
MOST is a communication system with a new, flexible architecture, used by
many different manufacturers. It is the most widely used multimedia
network in the automotive industry.

In 2010, more than 100 car models are already equipped with MOST Tech-
nology. MOST defines the protocol, hardware, software and system layers
that are necessary for the high-performance and cost effective transport of
realtime data in a shared medium. MOST Technology is developed and
standardized within the MOST Cooperation through a joint effort of car-
makers and their suppliers. It is now evolving into a third generation with
MOST150 Technology.

The MOST Cooperation commissioned this updated book with the goal of
making it easier to understand and use MOST Technology. The authors of
the book work for carmakers, suppliers and scientific institutes. The
emphasis of the first part of the book is the MOST standard itself. After descri-
bing the organization of the MOST Cooperation, the general communica-
tion architecture of an automobile using MOST is presented. Then the
chapter “Survery of the System Architecture” gives an overview of MOST
Technology. The most important aspects of the technology are then presented
in detail in subsequent chapters.

The book is aimed at engineers at suppliers and carmakers that want to get
started with MOST Technology. It also provides an overview of an effective
communication architecture to interested engineers outside the automo-
tive industry.

Visit our website: www.franzis.de

ELECTRONICS LIBRARY

EDITOR: PROF. DR. ING. ANDREAS GRZEMBA

THE AUTOMOTIVE
MULTIMEDIA NETWORK

FRANZIS

FRANZIS

EUR 49,95 [D]
ISBN 978-3-645-65061-8

MOST (Media Oriented Systems Transport) is
a multimedia network technology developed
to enable an efficient transport of streaming,
packet and control data in an automobile.
It is the communication backbone of an

infotainment system in a car. MOST can also
be used in other product areas such as driver
assistance systems and home applications.

THE AUTOMOTIVE
MULTIMEDIA NETWORK

FROM MOST25 TO MOST150

65061-8 U1+U4_R25mm 14.01.2011 10:12 Uhr Seite 1

Electronics Library

MOST

65061-8 Titelei:X 19.01.2011 16:13 Uhr Seite 1

65061-8 Titelei:X 19.01.2011 16:13 Uhr Seite 2

ELECTRONICS LIBRARY

EDITOR: PROF. DR. ING. ANDREAS GRZEMBA

THE AUTOMOTIVE
MULTIMEDIA NETWORK

FRANZIS

FROM MOST25 TO MOST150

65061-8 Titelei:X 19.01.2011 16:13 Uhr Seite 3

© 2011 Franzis Verlag GmbH, 85586 Poing

All rights reserved, including photomechanical reproductions and storage on electronic media. Reproduction and
distribution as photocopies, on any data carrier or in the internet, especially as PDF, requires the explicit permission
of the publisher, all violations will be prosecuted.

Most of the product names of hardware and software as well as business names and corporate symbols mentioned
in this publication are normally also registered trademarks and should be considered as such. Product names
 mentioned in this publication follow primarily the notation of the producers.

Circuits and applications presented in this publication are developed and tested with maximal accuracy. Anyway the
publisher makes no warranty with respect to the accuracy of the book and the software. The publisher and the
author assume no liability for incorrect indications and their consequences.

Typesetting: Machelett Software & Consulting, Luise-Riegger-Str. 30, D-76137 Karlsruhe
art & design: www.ideehoch2.de
Printing: Bercker, 47623 Kevelaer
Printed in Germany

ISBN 978-3-645-65061-8

The MOST System
This book is based on the MOST Specification Version 3.0 E2, 07/2010. Since the specification is under constant
development there could have been changes from what is described in the book. Should there be any differences
between the book and the specification, the specification should be followed. The latest version of the specification
can be found at www.mostcooperation.com.

65061-8 Titelei:X 19.01.2011 16:14 Uhr Seite 4

5

Preface to the second edition

The first edition of this book was released in March 2008 and based on the first
generation MOST25 (MOST Specification 2.4). It operates at 25 Mbps. Now, the
second edition covers additionally the second and the third generation. MOST is the
abbreviation for Media Oriented Systems Transport.

With the MOST Specification Rev. 2.5 for MOST50 – the second generation – the
MOST Cooperation doubles the bandwidth for automotive infotainment solutions
from 25 to 50 Mbps. The MOST Specification of Electrical Physical Layer Rev. 1.1
is an additional key specification that enables data transmission over an unshielded
twisted pair (UTP) of copper wires while meeting the stringent automotive electro-
magnetic compatibility requirements.

MOST150 is the third generation offering a bandwidth, of 150 Mbps. With the
transmission over legacy POF/LED optical physical layer MOST150 offers a
smooth migration from MOST25 and MOST50 allowing carmakers to continue to
use POF and LEDs as light sources. In addition to higher bandwidth MOST150 fea-
tures an isochronous transport mechanism to support extensive video applications,
as well as an Ethernet channel for efficient transport of IP-based packet data. This
channel carries legacy Ethernet packets (according to IEEE 802.3) without change.
Thus, the new generation of MOST provides the automotive-ready physical layer
for Ethernet in the car. This way, MOST will be open to a broad variety of IP based
applications. It even allows to adjust the bandwidth of conventional streaming con-
nection on the one hand and the IP communication on the other according to the
corresponding requirements. Besides, MOST150 still supports the well-known
asynchronous channel to ensure backward compatibility of MOST25 applications.
With MOST150, audio and video signals can be transported with high bandwidth
efficiency and without any overhead for addressing, collision detection/ recovery or
broadcast. Multiple high definition (HD) video streams and multi-channel surround
sound with premium quality of service can be transmitted, while simultaneously
moving high loads of packet data around.

MOST network needs to support digital audio, video and data services equally:

 High QoS Synchronous (PCM audio …)

 High QoS Isochronous (MPEG Transport Streams, audio and video over IP …)

 High performance Packet with IP support

 Realtime Control

6 Preface

The number of vehicle models relying on the MOST infotainment backbone has
now hit the one hundred mark. This fast implementation growth rate with a total of
100 vehicle models on the road today reflects the practical suitability and reliability
of MOST. Only three years after the MOST Cooperation was founded in 1998, the
first MOST car was introduced in 2001. The following year, 13 more models im-
plemented the MOST infotainment backbone. In October 2007, the leading network
technology had found its way into 50 car models, climbing to 68 models in March,
2009. Just one year later there are 50% more models on the road as MOST Tech-
nology spreads into the mass market.

Asian carmakers presented their first vehicles with MOST inside in 2007. Today,
there are 22 models manufactured by Asian automakers with MOST built in. MOST
Technology is now heading to the American continent with the first US carmaker
working on future vehicles that incorporate the MOST network.

MOST25 Technology has established itself in the European and Korean markets.
The Japanese and US markets prefer MOST50.

Now the newest Specification Rev. 3.0 for MOST150 is on the way to production.
Audi and Daimler will be the first carmakers to integrate MOST150 into series pro-
duction vehicles.

The second edition has a new structure. Whereas the first edition, MOST also ranks
to the in-car communication systems, the second edition focuses solely on MOST.

Acknowledgements

I would like to thank my co-authors for spending their precious time to cooperate
on this book and thus make it possible at all and to all members of the MOST Co-
operation Steering Committee, who initiated and actively supported the second edi-
tion.

I also owe thanks to the coordinator of the MOST Cooperation, Mr. Wolfgang Bott
for the comprehensive support and Mr. Renato Machelett for the complete proof-
reading of the script.

Finally, I would like to thank Franzis publishing house for their many ways of con-
tributing to this book.

January 2011

Karlsruhe

MOST Cooperation

Deggendorf

Andreas Grzemba (Editor)

7

Preface to the first edition

The automotive industry can look back on nearly 20 years of experience using in-
car communication systems. The development started with the CAN-Bus, which
has been used in production vehicles since the 1990s. The infotainment sector in
cars has developed rapidly within the last few years. Where an AM/FM tuner was
initially sufficient, many vehicles are now equipped with high-grade sound and
navigation systems. This also increases the number of devices involved – radio, cell
phone, CD changer, navigation system, voice operation and an additional multi-
channel amplifier supplement the primary systems. These devices must interact in
concert with each other and can only be controlled via a central operating surface to
ensure drivers are not unnecessarily distracted. The bandwidth of the CAN-Bus,
which can only move control signals, but no audio and video signals, is no longer
sufficient for these demands.

MOST, Media Oriented Systems Transport, a communication system with a new,
flexible architecture, used by many different manufacturers, was developed to meet
these demands. It can transmit audio signals synchronously, as in telephones, and is
the most widely used multimedia system in cars today.

MOST technology is the result of the collaboration of car makers and suppliers,
working to establish and refine a common standard within the MOST Cooperation.
The founding fathers of the MOST Cooperation constitute the steering committee,
the managing body. All companies interested in the system can, however, collabo-
rate in working groups. Chapter 1 introduces the Cooperation.

The MOST system not only comprises all layers of the Open System Interconnect
(OSI) Reference Model for communication and computer network design, but also
standardizes the interfaces with the applications (e.g., an AM/FM tuner), which are
defined as function blocks. Their implementation is described by example interac-
tion models. In addition, the encoding of the audio and video signals is part of the
specification. The system designer is thus able to design multi-media systems on a
relatively high abstraction level.

This book is an introduction to the MOST technology. It cannot, however, replace
the work with the specifications. The basis for this book is the MOST specification
2.4, taking into account further developments. The current specifications can be
found at the MOST Cooperation website http://www.mostcooperation.com.

http://www.mostcooperation.com/�

8 Preface

The book is divided into two parts.

Part 1 deals with the MOST standard. After introducing the structure of the MOST
Cooperation, the communication architecture in the vehicle is presented for classi-
fying the MOST Technology. Chapter 3, System Architecture, provides an introduc-
tion into the technology. The following chapters describe the most important as-
pects in detail.

Part 2 deals with the application of the MOST Technology. First, development
tools are introduced. The next chapter explains the structure and implementation of
a simple MOST system by means of these tools. This part then describes the basic
structure of MOST gateways, the handling of MOST components and the use of
MOST in current production vehicles. The last chapter describes the sound systems
used in cars.

The appendix comprises a list of abbreviations, a glossary with the most important
terms from the world of MOST, as well as a comparison between MOST, Ethernet
and IEEE1394. A short survey of the other communication systems currently used
in cars may contribute to a better understanding of the MOST technology. In the
context of gateways, it is mainly the CAN-Bus and Bluetooth which are of interest.

I hope that this book will contribute to widely disseminating MOST Technology
and that it will be a useful reference work for designers and users. MOST is a sys-
tem which is subject to constant improvements and further developments. Ideas or
comments concerning this book will be gratefully accepted at the e-mail address
andreas.grzemba@fh-deggendorf.de.

Acknowledgements

I would like to thank my co-authors for spending their precious time to cooperate
on this book and thus make it possible at all.

My further thanks go to all members of the MOST Cooperation Steering Commit-
tee, who initiated and actively supported the project.

I also owe thanks to Mr. Josef Berwanger of BMW for checking through chapter
FlexRay, Mr. Roland Trißl of SMSC Europe for proof-reading chapter 9, Mr.
Matthias Karcher of SMSC Europe, Dr. Carsten Kellner of Vector Informatik for
cooperating on chapters 14 and 15, as well as Mr. Jochen Klaus-Wagenbrenner of
Harman Automotive Division and Mr. Martin Arend of BMW for proof-reading
chapter 16.

mailto:andreas.grzemba@fh-deggendorf.de�

Preface 9

I would particularly like to thank Mr. Robert Reiter of BMW for his many ideas and
suggestions, Dr. Christian Thiel, Mr. Armin Schmidt and Mr. Henry Muyshondt,
and their colleagues of SMSC, as well as Dr. Alexander Leonhardi of Daimler for
the complete proof-reading of the script.

I would also like to thank the translators for translating the book into English.

Finally, I would like to thank my wife Jana for the first thorough correction of the
script and Mrs. Astrid Lehmann and her colleagues at Franzis publishing house for
their many ways of contributing to this book.

