Removing Streaming Connections
	3.7.2.4 Supervising Streaming Connections
	3.7.2.4.1 Enabling Streaming Output
	3.7.2.4.2 Source Drops

	3.8 Timing Definitions

	4 Hardware Section
	4.1 Basic HW Concept
	4.2 MOST Function Area
	4.3 µC Area
	4.4 Application Area
	4.5 Power Supply Area
	4.6 Voltage Levels

	5 Appendix A: Network Initialization
	5.1 NetworkMaster Section
	5.1.1 Flow of System Initialization Process by the NetworkMaster

	5.2 Network Slave Section

	6 Appendix B: Typical Data Rates of Current Implementations (informative)
	7 Appendix C: List of Figures
	8 Appendix D: List of Tables
	INDEX
	Document History (Previous Revisions)