 Deggendorf, January 2008

Andreas Grzemba

(Editor)

10 Preface

The authors of the book in alphabetical order:

Dr.-Ing. Steffen Abbenseth
VOLKSWAGEN AG

Chapter 14

Dipl.-Ing. (FH) Frank Bähren
Harman Automotive Division

Chapter 9

Dipl.-Ing. (FH) Patrick Blum
Harman Automotive Division

Chapter 13

Dr.-Ing. Wolfgang Bott
Ingenieurbüro BOTTCO

Chapters 3, 12

Dr. Simon Burton, BEng. (Hons), Phd.
Vector Informatik GmbH

Chapter 10

Dipl.-Ing. (FH) Markus Dittmann
Harman Automotive Division

Chapter 16

Dr.-Ing. Volker Feil
Daimler AG

Chapter 8

Prof. Dr.-Ing. Andreas Grzemba
FH Deggendorf

Chapters 2, 5, 9, 11, 15, 17
Appendix B, C, D

Dr.-Ing. Dieter Jurzitza
Herrmann Ultraschalltechnik GmbH

Chapter 16

Dipl.-Ing. (FH) Stefan Kerber
SMSC Europe GmbH

Chapter 9

Dr.-Ing. Thomas Kibler
Daimler AG

Chapter 6

Preface 11

Dipl.-Physiker Jochen Kirschbaum
BMW AG

Chapter 7

Dr. Rainer König
Daimler AG

Chapter 1

Dipl.-Ing. Joachim Leonhard
K2L GmbH

Chapter 17

Dr. Alexander Leonhardi
Daimler AG

Chapter 4

M.Sc. CS Markus Nordgren
SMSC Sweden

Section 5.8.2 - 5.8.4

Dipl.-Ing. Tilo Nothacker
Daimler AG

Chapter 6

Dipl.-Ing. Stefan Poferl
Daimler AG

Chapter 6

Dipl.-Ing. (FH) Armin Schmidt
SMSC Europe GmbH

Chapter 10

Dipl.-Ing. (FH) Alexander Schneidenbach
AUDI AG

Chapter 14

Dr. M. Eng. Andreas Schramm
BMW AG

Chapter 15
Appendix A

Dipl.-Ing. Harald Schöpp
SMSC Europe GmbH

Chapter 18

Dr.-Ing. Christian Thiel
SMSC Europe GmbH

Chapter 1

12

 13

Contents
1 MOST Cooperation 21

1.1 Motivation and History ...21
1.2 Fast Standardization..23
1.3 Structure and Specification Work ..24
1.3.1 The Steering Committee..24
1.3.2 The Administrator ..25
1.3.3 The Technical Coordination Group..25
1.3.4 The Working Groups ...26
1.3.5 The Technical Coordinator ..26
1.4 The Compliance Verification Program ...26

2 Survey of the System Architecture 29

2.1 MOST Layer Model ...29
2.2 Application Framework ..30
2.3 New isochronous transmission mechanisms for MOST15033
2.4 Network Services...34
2.5 MOST Data Link Layer ..34
2.5.1 MOST Frame...34
2.5.2 TimingMaster, TimingSlave ...35
2.6 Physical Layer ...36
2.6.1 Optical Physical Layer ...37
2.6.2 Electrical Physical Layer..38
2.7 MOST Device ..38
2.8 Network Management ...39
2.8.1 NetBlock ..40
2.8.2 PowerMaster ...40
2.8.3 NetworkMaster; NetworkSlave ..40
2.8.4 ConnectionMaster ...41
2.9 Error Management and Diagnosis ...41
2.10 Transmission of Multimedia Data ..42

3 Survey of the MOST Specifications 43

3.1 Structure..43
3.2 MOST Specification...44
3.3 MOST Dynamic Specification ..46
3.4 MOST Function Catalog ..46
3.5 MOST Compliance Test Specifications ...46
3.6 Further Specifications, Guidelines and Cookbooks48

4 Application Framework 49

4.1 Device Model...49
4.2 Application Protocol...51
4.2.1 Data Format...51
4.2.2 Dynamic Behavior ...59

14 Contents

4.3 MOST Function Blocks..66
4.3.1 Structure of a Function Block...66
4.3.2 Function Classes ...67
4.3.3 Function Interfaces ..69
4.3.4 System FBlocks...69
4.3.5 Administration of Streaming Connections..74
4.4 Standardized Application Interfaces ..77
4.4.1 Function Library...77
4.4.2 Common Functions (GeneralFBlock) ..79
4.4.3 Application Interfaces ..79
4.4.4 Example of Use (AuxIn)...82

5 MOST Protocols 87

5.1 MOST Frame...87
5.1.1 MOST25 Frame...87
5.1.2 MOST50 Frame...89
5.1.3 MOST150 Frame...90
5.2 MOST Data Transport Mechanisms ..93
5.3 Streaming Data..93
5.3.2 Synchronous Data ...94
5.3.3 Isochronous Data ..94
5.4 Packet Data Channel...97
5.4.1 Packet data protocol for MOST25 and MOST5097
5.4.2 Packet data protocol for MOST150 ...98
5.4.3 Arbitration algorithm ..98
5.5 Control Channel...99
5.5.1 CMS for MOST25 ..99
5.5.2 CMS for MOST50 ..104
5.5.3 CMS for MOST150 ..106
5.6 Summary ...108
5.7 Addressing...109
5.8 Higher Protocols ..112
5.8.1 MOST High Protocol (MHP) ..112
5.8.2 Ethernet over MOST..117
5.8.3 MOST Isochronous QoS IP (Streaming)118
5.8.4 MOST Ethernet with QoS IP..119
5.8.5 MAMAC ...120

6 Physical Layer 121

6.1 Introduction..121
6.2 POF Plastic Optical Fibers ..122
6.2.1 Basic Principles ...122
6.2.2 Polymer Fibers – Properties and Advantages124
6.3 Contacting of PMMA Fibers...127
6.4 Opto-Electronic Transceivers ..129
6.4.1 LED Transmitter Devices...129
6.4.2 PIN Photodiodes..131
6.4.3 Transceiver Housing and Connectors ...131
6.5 System Considerations for the MOST Physical Layer135
6.5.1 Basic Principles of Electrical and Optical Parameters135
6.5.2 Optical and Electrical Requirements..140

Contents 15

6.5.3 Power Budget ..143
6.5.4 Timing Requirements ..145
6.6 Alternative Transmission Media...147

7 Network and Fault Management 155

7.1 System Initialization...155
7.1.1 System Query..155
7.1.2 Central Registry...156
7.1.3 Dynamic Addressing..159
7.1.4 Examples of System Starts..159
7.2 Notification...160
7.3 Power-Down..162
7.4 Fault Types..162
7.4.1 Network Faults...163
7.4.2 Device Faults caused by Temperature and Voltage Violations......164

8 Network Diagnostics 167

8.1 Network Fault Detection ..167
8.1.1 Ring Break Diagnosis ..167
8.1.2 Sudden Signal Off/Critical Unlock Detection168
8.1.3 Localizing the Origin of Coding Errors ...169
8.1.4 Electrical Control Line..169
8.2 Device Fault Diagnosis..171

9 Network Service 175

9.1 Overview ...175
9.2 MOST NetServices..176
9.2.1 Models of MOST NetServices ...177
9.2.2 Dependencies on MOST Specification Baseline177
9.3 Modules of the MOST NetServices ...177
9.3.1 Layer I Version 1.x...177
9.3.2 Layer I Versions 2.x and 3.x ..180
9.3.3 Layer II Versions 1.x, 2.x and 3.x ..183
9.4 Integration of the MOST NetServices onto the Target Platform.....187
9.4.1 Callback Functions ..187
9.4.2 Main Loop Architecture..188
9.4.3 Multitasking Architectures..189
9.4.4 System Management Module ..190

10 MOST Interface Controller 191

10.1 MOST Network Interface Controller and MOST Device191
10.2 MOST Network Interface Controller Families192
10.2.1 INIC ...192
10.2.2 NIC 193
10.3 The INIC Family...194
10.3.1 Members ...194
10.3.2 Overview of Features ..195
10.4 Interfaces to the INIC...195
10.4.1 Available Interfaces ...195

16 Contents

10.4.2 Interfaces from Software Perspective..198
10.4.3 Ports, Sockets and Connections..200
10.4.4 Port Message Protocol ..202
10.5 Protection, Encapsulation and the EHC ..203
10.5.1 Interaction between INIC and the EHC..203
10.5.2 The Watchdog Functionality ..205
10.6 Configuration through Configuration String205
10.7 Control Port ...206
10.8 Streaming Port...207
10.9 SPI Port ...208
10.10 Transport Stream Interface (TSI)...208
10.11 MediaLB Port...208
10.12 Power Management ..212
10.13 Intelligent Muting ...213
10.14 Network Interface Controller (NIC) ..213
10.14.1 Available Interfaces ...213
10.14.2 Serial Operation...215
10.14.3 Parallel Operation of CP and SP ...215
10.14.4 Possible Configurations (Serial/Parallel)215
10.14.5 The Basic Configuration of a NIC ..216
10.14.6 Interfaces for Control Data in NICs..217
10.14.7 Interfaces for Streaming Data in NICs ...217
10.14.8 Interfaces for Packet Data in NICs ..217

11 Tools 219

11.1 Overview ...219
11.2 Specification Tools ..220
11.2.1 MSC Editor ..220
11.2.2 MOST Editor..220
11.3 Simulation and Analysis Tools...223
11.4 Rapid Prototyping Tools ..224
11.4.1 Plug-in for Simulation and Analysis Tools224
11.4.2 Hardware platform for Rapid Prototyping and Evaluation..............224
11.4.3 PC Tool Kit ..225
11.4.4 System components ..226
11.5 Hardware Development Tools ...226
11.5.1 INIC Remote Viewer..226
11.5.2 MediaLB Analyzer ...227

12 Compliance Tests 229

12.1 Objectives of Compliance Tests ..229
12.2 Organization of the Compliance-Process230
12.2.1 Authorities for the Compliance Process...230
12.2.2 Workflow of the Compliance Process ..231
12.3 Physical Layer Compliance Tests..232
12.4 Core Compliance Tests ...234
12.5 Profile Compliance Tests...236
12.6 Interoperability Tests ...237

Contents 17

13 Testing MOST based Infotainment Systems 239

13.1 Challenges in Testing MOST Systems ..239
13.2 Overview of the OEM Test Activities ...240
13.3 The Test Process ..241
13.3.1 Risk analysis..241
13.3.2 Test design..241
13.3.3 Test implementation ..242
13.3.4 Test evaluation ..242
13.3.5 Test management..242
13.4 Component Tests ..242
13.5 Integration Tests..245
13.6 System Tests...246
13.7 Test Tools..247

14 Introduction of MOST150 in Series Production 249

14.1 Application of MOST150..249
14.2 MOST150 technology evaluation...250
14.2.1 Requirements and evaluation structure ...250
14.2.2 MOST150 reference platform ..252
14.2.3 MOST150_InCar ...252
14.2.4 Results of the technology evaluation ...253
14.3 Conclusion...254
14.4 Outlook ..255

15 MOST150 Migration 257

15.1 Introduction..257
15.2 MOST150 Evolution Approach ..257
15.2.1 Hardware Evolution ...258
15.2.2 System Software Evolution..259
15.3 MOST25/MOST150 Bridge Concept ...261
15.3.1 General Bridge Architecture ..261
15.3.2 Addressing Concept ..262
15.3.3 Network Management ...263
15.3.4 PCM Data Bridging..265

16 Manufacturing and Processing of MOST Components 267

16.1 Structure and Testing of Opto-Electronic MOST Components267
16.1.1 Header...268
16.1.2 Set of Fibers ..270
16.1.3 Connectors ..275
16.2 Processing within the Scope of Electronics Manufacture276
16.2.1 Mounting and Soldering of Headers ..276
16.2.2 Mounting and Soldering of Connectors ...277
16.2.3 Mounting of Internal Sets of Fibers..278
16.2.4 Device Testing...278
16.3 Summary ...279

18 Contents

17 Gateways to MOST 281

17.1 Distribution of Signals via a Gateway ..281
17.2 Architecture of a Gateway ...282
17.3 MOST – CAN Gateway ...283
17.4 MOST – Bluetooth Gateway..284
17.5 Routing of the Control Channel ...285
17.5.1 Routing of the Synchronous Audio connections286

18 MOST Applications 289

18.1 Overview ...289
18.2 Infotainment Headunit ...293
18.3 Media Interface Devices ..295
18.4 Sound Systems ...296
18.5 Audio and Video Transmission Formats..298
18.5.1 Audio Streaming ..298
18.5.2 Video Streaming ..299
18.6 MOST for Driver Assist Applications..301

Appendix 303

A The Description Language Message Sequence Chart (MSC) 305

B Data rate of the Packet Data Channel of MOST25 310

C Abbreviations 312

D Glossary 318

E Bibliography 325

Index 331

 19

20

21

1 MOST Cooperation

1.1 Motivation and History
In the late 80s, when the first car networks for controlling devices and for carrying
multiple signals over one conductor were implemented, all car makers were still of
the opinion that such technologies had a high potential for differentiating their
products from those of other companies. Mercedes developed the CAN system,
while PSA (Peugeot Citroën) and Renault controlled their vehicle infrastructure via
VAN. As this was not suitable for the USA, J1850 was developed there. BMW, too,
had their own network, the I-Bus. It took some time for all parties to realize that
these technologies all served the same purpose: to transmit bits and bytes between
devices. There is little differentiation potential in that. The different technologies,
however, meant a high expenditure of time and money for the car manufacturers.
They all developed similar but different functions and transmission technologies. It
took nearly twenty years until CAN became generally accepted. Nowadays, nearly
all vehicles across the globe control their interior functions and power transmissions
via various CAN networks. The efforts for developing the other networking tech-
nologies could have been spared, but in the 80s the time was not yet ripe for such
conclusions.

In 1996, the beginnings of MOST were being discussed at BMW, in collaboration
with Becker (today Harman Automotive Division) and OASIS Silicon Systems (to-
day SMSC) – on the basis of the D2B system developed and put into production by
Mercedes – and it was decided to carry on this development together with other ve-
hicle manufacturers. To develop individual solutions would have meant for the
companies to individually bear all expenses again. The first contacts to Daimler
Benz were made, which were initially more of a cautious approach towards each
other than intensive collaboration.

Through a careful process, which was positively carried on by both car makers, the
parties became closer and it was decided to collaborate on the development of
MOST. The initial phase was marked by the idea of only specifying and collaborat-
ing on network functions, such as the physical bus layer and the network manage-
ment. The more intensive the collaboration and trust became, the easier it became to
discuss the application requirements which arose for the bus system. This joint
process, which the two car makers went through, was the foundation for the defini-
tion of the physical transmission layer and for the development of functional speci-
fications. These specifications were later extended by compliance test specifications

22 1: MOST Cooperation

for the physical transmission layer, the network management (core compliance) and
the compliance on the application level (see chapter 12).

This initial collaboration resulted in the following fundamental agreement, which
characterizes the activities of the MOST Cooperation up to this day:

MOST was established to realize series developments. Instead of a theoretical stan-
dardization, there is collaboration on a practical basis, in order to specify and im-
plement subjects which are required for use in series production. None of the parties
involved will obstruct the others. The party which handles the most time-
demanding requirements for the individual functional components sets the pace.
Development requirements of those parties which cannot be realized within this
time frame will be dealt with in the next release.

After the first specifications had been drawn up together and the first steps of a joint
development had successfully been made, the idea came up to extend these activi-
ties. It was decided to found an open cooperation for the development and stan-
dardization of MOST. Other vehicle makers, device and component manufacturers
could join this cooperation on their own account without having to take regulative
hurdles.

In 1998 the MOST Cooperation was founded as a German civil law partnership
(GbR) by BMW, Daimler Benz, Becker and OASIS Silicon Systems. Audi joined
the founding group soon thereafter.

When the MOST Cooperation became better known, the number of members
quickly increased to about 80. Nearly all vehicle manufactures around the world
and nearly all makers of infotainment devices and many components manufacturers
also joined.

The MOST Cooperation not only focuses on the technical development of MOST
and its respective specifications, but also on the promotion of the technology to be-
come a global standard for multimedia networks in vehicles. In order to achieve
that, MOST Cooperation has engaged in commercial show events at exhibitions and
congresses throughout the USA, Europe and Asia. The MOST Cooperation has
been represented by its members on quite a number of exhibitions. At the ITS
World Congress 2000 in Turin for instance, as a world premiere, several vehicle
makers presented with MOST a jointly developed technology. The vehicle manu-
facturers involved at that time (Audi, BMW, Mercedes and Volkswagen) joined this
event with vehicles and the responsible designers.

Today there is a lot of cooperation between vehicle manufacturers. It has become a
matter of course that infrastructural technologies, which are invisible for the cus-
tomer, are jointly developed.

1.2 Fast Standardization 23

Fig. 1.1: Exhibition booth of the MOST Cooperation at the ITS World Congress 2000 with
vehicles from Audi, BMW, Mercedes and Volkswagen

1.2 Fast Standardization
When the MOST Cooperation was founded, only the Network Interface Controller
OS8104 and a few specifications for the network management and the transport
layer were at hand. MOST had to get ready for series production deadlines. A fast
standardization was therefore required, which is normally a contradiction in itself.
Standardization is usually associated with years of processing and endless discus-
sions. How could a fast standardization be achieved?

In order to reach a broad standardization, a lot of companies have to contribute, but
discussions must be efficient. Decisions must be made quickly and therefore in
small groups. Only companies which are competent in a specific field should par-
ticipate in the discussions. The operating mode of the Cooperation must be flexibly
adaptable to the requirements. Apart from that, there should be no irrelevant topics
on the agenda. The MOST Cooperation only works on projects which aim at be-
coming a standard in production vehicles. Each of the companies involved must ac-
cept and commit itself to the Cooperation’s philosophy (see section 1.1).

24 1: MOST Cooperation

The specific structure of the MOST Cooperation was defined in order to bridge the
contradiction between “fast” and standardization. It has proved reliable and has
since served as an example for a number of other cooperations,

1.3 Structure and Specification Work
Figure 1.2 shows the organizational structure, which is explained in detail here-
under.

1.3.1 The Steering Committee

The MOST Cooperation consists of the group of founders, who make up the Steer-
ing Committee, and of Associated Members, who are not members of the Steering
Committee. Only the members of the Steering Committee are partners of the MOST
Cooperation. They have the duty to cooperate, whereas the associated members co-
operate on a voluntary basis. All members, however, may use the results of the
MOST Cooperation unrestrictedly and to the full extent. They grant each other free
right to use their respective contribution to the standardization.

The cooperation contract of the MOST Cooperation is only a rough cooperation
framework, which is brought to life by the Steering Committee. Within this frame-
work, the Steering Committee defines how the standardization work should be
done, i.e., as the legislative branch it defines the rules of cooperation and can flexi-
bly adapt them to a specific situation. The rules are described in the MOST Coop-
eration Organizational Procedures [MOST Org] document.

The Steering Committee, moreover, reserves the formal right to sign off all MOST
Cooperation specifications. It will use its right of veto only if absolutely necessary
and, as a rule, follows the recommendations of the technical groups with respect to
the specifications.

In addition to this, the Steering Committee takes care of the legal matters of the
MOST Cooperation, as well as of the cooperation with other industrial forums and
of the MOST Cooperation’s promotion activities.

Apart from that, the Steering Committee is responsible for the MOST Cooperation
budget. This includes, besides budget planning and control of the operating results,
the statement of account for the members.

1.3 Structure and Specification Work 25

Fig. 1.2: Organization of the MOST Cooperation specification work

1.3.2 The Administrator

The Steering Committee appoints an administrator. He incorporates the decisions
made by the Steering Committee into the daily business of the MOST Cooperation.
He is also in charge of communication with the members or with applicants for
membership. Additionally, he organizes the MOST Cooperation events and man-
ages the website.

1.3.3 The Technical Coordination Group

The technical work of the MOST Cooperation is accomplished by the Technical
Coordination Group (TCG), which is made up of the Steering Committee members
and all other vehicle manufacturers. This ensures that the MOST Cooperation pro-
jects are implemented according to the requirements of the vehicle manufacturers
and are not just any random standardizations.

The TCG defines projects, establishes Working Groups (WG) and determines who
should be coordinator of a WG. This is mostly an employee of that member com-
pany of the TCG for which the results of the project are most important. This en-
sures that the WG is managed and urged on by the member with the highest interest
in the project. The TCG also invites other member companies to cooperate in the
new WG. This ensures that participants in a WG make useful contributions and that
the WG can work in a target-oriented manner. The number of participants is thus
also restricted to a reasonable number.

The TCG defines the aims of the WG and is regularly informed about the results. If
necessary, the targets are adjusted to new requirements. Should there be insoluble

26 1: MOST Cooperation

conflicts about targets, the WG can inform the TCG which can then make further
decision.

1.3.4 The Working Groups

A Working Group with a coordinator is put in place for each technical project of the
MOST Cooperation. The WG deals with the project according to the objectives set
up by the TCG. The organization of the work is up to the coordinator and the WG.
The WG only has to comply with the frame conditions as defined by the MOST Co-
operation Organizational Procedures [MOST Org]. This ensures that the individual
groups can work according to their own philosophy and with their own means. This
is necessary, as work on the physical bus layer for instance is subject to require-
ments different from work on the software level.

A WG usually creates one or several specifications. As soon as the WG has passed
a specification, it is checked for conformity with the specification rules by the cen-
tral WG of the MOST Cooperation - WG Device Architecture. If no corrections are
necessary, the specification advances to the pre-release stage, where all members
can inspect and comment on it. If there is no need for correction here either, the
specification is released after eight weeks and becomes part of the official MOST
Specifications.

1.3.5 The Technical Coordinator

The MOST Cooperation also has a Technical Coordinator. He is a project manager
and controls the overall technical activities of the MOST Cooperation. He is the
contact person for the WGs, keeps an overview of their status and reports it to the
TCG. He coordinates processes, such as the release of specifications, which were
worked on by different WGs. The Technical Coordinator’s main task over all is to
ensure fast progress of the technical work.

Chapter 3 explains the structure of the MOST specifications.

1.4 The Compliance Verification Program
The MOST Cooperation aims at creating a standard, where all members profit from
synergy effects, such as increased economies of scale for the key components. The
members thus grant each other the free right to use their intellectual property rights
(copyrights, trademark rights, patents, etc.) which are necessary for implementing
the MOST specifications. All “owners” of MOST are interested in the

1.4 The Compliance Verification Program 27

specifications only being used for MOST purposes and not being misused in parts
for other projects.

The process of Compliance Verification was defined in order to guarantee this aim.
Each device, for which the manufacturer obtains a license under the protective
rights of the members, must prove that it complies with the MOST specifications.
For this purpose, the MOST Cooperation specified MOST Compliance Tests, which
must be passed by each device. Only if a device passes the tests, it is granted a li-
cense and can carry the MOST trademark.

Apart from the legal aspect of granting a license, the Compliance Tests are continu-
ously extended to ensure interoperability between MOST devices and to check their
quality. It is not compulsory to use the MOST logo. If an implementer, however,
advertises with the MOST logo, it should stand for high quality and interoperability.

The procedure of Compliance Verification is described in chapter 12. It is generally
defined by committees within the MOST Cooperation, which are independent of the
specification groups. Some persons, however, may have dual functions in the
MOST Cooperation, which means they have one function in the specification or-
ganization and an additional function in the compliance groups.

28

29

2 Survey of the System Architecture

This chapter gives an overview of the system architecture and the basic characteris-
tics of MOST, which are described in more detail in the following chapters.

2.1 MOST Layer Model
When the MOST system was developed, vehicle manufacturers had two basic de-
mands with regard to the functionality of an infotainment bus system:

1. A simple system design based on a function-orientated point of view, and

2. the transmission of streaming and packet data, as well as control information.

The first demand resulted in the development of the MOST framework with func-
tion blocks being the essential part. Function blocks incorporate all properties and
methods of a MOST device (e.g., a CD changer), which are necessary to control the
device. Communication with these function blocks takes place over the application
protocol, which consists of a self-explanatory mnemonic and does not require an
address of the MOST device. Thus, a simple and fast system design of the info-
tainment domain is possible with a high abstraction level.

The function blocks constitute the interface with the application and therefore be-
long to layer 7 of the ISO/OSI model (fig. 2.1). They are introduced in section 2.2
together with the application protocol and explained in detail in chapter 3.

The second demand was achieved with the frame structure. It synchronously trans-
ports multimedia data, can transmit a great amount of data asynchronously without
influencing the synchronous transmission and offers a Control Channel for control
commands and status messages. The letter belongs to the application protocol.

The Data Link Layer is based, according to the above mentioned second demand,
on a synchronous transmission of data frames. It is realized by the MOST Network
Interface Controller. Besides the more common optical bit transmission layer, there
is also an electrical physical layer available.

Section 2.4 gives a general survey of the Data Link Layer. This layer is presented in
chapter 5. The Physical Layer is introduced in section 2.5. It is described in detail in
chapter 6.

30 2: Survey of the System Architecture

Application
7

Session
5

Network
3

Data Link
2

Physical
1

Presentation
6

Transport
4

MOST Network Interface Controller

Network Service
Basic Level

Fig. 2.1: MOST in the ISO-OSI
model

The driver software of the MOST System, i.e., the Network Service, is a middle-
ware between the function blocks and the Data Link Layer. It covers layer 3 up to
parts of layer 7 of the ISO/OSI-Model. NetServices is the product name used by the
company SMSC for the Network Service.

Due to the fact that the MOST system was developed for the synchronous transmis-
sion of audio and video data in particular, there are additional Stream Services used
for their transport. They are shown in figure 2.1, but do not belong to the actual OSI
model.

2.2 Application Framework
The key elements of the Application Framework are the above mentioned function
blocks and their dynamic behavior.

A function block is an object for controlling dedicated functions in the MOST net-
work. There are function blocks for controlling applications, such as the CD
changer or audio amplifier, and function blocks for the network management. The
function blocks provide comprehensive tools for implementing complex audio func-
tions. They make it relatively easy for the application design engineer to create dis-
tributed audio applications on a highly abstracted level.

2.2 Application Framework 31

FBlock

Property 1
(e.g.)TrackPosition (Displays the current or sets a new position as track)
Property 2
(e.g. DeckStatus (Controls and shows the state of the drive
like Play, Stop, Pause))
....
Property n

(e.g. AudioDiskPlayer)

Method m

Method 1
(e.g.

Allocate (With this method the source will be caused to occupy

streaming connections))

Fig. 2.2: Function block
of the CD player (Audio-
DiskPlayer)

A function block defines the interface of an application to be controlled. It consists
of properties and methods. The properties describe or change the condition of the
function to be controlled and the methods execute actions which, after a specified
period of time, achieve a result. The MOST specification uses the term “function”
to include both properties and methods.

In order to be able to ensure a uniform implementation, every function block has an
XML description used as an interchange format. This description can be edited with
the MOST Editor (section 11.2.2).

Figure 2.2. shows an example with extracts of the properties and methods of the
function block of a CD player (AudioDiskPlayer).

FBlock
AudioDiskPlayer

Application

Slave

Controller

HMI

FBlock
Amplifier

Fig. 2.3: Hierarchy in the MOST system
(according to [Tutorial])

The MOST specification differentiates between three views of the interaction with
function blocks (fig. 2.3):

 HMI

 Controller

 Slave

32 2: Survey of the System Architecture

A slave is a MOST device, which is controlled by a Controller. It provides its func-
tionalities by means of properties and methods of its function blocks. A slave has no
system knowledge at all, i.e., information about other devices is not stored statically
and consequently the slave does not control other slaves either (fig. 2.4). They can
easily be added to or removed from a MOST system, without the software being
modified or other slaves being influenced. This means that a CD changer or ampli-
fier, can easily be used in different vehicle platforms, if they are implemented as
slaves

FBlockFBlock FBlock

FBlock FBlock

FBlockFBlockFBlock FBlock

FBlock FBlock

Controller
Application

Controller
Application

System Management
Application

FBlockFBlockFBlock FBlock

FBlock FBlock

FBlock

SlaveSlave Slave

Controller

HMI

Controller

Slave

Fig. 2.4: Interactions in the MOST hierarchy (according to [Tutorial])

A Controller is an application for administration of a functional part of a MOST
system, i.e., it controls the function blocks of one or more slaves (fig. 2.4). A tuner,
for example, can control its corresponding amplifier. For this purpose, the Control-
ler requires partial system knowledge, which means that it must know the function
blocks to be controlled. A proxy (or stub) for a function block to which the Control-
ler has access is also called the shadow of this function block. Apart from that, a
Controller can also have function blocks of its own (see also section 4.1).

The Human Machine Interface (HMI) is the interface to the user of the MOST sys-
tem and thus presents the system function on a high abstraction level. It coordinates
the various Controllers.

The Controller uses an application protocol, introduced in section 4.2 (see also fig.
2.5), to control a function block. It is transmitted via the Control Channel or the
MOST High Protocol in the Packet Data Channel. The device address of the ad-
dressed function block does not need to be known, as it is ascertained by the Net-
work Service (see section 9.3.3).

2.3 New isochronous transmission mechanisms for MOST150 33

Application

Application

FBlock CD
InstID: 1

Layer II Layer II

Layer I Layer I

Network Service Network Service

MOST Network
Interface

 Controller

MOST Network
Interface

 Controller

Device 1 Device 2

HMI (Controller) CDC (Slave)

HMI.CDC.CD.1.Track.Set(10)

CD.1.Track.Set(10)

(Application Protocol)

Fig. 2.5: Application pro-
tocol (according to [MOST
3.0])

The description language Message Sequence Chart (MSC) is used for describing
the dynamic behavior and the use of the function blocks. MSC is a technical lan-
guage which was defined by the International Telecommunications Union (ITU) for
specifying and describing the communication behavior of system components
among each other and with their surroundings. It is independent of the communica-
tion protocol used. The language is introduced in appendix A.

2.3 New isochronous transmission mechanisms for
MOST150

MOST150 can handle three different isochronous mechanisms designed for differ-
ent applications.

The A/V Packetized Isochronous Streaming permits transfers of video data
streams that arrive without any reference to the MOST time base. The data is al-
ready consolidated in small data packets, which can optionally include a time
stamp. MPEG data streams that are coded either with variable (VBR) or constant bit
rates (CBR) are typical examples of this.

DiscreteFrame Isochronous streams contain data and additional time base infor-
mation in parallel. The data is arranged in frames. They are not synchronized to the
time base of MOST. All PCM streams fall into this category. Here, the PCM data is
accompanied by a frame sync signal. An example is the transport of a 44.1 kHz sig-
nal over a 48 kHz MOST network.

QoS IP (Streaming) mode is used for packet transmission which allows for full
quality of service requirements. Typically, resources on the Packet Data Channel

34 2: Survey of the System Architecture

are shared between all applications on the network. Certain scenarios require guar-
anteed bandwidth. For example, when transporting video data as an IP stream on
the MOST Ethernet channel, the occurrence of sudden, high-volume data transfer
would lower the available bandwidth for the video signal, affecting the video
transmission. If it uses QoS IP (Streaming) mechanism, the sudden data transfer
does not interfere with the video transmission, avoiding disturbances.

2.4 Network Services
Network Services are a standardized protocol stack for MOST, mapping level 3 up
to level 7 of the OSI model. They are usually divided into two layers. The Network
Services also include the transport protocol MOST High Protocol, the adaptation
layer MAMAC, which maps the TCP/IP stack onto MOST (only MOST25 and
MOST50) and accordingly a pure TCP/IP stack for MOST150, so-called Ethernet
over MOST (see also chapter 5.7).

They are attached to the MOST Network Interface Controller and provide a pro-
gramming interface for the application, which basically consists of the function
blocks (fig. 2.10). They contain modules for the transfer of packet data in the Packet
Data Channel and modules for the control of the network via the Control Channel.
The Network-Services are implemented on an External Host Controller (EHC). The
control of streaming connections is also part of the Network Services. However, the
synchronous/isochronous data transmission is not.

2.5 MOST Data Link Layer
The Data Link Layer defines the basic transmission mechanisms of the MOST bus.
This includes the definition of the structure of the data frames, as well as the func-
tion of the TimingMaster and the TimingSlave.

2.5.1 MOST Frame

The second requirement of the MOST system, i.e., the synchronous transmission of
multimedia data, is directly reflected in the frame structure. A frame contains one
channel for the synchronous or isochronous (only MOST150) transmission of
streaming data, one channel for the asynchronous transmission of packet data, and
one channel for the transmission of control data (fig. 2.6). In the Streaming Data
Channel, static connections between a streaming source and one or several stream-
ing sinks can be built up with the sampling rates 44.1 kHz (MOST25 and MOST50)
and 48 kHz (MOST150).

2.5 MOST Data Link Layer 35

The control of the connection set-up and disconnection, and the exchange of the
control messages for the function blocks are effected via the Control Channel. The
data for the commands transmitted via the Control Channel are distributed over
several subsequent frames. A MOST25 frame provides two bytes in each frame for
that purpose, and both MOST50 and MOST150 frame contain four bytes.

Packet data is transmitted in the Packet Data Channel without influencing the syn-
chronous data transmission at all. It transports configuration data of the navigation
system, for example. A data link layer protocol is used for that purpose, which cov-
ers the Packet Data Channel. It can transport pure Ethernet Data in MOST150.

The boundary between the Streaming and the Packet Data Channel can be set using
the boundary descriptor.

As figure 2.6 shows, a MOST25 frame contains 64 bytes in total. MOST50 can
transport 128 byte at the same time due to the double bandwidth, and MOST150
carries 384 bytes.

MOST25

MOST50

MOST150

Packet Data Channel

64 Bytes

128 Bytes

384 Bytes

Streaming Data Channel

Control Channel

+ 100Mbit/s Ethernet Channel

 Synch.

 Synchronous

 Synch./ Isochronous

Fig. 2.6: Basic structure of a MOST frame

Chapter 5 gives a detailed introduction of the MOST protocols of the Data Link
Layer.

2.5.2 TimingMaster, TimingSlave

As MOST is a point to multi-point data flow system (i.e., the streaming data has a
source and any desired number of sinks), all devices share a common system clock
pulse derived from the data stream. They are thus in phase with each other and can
transmit all data synchronously, which makes any mechanisms for signal buffering
and signal processing redundant.

The system clock is generated by the TimingMaster, which is integrated in one of
the nodes. In a vehicle, it is usually located in the head unit of the infotainment sys-
tem. All other nodes are synchronized onto this system clock pulse by means of a
PLL connection and are thus referred to as TimingSlaves (fig. 2.7).

36 2: Survey of the System Architecture

When the TimingMaster receives the frame again when it has traveled around the
ring, it reclaims the signals by means of a PLL connection and subsequently gener-
ates the next frame.

TimingMaster

TimingSlaveTimingSlave

TimingSlave

MOST Frame

Node B

Node A

Node D

Node C

PLL

PLLPLL

PLL

Generator

Fig. 2.7: MOST ring with a TimingMaster
and TimingSlaves

Lock/Unlock

A TimingSlave is in a lock state if it receives a signal at the input onto which it can
synchronize with the PLL; if not, it goes into unlock state.

The TimingMaster is in lock state if it can regenerate the frame from the signal that
has traveled around the ring.

In the case of an optical Physical Layer, the lock state implies that the light is on in
the ring (Light On).

A more detailed description is given in section 7.5.1.

2.6 Physical Layer
Table 2.1 summarizes the most important parameters of the Physical Layer.
MOST25 stands for a bit rate of the data stream of about 25 Mbit/s and uses an op-
tical Physical Layer. The exact data rate depends on the sampling rate of the sys-
tem. At a sampling rate of 44.1 kHz, the MOST frame is transmitted 44,100 times
per second, which results in a data rate of 22.58 Mbit/s at a frame length of 512 bits
(see section 6.5.1). This also applies to MOST50. The frame here has a length of
1,024 bits, which results in twice the data rate at the same sampling rate. An electri-
cal Physical Layer was additionally specified for MOST50.

2.6 Physical Layer 37

The first generation of the Network Interface Controllers (NIC) can only be used for
MOST25. The second generation Intelligent Network Interface Controllers (INICs)
are available for MOST25, MOST50 and MOST150. In chapter 10, both genera-
tions of MOST Network Interface Controllers are introduced.

 MOST25 MOST50 MOST150

Bit rate circa 25 Mbit/s circa 50 Mbit/s circa 150 Mbit/s

Physical Layer Optical
Electrical
Optical

Electrical (based on
coax line drivers)

Optical
NIC OS8104; OS8104A - -
INIC OS81050; OS81060 OS81082; OS81092 OS81110; OS81120

Table 2.1: Important parameters of the Physical Layer

2.6.1 Optical Physical Layer

MOST uses Plastic Optical Fiber (POF) as physical transmission medium and has
therefore very good EMC properties.

Node B

Node A

Node D

Node C

Fig. 2.8: Simple MOST ring

The basic architecture of a MOST network is a logical ring, which transmits the
data from one device to another. The logical ring structure is usually realized as a
physical ring (fig. 2.8). This is, however, not mandatory. A combined ring and star
topology, for example, can be realized with one hub. In a star topology nodes can
simply be added or removed without the rest of the network being influenced,
which increases the system reliability.

38 2: Survey of the System Architecture

Node B

Node A

Node D

Node C

Fig. 2.9: Double ring struture

The principle of transmitting the data stream from one node to the next, which can
be arranged in a star topology or any possible mixed form of ring and star, is always
maintained.

In order to make MOST highly available in the case of errors, a double ring can be
realized. For this purpose each node must have two optical receivers and two
transmitters (see fig. 2.9). If there is a problem between two nodes, the ring can be
closed via the redundant segments. The Bosch conference system Praesideo [Prae-
sideo] uses such a double ring structure. It is employed in big complexes of build-
ings and complies with the European Safety Standard EN 60849.

The optical Physical Layer is introduced in detail in chapter 6.

2.6.2 Electrical Physical Layer

The electrical Physical Layers additionally specified for MOST50 and MOST150
based on coax line drivers are described in section 6.6.

2.7 MOST Device
The basic architecture of a MOST device, as it is shown in figure 2.10, can be de-
duced from figure 2.1. It shows a device with an optical Physical Layer (oPhy). The
Fiber Optic Receiver (FOR) transforms the light signal into an electrical signal,
which is transmitted to the Rx input of the Interface Controller. The Tx signal from
the controller is retransformed into a light signal by the Fiber Optic Transmitter
(FOX). Receiver and transmitter are called uniformly Fiber Optic Transceivers
(FOT) or the physical interface.

2.8 Network Management 39

Low Level System Services

POF POFRx

Bypass

FOR FOX

Tx

Codec

SP CP

Audio Interface

 Network Service

 External Host Controller (EHC)

Function
Block

NetBlock

Function
Block

Appl. n

Function
Block

Appl.1

Fig. 2.10: MOST device
model with an optical Physi-
cal Layer

The Data Link Layer is realized in the MOST Network Interface Controller, which
controls the access to the three different channels. The Network Service and the
function blocks are implemented on a microcontroller, which is also referred to as
External Host Controller (EHC). The access from the EHC to the Packet Data
Channel and the Control Channel is effected via the Control Port (CP) of the MOST
Network Interface Controller.

Chapter 9 introduces the Network Service.

For the streaming services, a processor-free codec can be used in the simplest case
or a signal processor in a high-grade system. The interface with the MOST Network
Interface Controller is the Source Port (SP) (in the case of the NIC) or the Stream-
ing Port (in the case of the INIC). In addition to this, the INIC offers a universal, ef-
ficient interface through MediaLB, which can address all channels (see section
10.11).

The MOST Network Interface Controller has an integrated bypass. It is closed (ac-
tivated) or remains closed, if the controller is not in normal operation mode, and
then transmits the incoming data stream nearly without delay and regeneration via
Tx. This applies, for example, in the case of errors or when the device is started up.

2.8 Network Management
In addition to function blocks for application functions (such as CD changer or
tuner), there are also a number of function blocks for network management func-
tions, such as the NetBlock, PowerMaster, NetworkMaster and the ConnectionMas-
ter. They are introduced in chapter 7.

40 2: Survey of the System Architecture

The NetBlock must be implemented in every device. The other function blocks for
network management are found only once in the system. The specification does not
regulate, on which device these functions are implemented. They may be distributed
in the system, but are usually found together in the head unit.

2.8.1 NetBlock

The NetBlock is responsible for the administration of a device. It has, for example, a
list of all the function blocks implemented on the device, and manages all addresses
of the device (node position address, logical address, group address). Section 4.3.4
goes into more detail.

2.8.2 PowerMaster

The PowerMaster defines the function of a selected device in the MOST network,
which is responsible for starting up and shutting down the MOST network and su-
pervises the status of the power supply. It does not have a function block specifica-
tion of its own, but a function block identifier for identifying the device. The func-
tion block PowerMaster is introduced in section 4.3.4.

The network can be woken up by any node. A wake-up which was not initiated by
the PowerMaster (e.g., by the gateway), is characterized as a slave wake-up.

Node
B

Node A

Node C

Central
Registry

Decentral
Registry

Decentral
Registry

Decentral
Registry

Network
Master

Network
Slave

Network
Slave

Network
Slave

Fig. 2.11: NetworkMaster and
NetworkSlave

2.8.3 NetworkMaster; NetworkSlave

The NetworkMaster starts up the system and administers the network status, as well
as the Central Registry. The latter lists all function blocks existing in the network,

2.9 Error Management and Diagnosis 41

and the respective address of each device, on which a function block is imple-
mented.

All other devices in the ring are called NetworkSlaves. They may have a Decentral-
ized Registry, a subset of the Central Registry. It comprises the function blocks of
the communication partners of the device.

Figure 2.11 shows a MOST ring with the NetworkMaster and the Slaves.

The NetworkMaster function is the central part of chapter 7.

The respective function block is the NetworkMaster (section 4.3.4).

2.8.4 ConnectionMaster

The ConnectionMaster is the function block that contains the interface to the Con-
nection Manager, which is responsible for set-up and disconnection of streaming
connections. The implementation of the ConnectionMaster function block is op-
tional (see also chapter 4.3.4).

Figure 2.12 shows the basic operational mode of the ConnectionMaster. An initiator
orders the ConnectionMaster to establish a connection. Thereupon it reserves the
necessary bandwidth in the synchronous area and reports the channel number of the
data source and sink. The disconnection is carried out analogously.

Connection
Master

Initator

Audio Source
Device

Synchronous Channel Audio Sink
Device

Fig. 2.12: Basic principle of the
ConnectionMaster

2.9 Error Management and Diagnosis
MOST specifies a ring break diagnosis. It can locate broken POFs and delivers the
result to a dedicated device. It includes also an optional Electrical Line Control.
Chapter 8 goes into more detail.

The Diagnostic Protocols Adaption Specification [DPA] defines requirements for
the adaption of diagnostic protocols, e.g., UDS (Unified Diagnostic Services) to
MOST.

42 2: Survey of the System Architecture

2.10 Transmission of Multimedia Data
For transmitting content through streaming connections, coding procedures have to
be defined and the copy protection is to be ensured, particularly for commercial en-
tertainment content, protected by some form of access method.

MOST uses current coding procedures, such as PCM and MPEG, the implementa-
tions of which are to be found in the MOST Specification for Stream Transmission
[Stream].

MOST applies the Digital Transmission Content Protection (DTCP) standard for
transmitting content protected by copyright. This technology comes from the 5C
Group, a cooperation of the five device manufacturers Intel, Matsushita, Toshiba,
Sony and Hitachi. It is available on the website of Digital Transmission Licensing
Administrator (DTLA) www.dtcp.com. DTCP was developed to ensure the safe
transmission of signals from a set-top box to the DVD video recorder. The re-
nowned Hollywood studios Sony and Warner also use this protection scheme in or-
der to transport films in digital networks.

The MOST specification MOST Content Protection Scheme DTCP Implementation
[ContProt] defines the necessary functions and services to enable the use of this
technology.

 43

3 Survey of the MOST Specifications
This chapter gives a survey of the structure and composition of the MOST Specifi-
cations. The current status of the specifications in the amended version can be gath-
ered from the updated list of documents of the MOST Cooperation website
(http://www.mostcooperation.com).

3.1 Structure
Figure 3.1 reflects the structure of the MOST Framework and illustrates the de-
pendencies of the documents. The MOST Specification is the main document
within the MOST Framework. The arrows thus point to the MOST Specification as
reference for all other documents, such as the specifications of the MOST function
blocks (FBlocks) and the corresponding dynamic specification.

MOST Specification

MOST Dynamic Specification

MOST FBLOCK APIs MOST Physical Layer
Specification

MOST High
Specification

MOST Framework

MOST Compliance Test Specifications

MOST Electrical
Physical Layer
Specification

MOST Guidelines:
MOST MSC Cookbook
MOST FBlock Cookbook

Other documents

MOST Content Protection
MOST Optical Physical
Layer SpecificationMOST AOPhysical

Layer Specification

MOST Stream
Transmission Specification

MOST Guidelines:
MOST DTCP Test Recommendations

MOST FBLOCK APIs

Fig. 3.1: Structure of MOST documents

http://www.mostcooperation.com/�

44 3: Survey of the MOST Specifications

3.2 MOST Specification
The structure of the MOST Specification [MOST 3.0] follows the layer model and
basically comprises the following sections:

 Application

 System concept of MOST

 Device model

 Communication between MOST devices

 Function classes

 Network

 Data transport

 Control Channel

 Packet Data Channel

 Synchronous Channel

 Isochronous Channel

 Ethernet Channel

 Dynamic device behavior

 Error management

 Diagnosis

The MOST System uses a function model which allows a high abstraction of the
physical network. The communication uses function blocks (FBlocks) and functions
which can exist in the physical network detached from the physical devices.

Based on the function model, the MOST System has a strict hierarchic structure.
The uppermost level is the System Master, with one or more Controllers controlling
a number of Slaves. This hierarchic structure concentrates the system knowledge
within only a few components: in the System Master and the Controllers.

The System Master, which is usually located in the Human Machine Interface
(HMI), controls the overall system on a high abstraction level and provides the user
with the system functionality.

A Controller has partial system knowledge. It controls complex functional system
extensions and makes them available to the superior level in a simplified form.
Every Controller is an “expert” for the handling of specific functionalities, such as
all audio functions.

After the introduction of the system concept, the MOST Specification deals with the
communication between MOST devices and the function classes.

3.2 MOST Specification 45

In the section about the Network, the structure of the MOST telegram and the dif-
ferent data transport concepts (Control Channel, Packet Data, Synchronous,
Isochronous and Ethernet Channel) are introduced.

The section about the Dynamic Device Behavior explains the system states, the sys-
tem start-up and the registration of the function blocks in the NetworkMaster. Addi-
tional topics are the system wake-up, error management and the diagnosis.

Startup
msc NM_Sc_Scan_ConfigStatus_To_Ok page 1 of 1

NetworkMaster NetworkSlave_1 NetworkSlave_2 NetworkSlave_N

par 1
FBlockIDs.Get 2

FBlockIDs.Status
(FBlockIDList=_)

Update the Central
Registry

FBlockIDs.Get
FBlockIDs.Status
(FBlockIDList=_)

Update the Central
Registry

FBlockIDs.Get
FBlockIDs.Status
(FBlockIDList=_)

All nodes have registered
without errors.

opt

when SystemState NotOk

B Configuration.Status
(ConfigurationControl='Ok')

Revision: 1.6 Date: 2004/12/15 13:22:24 NetworkMaster.mpr,v

Update the Central
Registry

Configuration.Status
(ConfigurationControl='Ok')

Configuration.Status
(ConfigurationControl='Ok')

Configuration.Status
(ConfigurationControl='Ok')

Fig. 3.2: Exemplary scenario: Regular System Scan

The section Error Management describes the behavior in the case of undervoltage,
excess temperature and device error and additionally describes system errors, such
as the loss of synchronism (Unlock) and the change of registration (Network
Change Event) (see section 7.1.2).

The section Diagnosis comprises the ring break diagnosis, the Sudden Signal Off
behavior as well as the coding error counter. Through these, feature specific auto-
motive requirements are met.

46 3: Survey of the MOST Specifications

3.3 MOST Dynamic Specification
The MOST Dynamic Specification [DynSpec] is closely connected with the MOST
Specification. It takes up the subjects of Network Management, Connection Man-
agement and Power Management from the MOST Specification and describes them
in the form of Message Sequence Charts (MSCs).

Figure 3.2 shows the example of the scenario Regular System Scan with the com-
munication partners NetworkMaster and NetworkSlaves. In the par section the Net-
workMaster queries, by means of the Control Message FBlockIDs.Get(), all
MOST devices about the operable function blocks. It thus builds up the Central
Registry. The opt section describes the case that the NetworkMaster sends the Con-
trol Message Configuration.Status(OK), if the network is in the NotOK state
(see section 7.1.2).

3.4 MOST Function Catalog
In the MOST function catalog (FBlock Library) all defined function blocks are de-
scribed. Table 4.7 (section 4.4.1) already gives a survey of the available function
blocks.

Every FBlock has its own document, specifying the static and dynamic behavior of
the FBlock. The static information structures are described by means of XML. Its
structure is defined in a function catalog DTD (Document Type Definition), and is
referenced in the DTD Cookbook [DTD Cook]. The dynamic behavior is described
in the form of scenarios by means of Message Sequence Charts in accordance with
the dynamic specification [DynSpec] (see section 3.2).

Figure 3.3 gives a survey of the static description mode of the function Notifica-
tionMatrixSize of the FBlock EnhancedTestability. By means of this function, the
minimum and maximum values of the size of the Notification Matrix across all
FBlocks of a device are given. This function is mandatory, i.e., it must always be
implemented. It uses the OpTypes Get, Status and Error. The parameters MinSize
and MaxSize, used by Status, are of the data type Unsigned Byte.

3.5 MOST Compliance Test Specifications
According to the structure of the certification test process (chapter 12), the individ-
ual scopes are provided with the respective test specifications.

The document MOST Compliance Requirements [ComReq] illustrates the general
workflow of the certification test process.

3.5 MOST Compliance Test Specifications 47

The optical Physical Layer Tests are described in the documents MOST Compliance
Test of Physical Layer [ComPhyL 1.0] and MOST Compliance Verification
Procedure – Physical Layer [ComPhyLP 1.0] for MOST25 as well as MOST150
oPhy Measurement Guideline [ComPhyL 150] and MOST150 oPhy Compliance
Verification Procedure – Physical Layer [ComPhyLP 150]. Possible corrections or
amendments are laid down in the respective Errata Sheets ([ComPhyL_Err] and
[ComPhyLP_Err]). The tests for the electrical physical layer are specified in the
document MOST ePhy Compliance Test Specification (with ePhy Compliance Test
Patterns) [Com_ePhyL].

Fig. 3.3: Example of the static description from the FBlock EnhancedTestability [FBET]

The test cases of the Core Compliance scope are specified in the document MOST
Core Compliance Test Specification [Core] and the errata in [Core_Err].

48 3: Survey of the MOST Specifications

The document MOST Profile Compliance Test Specification [ComProf] describes
the generic tests of the Profile Compliance scope.

The tests for the individual function blocks and APIs are dealt with in test specifica-
tions of their own, for example in the MOST Profile ConnectionMaster Compliance
Test Specification for the ConnectionMaster.

3.6 Further Specifications, Guidelines and Cookbooks
The following items also belong to to the specifications of the MOST Framework:

 The Physical Layer Specification

 The MOST High Protocol, defining the transmission of Application Messages
via the Packet Data Channel [MHP]

 The MAMAC (MOST Asynchronous Medium Access Control) Specification
for transmitting network protocols, such as TCP/IP, IPX, NetBEUI and ARP
[MAMAC]

 The MOST Content Protection Specification

 The MOST Stream Transmission Specification, defining the streaming formats
for transmission of audio-visual data

 Application Recommendations (e.g. [MOST 2003])

 Guidelines and Cookbooks

Apart from the specifications, it is important to document the collected know-how
and procedural methods in an adequate manner. On the one hand, this is ac-
copmplished by Application recommendations which provide, e.g., best practice
test procedures by the System Integrators. On the other hand, this is accomplished
by means of Guidelines and Cookbooks, e.g., the MSC-Cookbook [MSC] (see ap-
pendix A) regarding the use of Message Sequence Charts, the DTD-/XML-
Cookbook [DTD Cook] and the FIBEX Cookbook [FBX Cook]. They are a col-
lected wealth of experience and focus the wide stream of possible descriptions to
the essential aspects.

49

4 Application Framework

The MOST Specification defines not only the lower layers of a MOST network,
which provide the basics for the transmission of data and for the network manage-
ment, but also the protocols and mechanisms for implementing applications on top
of those. In the MOST Specification the interface of an application is called a func-
tion block (FBlock) and can be compared to a profile of the Bluetooth standard (see
[Bluetooth]).

The MOST Application Framework permits the creation of applications that are in-
dependent of a specific implementation on a certain device and of those of the other
applications with which they interact in a MOST system. When using the standard-
ized FBlocks of the MOST Specification re-usable and interoperable applications
can be developed. An application, for example, that implements the Human Ma-
chine Interface (HMI) for a radio can thus be used with any device which offers the
standardized application interface of a radio tuner. Devices of different manufactur-
ers can also be used together, if they implement compatible interfaces.

This chapter describes the aspects of the MOST Specification that define the MOST
Application Framework, starting with the description of the device model it is based
on. The protocol that applications use to exchange data in a MOST system is de-
scribed next. Finally, the interfaces necessary for the administrative tasks in a
MOST system as well as the interfaces for typical applications in vehicle infotain-
ment systems and examples for their usage are given.

4.1 Device Model
Figure 4.1 shows the model of a MOST device as defined in the MOST Specifica-
tion. On the hardware level, a device has access to the physical transmission layer
via the MOST Network Interface Controller (NIC). The Network Service imple-
ments a driver layer that controls the access to the interface controller chip and en-
ables applications to carry out basic functions such as sending and receiving mes-
sages.

In the MOST Specification, the interface of an application, which offers a specific
functionality (i.e., in this context a group of related functions), is referred to as an
FBlock. Each device must implement the FBlock NetBlock, which is required for
administrative tasks within the MOST system (see section 4.3.3), and the FBlock
EnhancedTestability due to compliance reasons. Additionally, each device can,
according to its type, implement one or more FBlocks for the functionalities of

50 4: Application Framework

corresponding applications. For example, it is quite possible that a device offers the
functionality of an amplifier, as well as that of a radio tuner, which are then each
represented by a corresponding FBlock in the system.

MOST Device

Physical Layer

MOST Network Interface Controller

Network Service

Function
Block

NetBlock

Function
Block

Application 1

Function
Block

Application 2

 Fig. 4.1: Model of a MOST device

An FBlock is addressed within a MOST system through its functional address. This
ensures that its functionality can be accessed irrespective of the physical location of
its functions (i,e., it is not important on which device the functions represented by
the FBlock are implemented).

An FBlock, whose functions are used and controlled by an application, is referred to
as a Slave. An instance, such as an application, which uses the FBlock, is referred to
as its Controller (see fig. 4.2).

FBlock

Properties

Methods

MOST Device

...

...

...

F
u

nc
tio

n
s

Application

MOST Device

Setting/Reading of properties

Notification of changes

Call of methods

Controller Slave

Fig. 4.2: Interacting with an FBlock

Within an FBlock, a differentiation is made between two types of functions. One
type is a property that describes a specific attribute of the FBlock (e.g., the currently

4.2 Application Protocol 51

tuned frequency of a radio tuner), the other a method that triggers a certain action
(e.g., a scan for the available radio stations).

A Controller can read the values of the properties of a Slave and, if the respective
properties support this, modify them. Additionally, the MOST Specification defines
a notification mechanism, by which the Controller registers its interest in particular
properties of the Slave and is subsequently informed by the Slave about any
changes.

Methods are called by the Controller to trigger a corresponding action of the Slave.
After performing the method, the Slave returns the results of the execution to the
Controller.

4.2 Application Protocol
As a central aspect of the MOST Application Framework, the MOST Specification
defines a communication protocol for the interaction between applications in a
MOST system. This application protocol is based and depends on the protocols of
the underlying channels. In the early MOST systems, it was typically used with the
MOST Control Channel. Because of the increasing size of the transmitted content,
currently the Packet Data Channel is also used more frequently.

On the Control Channel, the protocol for sending application messages is called
Application Message Service (AMS). On the Packet Data Channel, application
messages can be sent using the MOST High Protocol (MHP). These protocols,
which handle, for example, segmentation and flow control, are described in detail in
chapter 5.

The MOST application protocol determines how to access the services offered by
an application in a MOST system. It describes the data format for the messages,
which are exchanged for that purpose. It further describes the operational sequences
and conditions for read and write access to properties and methods of an FBlock, as
well as the use of the notification mechanism.

4.2.1 Data Format

This chapter illustrates the data format of the Application Message Service (AMS)
protocol. It consists of the following elements:

[DeviceID.]FBlockID.InstID.FktID.OPType (Data)

When describing communication sequences or examples the above notation is used,
in which the individual elements are separated by a dot.

52 4: Application Framework

Basically, the data format contains the following three areas:

3. The addressing area consisting of an optional device address (DeviceID), the
identifier of the FBlock (FBlockID), and its instance (InstID) in the MOST sys-
tem.

4. The addressed function with its function identifier (FktID), as well as the opera-
tion to be applied to the function (OPType).

5. A data field consisting of a length indication (Length) and the data area for the
parameters of the function (Data).

The following table shows an overview of the individual elements and their respec-
tive size.

Element Size Description

DeviceID1 16 bits Target device address
FBlockID 8 bits FBlock identifier
InstID 8 bits Instance of the FBlock
FktID 12 bits Function identifier
OPType 4 bits Operation
Length2 16 bits Length of data field
Data 0 to 65535 bytes Data field

Table 4.1: Elements of the MOST Application Protocol

Device Address (DeviceID)

The device address (DeviceID) has a size of 16 bits and describes, depending on the
context, the receiver, a group of receivers, or the sender of a message.

When addressing individual devices on application level the logical device address
is used. Addressing with the node position address is used only for network man-
agement or debugging. By using a group address several devices of a MOST sys-
tem can be addressed simultaneously. The broadcast addresses 0x03C8 (blocking)
and 0x03FF (unblocking) are used to address all devices in a MOST system. The
device address and the different modes of addressing will be described in detail in
chapter 5 MOST Protocols.

1 The DeviceID is not used in the higher layers of the MOST Network Service
(Layer II), since FBlocks are only addressed via their functional address.
2 The length is not transmitted directly, but is based on the underlying protocol.

4.2 Application Protocol 53

When programming on application level, the device address is often not used. Ad-
dressing can take place here using only the functional address (FBlockID and In-
stID). If an application does not know the network address of its communication
partner (which is usually the case), it can insert the wildcard 0xFFFF for reference
into a message to be sent and pass the message on to the Network Service. The
Network Service determines the address of the communication partner and replaces
the wildcard with it before sending the message (see section 9.2.3).

FBlock Identifier (FBlockID)

The FBlockID describes the type of FBlock and has a size of 8 bits. The FBlockIDs
below 0xA0 are defined by the MOST Specification, with specific FBlockIDs re-
served for FBlocks required for administrative tasks, which are called system
FBlocks, or characterizing specific device functions or device types (see table 4.2).
Sections 4.3 and 4.4 of this chapter deal with the system FBlocks and application
FBlocks standardized by the MOST Cooperation.

In other areas, the system integrator (FBlockIDs from 0xA0 to 0xEF without 0xC8)
or the manufacturer of the device (FBlockIDs from 0xF0 to 0xFE without 0xFC)
can define proprietary FBlocks. The FBlockID 0xFF is used as a wildcard, in order
to address all FBlocks in a device except for the NetBlock.

FBlock name
or area

FBlockID(s) Description

Reserved 0x00 Reserved for use by the Network Service
NetBlock 0x01 System FBlock, implemented by each device

NetworkMaster 0x02
System FBlock for the NetworkMaster, im-
plemented by one device in the system

ConnectionMaster 0x03
System FBlock for the ConnectionMaster, op-
tionally implemented by one device in the sys-
tem

PowerMaster 0x04 Indicates the PowerMaster in the system
EnhancedTesta-
bility

0x0F Implemented by each device

Reserved 0x70 to 0x9F Reserved for future use

System specific 0xA0 to 0xEF
Assigned by the System Integrator (0xC8 is
reserved)

Supplier specific 0xF0 to 0xFB Assigned by the device manufacturer
Reserved 0xFC
Supplier specific 0xFD, 0xFE Assigned by the device manufacturer
Wildcard, All 0xFF FBlock broadcast

Table 4.2: Structure of the FBlockID area

54 4: Application Framework

Instances of FBlocks (InstID)

Since several FBlocks of a certain type may be used in a MOST system, such as an
integrated CD drive in addition to an external CD changer, a further differentiation
is made between their respective instances via the InstID. The InstID has a size of 8
bits; its default value is 0x01. FBlockID and InstID together are called the func-
tional address of an FBlock.

The combination of FBlockID and InstID must be unambiguous throughout a sys-
tem. For its own FBlocks, a device itself is responsible for the suitable allocation of
the InstIDs, for example by putting them into ascending numerical order starting
with 0x01. The NetworkMaster is responsible for the functional addresses being
unambiguous throughout the system (see section 4.3.4). For example, two different
physical devices implement a CD player with the FBlock AudioDiskPlayer and
each initializes the InstID with 0x01. This means that the functional address
0x31.0x01 would exist twice in the MOST system. In the case of such a conflict,
the NetworkMaster must reset an InstID. As an alternative to the dynamic handling
of InstIDs, they can be preset statically by the System Integrator.

The InstID values 0x00 and 0xFF have a special function as wildcards, in case a
device implements several FBlocks of a specific type. 0x00 addresses any instance
of the corresponding FBlock on a given device (don´t care). 0xFF addresses all in-
stances on the device (broadcast). Wildcards can only be used in requests. The re-
sponse messages must include the correct InstID of the answering FBlock.

For the case of system FBlocks, the MOST Specification requires a special handling
of InstIDs. For those FBlocks that must be implemented by every device (i.e., Net-
Block and EnhancedTestability), the InstID corresponds to the ring position. Start-
ing with 0x00 for the TimingMaster, it is increased by one for each device accord-
ing to its position in the ring.

The FBlock NetworkMaster, where only one instance is allowed in the system, de-
faults to InstID 0x01; the InstID 0x00 is also allowed. In the case of requests, the
wildcard 0x00 must be used.

Function Identifier (FktID)

Individual functions of an FBlock are distinguished from one another through the
FktID, which has a size of 12 bits. A function can either be a property (i.e., a vari-
able of the FBlock) or a method. Whether a function is a property or a method,
which operations it supports, and which parameters are used (see the following sec-
tions), is defined by its interface description in the FBlock specification.

The differentiation between properties and methods is discussed in detail in section
4.2.2, which also deals with the use of the respective function types and their usage.

4.2 Application Protocol 55

In the case of the FktIDs, the following subareas are differentiated (see table 4.3).
Functions from the “Coordination” area (FktIDs 0x000 to 0x1FF) must be imple-
mented by all MOST devices in the same manner. This area is coordinated by the
MOST Cooperation via the GeneralFBlock specification (see section 4.4.2). The
“Application” area (FktIDs 0x200 to 0x9FF) defines functions that represent the
main application for a specific FBlock according to its FBlock specification. The
unique area (0xA00 to 0xBFF) contains functions, which may only exist once in a
MOST system. In this case, the System Integrator has to take care to coordinate the
usage throughout the whole system.

Similar to the FBlockIDs, the System Integrator (FktIDs 0xC00 to 0xEFF) or the
device manufacturer (FktIDs 0xF00 to 0xFFE) can specify proprietary functions.

Name
FktID
area

Description

Coordination
0x000 to
0x1FF

Functions for administrative purposes in an FBlock that
are coordinated by the MOST Cooperation

Application
0x200 to
0x9FF

Functions that represent the main application function-
ality of the FBlock

Unique
0xA00 to
0xBFF

Functions that are defined unambiguously in the entire
system

System
specific

0xC00 to
0xEFF

Functions that can be used by a System Integrator

Supplier
specific

0xF00 to
0xFFE

Functions that can be used by a device manufacturer

Table 4.3: Structure of the FktID area

Operation Type (OPType)

Depending on the type of function (property or method) different basic operations
can be applied to a function. Operations are the basic elements of the interaction
patterns for properties and methods that or defined by the application protocol. An
operation is specified by the OPType, which has a size of 4 bits.

The following table shows the total of 16 individual operations. They have different
meanings, depending on the function being a property or a method of the FBlock.
The first nine operations describe a request to the function and are thus used in mes-
sages that are sent by a Controller to a Slave. The last seven operations describe the
answers of the Slave and are used in the corresponding reports.

56 4: Application Framework

 OPType of Properties OPType of Methods OPType

Set Start (deprecated)1 0x0
Get Abort (deprecated)1 0x1
SetGet StartResult (deprecated)1 0x2
Increment Reserved 0x3
Decrement Reserved 0x4
GetInterface2 GetInterface2 0x5
- StartResultAck 0x6
- AbortAck 0x7

Requests:

- StartAck 0x8
ErrorAck3 ErrorAck 0x9
- ProcessingAck 0xA
Reserved Processing (deprecated)1 0xB
Status Result (deprecated)1 0xC
- ResultAck 0xD
Interface2 Interface2 0xE

Responses:

Error Error4 0xF

Table 4.4: Operation types

The meaning of the different OPTypes and their use in the operational sequences
will be explained in section 4.2.2.

Size of the Data Area (Length)

The element Length indicates the size of the data area in bytes and has a size of 16
bits. Therefore, a maximum of 65,535 data bytes is possible, with the length 0 des-
ignating an empty data field.

The element Length is not transmitted directly, but is calculated by the Network
Service using the information of the underlying protocol layer depending on the
protocol (e.g., AMS or MOST High Protocol). For example, when the AMS is used,

1 Since MOST Specification 3.0 all OPTypes for methods without a SenderHandle
parameter are deprecated.
2 The OPTypes Interface and GetInterface are optional.
3 The OPType ErrorAck may be returned by a property if by mistake an Ack-
OPType has been used in a request.
4 The OPType Error may be returned by a method, if the SenderHandle is not appli-
cable or unknown.

4.2 Application Protocol 57

the length is calculated from the number and the length of the individual telegrams
on the Control Channel.

Data and Parameter Types

If a function has one or more parameters, the corresponding parameter values are
transmitted in the data field Data. The types and sequence of the parameters are
predetermined by the specification of the function’s interface in the FBlock specifi-
cation.

The MOST Specification defines the parameter types indicated in the following
table:

Parameter Size Description

Boolean 1 byte Boolean value (true or false)
BitField 1, 2, 4, or 8 bytes Bit field with Mask
Enum 1 byte Enumeration
Unsigned Byte 1 byte Integer value (without sign)
Signed Byte 1 byte Signed integer value
Unsigned Word 2 bytes Integer value (without sign)
Signed Word 2 bytes Signed integer value
Unsigned Long 4 bytes Integer value (without sign)
Signed Long 4 bytes Signed integer value

String Variable
Null terminated string with encoding in-
formation

Stream Variable A stream of arbitrary data
Classified
Stream

Variable A stream with type information

Short Stream
Variable
(up to 255 bytes)

Short stream with length information

Table 4.5: Parameter types of the MOST application protocol

The individual parameter types are summarized below. For a more detailed descrip-
tion please see the MOST Specification [MOST 3.0]. The characteristics of the in-
dividual parameter types are similar to parameters used in other programming lan-
guages.

 Boolean: A parameter of type Boolean can have one of the values True or
False. Only the lowest-value bit of the respective byte is used.

 BitField: The parameter type BitField specifies a bit sequence that can have a
total size of 1, 2, 4 or 8 bytes, as required. According to the MOST Specifica-
tion the first half of a parameter of type BitField is a mask and the second half
its data. When performing an operation, the bits of the mask indicate on which

58 4: Application Framework

of the corresponding bits of the data the operation is to be applied. In practice,
this parameter type is sometimes also used without a mask.

 Enum: A parameter of type Enum can adopt one of a maximum of 256 possi-
ble pre-defined values. The individual values and their meanings are deter-
mined by the function’s interface definition.

 Signed/Unsigned Byte, Signed/Unsigned Word, Signed/Unsigned Long (in-
teger values): The MOST Specification supports the indicated integer values
with a size of 1, 2, or 4 bytes, each with and without sign. For numerical values
with signs, the sign is determined by the most significant bit and the value is
coded in two’s-complement. (The MOST Specification up to version 3.0 does
not provide special parameter types for floating-point numbers. Instead, the
decimal place for the number parameters can be defined by indicating an expo-
nent value in the interface definition.)

 String: For the transmission of character strings, the parameter type String is
used. The first byte of the string indicates its coding, e.g. 0x00 for UTF16 and
0x01 for ASCII. It is followed by a null-terminated character string, in which 1,
2 or more bytes are used for each character depending on the coding. The end
of the character string is characterized by a null byte; two null bytes in the case
of codings with two characters (such as UTF16).

 Stream: The parameter Stream defines an arbitrary byte sequence and is used if
no suitable description by the other parameter types is possible or if a dynamic
data structure is required. If the parameter type Stream is intended to be used
together with other parameters, only one of the parameters may be a Stream
and it has to be the last parameter.

 Short Stream: The Short Stream is intended for representing a short byte se-
quence. It has a maximum length of 256 characters, with the first character in-
dicating the length of the subsequent byte sequence (255 bytes at most). Be-
cause of the length information it does not have the same restrictions as the pa-
rameter Stream and can be used anywhere in the sequence of a function’s pa-
rameters.

 Classified Stream: In the case of the Classified Stream, the first two bytes in-
dicate the length of the stream and a subsequent null-terminated ASCII string
(without coding information) indicates the media type. The media type corre-
sponds to the ones in the HTTP1.1 specification (see [RFC 2616]).

To handle more flexible data structures, the concept of stream cases and stream
signals has been introduced. Both are defined in the function’s interface definition.

4.2 Application Protocol 59

With stream cases and stream signals, a parameter of type stream can be structured
in two different ways:

 With stream cases a parameter of type stream is further structured into different
sequences of stream parameters depending on the value of a selector, similar to
the concept of a variant record in programming languages. The selector is a pa-
rameter of any type that has to occur before the stream. Often, parameters of
type Enum are used as selectors. Depending on certain predefined values of the
selector, the stream will consist of a sequence of stream parameters with differ-
ent types and numbers.

 With stream signals, a stream is divided into different consecutive named ele-
ments, each with an arbitrary number of bits.

For details on stream cases and stream signals see the MOST Specification [MOST
3.0].

4.2.2 Dynamic Behavior

After describing the message format of the MOST application protocol and its indi-
vidual elements, this section deals with its use and the resulting message sequences.

Controller Slave

FBlock.Inst.Function.Get

alt

FBlock.Inst.Function.Status
(Data='Parameter Values')

FBlock.Inst.Function.Error
(Data='ErrorCode, ErrorInfo')

Fig.4.3: Querying the values of a property with the operation Get

Querying and Setting of Properties

As already explained, a function is either a property or a method. A property de-
scribes a specific variable of an FBlock and consists of one or more parameter val-
ues. The values of all properties of an FBlock indicate its current status. The values
of a property can be queried or set via the MOST application protocol. In addition
to that, the MOST Specification specifies a notification mechanism by means of

60 4: Application Framework

which a device, which is interested in the value of a specific property, is automati-
cally informed of its changes.

To query the current status of a property, a control message with the operation Get
(OPType: 0x1) is sent to the corresponding function of the FBlock. If no error oc-
curs, the latter answers with a message containing the operation type Status (OP-
Type: 0xC) and the current value of the property in the data field. Otherwise, an er-
ror message of the operation type Error (0xF) is sent back (see the following section
on error handling).

Figure 4.3 shows the corresponding sequence as a Message Sequence Chart (MSC)
in MSC 2000 notation [Z.120 99]. This notation is used by the MOST Cooperation
and we will also use it for describing the following examples. For a description of
the use of MSCs within the MOST Specification, see appendix A and [MSC].

Controller Slave

FBlock.Inst.Function.Set
(Data='Parameter Values')

opt

FBlock.Inst.Function.Error
(Data='ErrorCode, ErrorInfo')

Fig.4.4: Setting the value of a property with the operation Set

The operation Set (OPType: 0x0) is used when no feedback is necessary after the
value of a property is set (see fig. 4.4). Only if an error occurs during the process
does the FBlock answer with the corresponding error information. The operation
Set should be used when the Controller has set a notification for the corresponding
property (see the following section concerning the notification mechanism).

4.2 Application Protocol 61

Controller Slave

FBlock.Inst.Function.SetGet
(Data='Parameter Values')

alt

FBlock.Inst.Function.Status
(Data='Parameter Values')

FBlock.Inst.Function.Error
(Data='ErrorCode, ErrorInfo')

Fig.4.5: Setting the value of a property with the operation SetGet

The SetGet operation (OPType: 0x2) is similar to Set, with the difference that a
status message with the resulting new value of the property is sent back as confir-
mation that the change was carried out (see fig. 4.5). This way of accessing proper-
ties is to be preferred when a notification for the property is not used at the same
time.

Additionally, the MOST Specification defines the operations Increment (OPType:
0x3) and Decrement (OPType: 0x4), by means of which the value of a property can
be increased or decreased by an amount specified in its interface specification.

These operations, however, are less commonly used compared to the other ones
previously described. Also, they are more prone to errors, as an unintentional retry
increases or decreases the value by two steps instead of one.

Executing Methods

Methods can be used to start a process that changes the status of an FBlock, or
represents a long-lasting process (e.g., starting the station scan in the case of a radio
receiver).

A Controller can start and, if necessary, abort methods. When starting the method, a
sequence of parameters is optionally added which influences the behavior of the
method (such as the direction of the station scan). The results which are possibly
generated by the method (in this case, for example, the list of the stations) are then
returned to the initiator.

In order to differentiate between Controllers within a device (e.g., different applica-
tions) that have started a given method, all operations for methods additionally in-
clude a special parameter called SenderHandle with a size of 16 bits. This parame-
ter is always returned by the called method together with the answer and enables the
sender to associate the answer message with its command message. Since MOST

62 4: Application Framework

Specification 3.0, the corresponding operation types without SenderHandle and
without the suffix “Ack” are not used anymore.

Controller Slave

FBlock.Inst.Function.StartAck
(Data=´SenderHandle,Parameter Values’)

opt

FBlock.Inst.Function.ErrorAck
(Data=’SenderHandle,ErrorCode,ErrorInfo’)

Fig. 4.6: Starting a method with the operation StartAck

Operation StartAck (OPType: 0x8) is used to start a method for which a direct re-
sult is not expected or which triggers a continuous procedure (see fig. 4.6). This
corresponds to the operation Set for properties and also has the same OPType. For
StartAck, the only a feedback is in the form of an error message if an error has oc-
curred.

Methods which generate a result and report it back to the initiator, are triggered by
means of the operation StartResultAck (OPType: 0x6) (see fig. 4.7). The initiator
is informed of the results of the execution by means of a message with the operation
ResultAck (OPType: 0xD), if no error has occurred during the execution.

If the calculation of the result takes longer (more than 100 ms), the initiator is in-
formed every 100 ms1 of the ongoing calculation by means of a ProcessingAck
message (OPType: 0xA). Depending on the method, it is also possible that interme-
diate results are transmitted with the processing message to indicate the progress of
the function execution. The correct handling of processing messages and the appro-
priate error handling is important to guarantee the responsiveness of an application
when implementing interactive HMIs.

1 The timings described here are standard values as defined by the MOST Specifica-
tion. However, they can be defined differently for individual methods or by the sys-
tem integrator for the whole system.

4.2 Application Protocol 63

Controller Slave

FBlock.Inst.Function.StartResultAck
(Data=´SenderHandle,Parameter Values´)

loop

FBlock Inst Function ProcessingAck
(Data=´SenderHandle, [Intermediate Values]´)

alt

FBlock.Inst.Function.ResultAck
(Data=´SenderHandle,Result Values´)

FBlock.Inst.Function.ErrorAck
(Data=´SenderHandle,ErrorCode,ErrorInfo´)

Fig. 4.7: Starting a method with the operation StartResultAck

By calling the operation AbortAck (OPType: 0x7) on a running method, its current
processing can be interrupted. This is signaled by an error message with the error
code Method Aborted, which is sent both to the initiator of the method and to the
sender of the abort request (in case the two are not the same).

Notification Mechanism

The MOST Specification defines a notification mechanism (see fig. 4.8) so that a
Controller interested in a specific property does not have to constantly poll its cur-
rent value using a Get message. When defining an FBlock, it is implicitly deter-
mined which properties support a notification mechanism.

For all of its properties supporting notifications, an FBlock administers a table
called Notification Matrix in which the addresses of those devices are entered that
have set a notification for the respective property. As soon as the value of one of
these properties changes, the FBlock sends a status message (notification) with the
new value of the property to all devices listed in this table.

A Controller sets or deletes a notification by calling the function Notification
(FktID: 0x401) of the corresponding FBlock. The first parameter (Control) indicates
the operation (see the following listing). In another parameter (DeviceID), the ad-
dress of the device requesting the notification is indicated. Finally, if required, the
following list of FktIDs describes for which functions a notification is requested.

64 4: Application Framework

 SetAll: Requests a notification of the indicated device for all the FBlock’s
properties for which a notification is supported.

 SetFunction: Requests a notification of the device for all the FBlock’s proper-
ties indicated in the subsequent list.

Controller Slave

FBlock.Inst.Notification.Set
(Data='SetFunction, DeviceID, FktID')

FBlock.Inst.Function.Status
(Data='Parameter Values')

loop

When (value of property has
changed)

FBlock.Inst.Function.Status
(Data='Parameter Values')

Fig. 4.8: Notification mechanism

 ClearAll: Deletes all notifications of the indicated device for all notified prop-
erties of the FBlock.

 ClearFunction: Deletes the notification of the device for the properties of the
FBlock indicated in the subsequent list.

If a notification of a property is set successfully, the FBlock sends a status message
with the current value as confirmation. An example for the use of the notification
mechanism is given in section 4.4.4.

Error Name ErrorCode Description

FBlockID not avail-
able

0x01 Syntax error: FBlock does not exist

InstID not available 0x02 Syntax error: instance does not exits
FktID not available 0x03 Syntax error: function does not exist
OPType not available 0x04 Syntax error: operation is not defined

Invalid length 0x05
Length of the data field is not identical
with the interface specification

Parameter wrong/
out of range

0x06
One or more of the parameters were
wrong, i.e., not within the boundaries
specified for the function

4.2 Application Protocol 65

Error Name ErrorCode Description

Parameter not avail-
able

0x07
One or more of the parameters were within
the boundaries specified for the function,
but are not available at that time

Reserved 0x08 Usage is deprecated
Reserved 0x09 Usage is deprecated
Reserved 0x0A Usage is deprecated
Device Malfunction 0x0B General device error

Segmentation error
0x0C

Error during de-segmentation of messages
by the AMS

Function specific 0x20 Function specific error

Busy 0x40
Function is available, but is currently be-
ing executed

Not available 0x41
Function is implemented in principle, but
is not available at the moment

Processing Error 0x42
General error during execution of a
method

Method Aborted 0x43
This error code is used to indicate that a
method has been aborted by the AbortAck
operation

System specific
0xC0 to
0xEF

Error codes that are defined by a System
Integrator

Supplier specific 0xF0 to 0xFE
Error codes that are defined by a device
manufacturer

Table 4.6: Error codes of the MOST protocol

Error Information

If an error occurs during the execution of a request, whether a property or a method,
a message of the operation type Error or ErrorAck (OPType: 0xF or OPType:
0x9) is returned. The error code (parameter ErrorCode) is transmitted in the first
byte of the data field. The second byte contains the parameter ErrorInfo with addi-
tional information depending on the error code, which will not be discussed here.
For a more detailed description see the MOST Specification [MOST 3.0].

There are some specific requirements concerning error responses in a MOST sys-
tem. In order to avoid a cyclical sending of error information, error messages may
only be sent from the Slave to the Controller (with the exception of segmentation
errors).

The general error information shown in table 4.6 is specified by the MOST Specifi-
cation.

66 4: Application Framework

4.3 MOST Function Blocks
This section goes into the details of the structure of an FBlock and describes the
important aspects that have to be observed for its definition. Besides the general
structure of an FBlock, the concept of Function Classes is described, which pro-
vides guidelines for defining the individual functions of an FBlock.

Additionally, the system FBlocks, such as the NetBlock, required for administrative
tasks in a MOST system, are introduced in this section. Finally, the functions are
described that are required for the administration of streaming connections and for
the transmission of multimedia data.

4.3.1 Structure of a Function Block

The FBlock specification defines which functions belong to an FBlock of a specific
type. The type of an FBlock is determined by its FBlockID.

The MOST Cooperation standardizes a set of FBlock types, some of which are used
for system tasks, others describe certain application functionality. The latter are of-
ten extended by device manufacturers and System Integrators to integrate their own
proprietary functions. Other FBlock specifications are defined completely by the
System Integrator or device manufacturer – either because they define a proprietary
functionality or a new functionality for which a standardized FBlock specification
does not yet exist. The FBlocks standardized by the MOST Cooperation are col-
lected in an function library (see section 4.4.1).

For all FBlocks, the following functions are required by the MOST Specification:

 FktIDs (FktID: 0x000): A list of all functions implemented by the FBlock can
be queried by the property FktIDs. In order to compress this possibly long list
of FktIDs, a coding is used in which only those FktIDs are included in the list,
in which there is a transition between a continuous area of implemented and of
non-implemented functions (for details see [MOST 3.0]).

 FBlockInfo (FktID: 0x011): This mandatory function returns information
about the FBlock’s name and version, the version of the MOST Specification
the FBlock has been implemented for, the System Integrator in whose system
the FBlock will be used, and a string (FBlockType) that is assigned by the Sys-
tem Integrator to identify different instances of the same FBlock in the system
(e.g., a left and right display unit for a rear-seat entertainment system).

 Notification (FktID: 0x401): The property Notification must be implemented
by every FBlock that allows the setting of notifications for one or more of its
properties. By means of this property, a device can set or delete notifications
(see section 4.2.2).

4.3 MOST Function Blocks 67

 NotificationCheck (FktID: 0x402): The optional property NotificationCheck
can be used to check which notifications are currently set.

In addition to these functions, each FBlock must implement the functions from the
coordinated range that are indicated as conditional according to the respective pre-
condition defined in the GeneralFBlock specification [GenFB]. Furthermore, all
functions defined as mandatory in the corresponding FBlock specification have to
be implemented. Functions that are indicated as optional may be omitted.

When defining and deploying a MOST system, the System Integrator indicates in
detail the devices that make up the system and the FBlocks which are to be imple-
mented by each device. Usually, the System Integrator also indicates in detail,
which functions are to be implemented by the individual FBlocks.

4.3.2 Function Classes

Function classes simplify the specification of an FBlock, by giving specific guide-
lines concerning the data types and operations of a function. A function class is as-
signed to a function in the FBlock specification and specifies particular settings for
the parameters of a function such as the maximum length of a sequence of charac-
ters. Additionally, a function class defines which operations can be executed on the
corresponding function. Finally, function classes are the basis for more complex,
compound data types, such as records or arrays.

Function classes enable a structured and uniform modeling of functions. Addition-
ally, they support the use of tools for modeling and code generation and simplify
test automation.

If a function cannot be assigned to any of the function classes described below, it is
assigned to the function class Unclassified Property for properties and Unclassi-
fied Method for methods.

The MOST Specification specifies the following simple function classes for proper-
ties, the status of which can be described with a single parameter:

 Switch: The function class Switch encapsulates a Boolean parameter and de-
scribes a “switch” with two states, which can be set and read.

 Number: The function class Number is used for the different parameter types
of signed and unsigned numerical values. This function class has the following
settings: the parameter type, its maximum and minimum value, an exponent de-
fining the decimal place and the increment, by which the numerical value is
changed by Increment and Decrement operations.

 Text: The function class Text is based on the parameter type String and defines
a sequence of characters. Its settings indicate the maximum length of the string.

68 4: Application Framework

 Enumeration: Enumeration types are described by the function class Enumera-
tion and are based on an Unsigned Byte. This function class defines how many
elements the enumeration type has and what values they can have including an
textual description. For example, the function DeckStatus of the FBlock AuxIn
can have the values 0x00 for “Play”, 0x01 for “Stop”, 0x02 for “Pause”, etc.

 BoolField: The function class BoolField defines a sequence of bits with a
length of 8, 16, or 32 bits in total and is based on an Unsigned Byte, Word or
Long, respectively. It is also permitted to structure the bit sequence into ad-
dressable elements of several consecutive bits. Leading bits, which are not
used, remain empty.

 BitSet: A property, whose status can be described by a parameter of type Bit-
Field, is assigned to the function class BitSet with the given length. As defined
for the parameter type BitField, its first half contains the mask and its second
half the data.

 Container: Finally, the function class Container is used for further unstructured
data. This function class is based on a parameter of the type Stream, Classified
Stream or Short Stream. Its settings define the maximum allowed length.

Additional function classes are used to represent more complex data structures con-
sisting of several parameters. For these function classes a leading parameter Posi-
tion is used to indicate the individual elements which are to be accessed. Position
consists of the two parts PosX and PosY of one byte each. PosX indicates the posi-
tion in the outer data structure, PosY the position in a possible inner data structure.
In the case of a two-dimensional array, PosX would indicate a certain row and PosY
a column. If PosX is not equal to zero and PosY is zero, the entire row of the array
is used. With PosX and PosY zero the array is addressed as a whole.

For properties there are the following structured function classes:

 Record: A Record consists of an arbitrary sequence of individual elements,
each with a certain function class, where individual elements can be accessed
by the parameter PosX. Structured function classes, such as an Array, are also
allowed as elements (in this case PosY is used to address elements of the array).

 Array: An Array describes a sequence of a maximum of 256 elements of the
same type, which can also be accessed individually by the parameter PosX. The
settings of the function class Array indicate the function class of the individual
elements and the maximum length of the Array.

 DynamicArray: The DynamicArray is a variant of an Array, in which the indi-
vidual elements are accessed via a 16-bit tag instead of PosX. In this case,
longer arrays are possible. Additionally, functions for inserting and deleting
elements are defined. Since the tag of an element, unlike its position, does not
change when it is inserted or deleted, the DynamicArray is also well suited for
more dynamic data structures.

4.3 MOST Function Blocks 69

 LongArray: In the case of the LongArray, the individual elements are also ac-
cessed via a 16-bit tag. Additionally, a window mechanism is defined, by
means of which a Controller defines a specific section (window) of the array.
Afterwards it is informed only about changes in this section, which enables an
efficient HMI implementation for displaying a list where only the currenty visi-
ble section according to the screen size is updated (e.g., for displaying the
phone book of a cell phone).

 Map: The function class Map is similar to DynamicArray. However, in addi-
tion it is able to transmit the insertion or deletion of single or multiple lines via
notification. Therefore, updates for a function of class Map can be transmitted
very efficiently.

 Sequence Property: The function class Sequence Property is a simple function
class, by means of which a sequence of individual elements can be set and read.
Multi-dimensional data types and the separate access to individual elements are
not supported.

For methods only the following two function classes are defined besides Unclassi-
fied Method:

 Trigger: The function class Trigger describes a function class without parame-
ters, which triggers a specific action.

 Sequence Method: The function class Sequence Method is a function class for
methods with a list of simple parameters.

4.3.3 Function Interfaces

Since MOST Specification 3.0 [MOST 3.0] the mechanism of function interfaces is
optional. Usually, the concept of function classes is only necessary for the defini-
tion of a function. Retrieving information about the function interface, i.e. the func-
tion class and its settings, during runtime is not common.

The MOST Specification specifies the optional operations GetInterface (OPType:
0x5) to request a function’s function interface. The result is transmitted via the op-
eration Interface (OPType: 0xE). The coding of the relevant information is detailed
in the MOST Specification.

4.3.4 System FBlocks

This section gives an overview of the FBlocks which are required by the MOST
Specification for the purpose of system administration. As mentioned earlier, there
are FBlocks implemented by all devices of a MOST system and FBlocks only pro-
vided by one specific device.

70 4: Application Framework

NetBlock (FBlockID:0x01)

The NetBlock is responsible for central tasks of the system administration concern-
ing a certain MOST device. It must be implemented by every device in a MOST
system.

The most important functions of the NetBlock are described below. The complete
interface of NetBlock is specified in [NetBlock]:

 FBlockIDs (FktID: 0x000): The function FBlockIDs returns a list of all active
application FBlocks that are offered by the device as pairs of FBlockID and In-
stID (system FBlocks like the NetBlock itself or the FBlock EnhancedTestabil-
ity are not included). An FBlock may only be included in this function if it is
correctly initialized and currently able to offer its functionality to a Controller
in the MOST system. Furthermore, the function FBlockIDs can be used to set
the InstID of an FBlock. Its main use is during the system scan of the Net-
workMaster (see below).

 DeviceInfo (FktID: 0x001): Queries characteristic parameters of the device,
such as the name of the manufacturer or a serial number.

 Addressing Functions: Further functions provide information about the node
position address (NodePositionAddress, FktID: 0x002), the logical address
(NodeAddress, FktID: 0x003), or the group address (GroupAddress, FktID:
0x004) of the device.

 ShutDown (FktID: 0x006): The shutdown procedure of a MOST system is
controlled through this function (see below).

 ShutDownReason (FktID: 0x009): After start-up of a MOST system a unique
Controller may query the reason for the shutdown from each device. In case of
a shutdown because of a failure (sudden signal off or critical unlock), each de-
vice that has detected such a failure returns respective information through this
function.

 ImplFBlockIDs (FktID: 0x012): This optional function returns the list of
FBlockIDs of all FBlocks implemented by the device. In contrast to the func-
tion FBlockIDs, also the FBlocks that are not currently available can be que-
ried.

 RBDResult (FktID: 0x405): The result of a ring break diagnosis is transmitted
with this function. For details see chapter 8.

 Boundary (FktID: 0xA03): This function is only available on a device which
acts as the TimingMaster. It enables the administration of the bandwidth alloca-
tion on the data link layer (read out and set). The corresponding mechanism is
described in section 5.1.

4.3 MOST Function Blocks 71

FBlock EnhancedTestability (FBlockID: 0x0F)

The FBlock EnhancedTestability (ET) is necessary to perform the tests required for
the Core Compliance of a MOST device (see [Core 3.0]) and must be implemented
by each device. These tests check basic system functions of the device, such as the
allocation of an address. Details of the functions of FBlock ET will not be given in
this context; it is described in detail in [FBET].

The FBlock ET offers functions for test automation. The function Reset (FktID:
0x221), for example, can be used to reset the device in order to start from a stable
state. It also contains functions for executing a functionality which can otherwise
not be triggered automatically, such as the function AutoWakeup (FktID: 0x201),
which simulates the spontaneous wake-up of the device.

FBlock NetworkMaster (FBlockID: 0x02)

The FBlock NetworkMaster is responsible for the central administration of the sys-
tem configuration of a MOST system. It is thus mandatory for each MOST system
and must be implemented by a designated device. Often, a specific device is re-
sponsible for all master functionalities in a MOST system, which means that the
device is usually not only NetworkMaster, but also TimingMaster, ConnectionMas-
ter and PowerMaster. However, except for NetworkMaster and TimingMaster, this
is not mandatory.

The NetworkMaster administers the system configuration and thus the current sys-
tem status of the MOST system. The system state is OK, if the current system con-
figuration, that is the devices existing in the system and their FBlocks, are known to
the NetworkMaster; otherwise the system state is NotOK. The system is in the
NotOK state directly after the start-up or if an invalid configuration has occurred af-
ter a Network Change Event (e.g., due to an invalid device address).

In order to determine the system configuration during the start-up or after a Net-
work Change Event, the NetworkMaster executes a system scan in which it queries
the FBlocks of all devices via the function FBlockIDs. This query is sent with the
physical device address.

If there is a valid configuration and the system status was NotOK, the system state
changes to OK and the NetworkMaster notifies the devices in the MOST system by
means of a broadcast of the function Configuration. The parameter Configuration-
Control indicates the system state (in this case OK). Figure 4.9 shows the opera-
tional sequence of a system scan. In practice, the FBlocks also can be queried in
parallel.

After the initial system scan, devices may also inform the NetworkMaster of new or
disabled FBlocks by sending a status message of the function FBlockIDs with a
new list of FBlocks. If the system state was OK before a system scan or the

72 4: Application Framework

NetworkMaster is informed of a change in the FBlocks offered by a device, the
NetworkMaster distributes the information about any added or disabled FBlocks to
the MOST system via the function Configuration. In the first case, the parameter
ConfigurationControl has the value NewExt, in the second case, it has the value
Invalid. With the additional parameter DeltaFBlockList, a list with FBlockIDs,
InstIDs, and – in case of NewExt – the logical address, of the respective FBlocks is
included.

If during a system scan a conflict occurs between the functional addresses of
FBlocks, which means that several instances of an FBlock have the same InstID, the
NetworkMaster tries to resolve the conflict by resetting the InstID that was reported
last. If an error occurs, such as an invalid device address, which cannot be solved by
resetting InstIDs, the NetworkMaster sets the system state to NotOK and thus trig-
gers a new start-up of the system.

The information on the current configuration of the MOST system is stored by the
NetworkMaster in a central data base – the Central Registry. The Central Registry
stores the logical address of each device in the system, as well as a list of the im-
plemented FBlocks with their InstIDs. The other devices in the system can query its
current configuration via the function CentralRegistry and thus determine the de-
vice address associated with the functional address of a communication partner. If
the higher levels of the Network Service are used, this mechanism is executed
automatically.

NetworkMaster NetworkSlave 1 NetworkSlave 2 ... NetworkSlave N

0x401.NetBlock.0x01.FBlockIDs.Get

LogAdr1.NetBlock.0x01.FBlockIDs.Status
(Data='FBlock List')

0x402.NetBlock.0x02.FBlockIDs.Get

LogAdr2.NetBlock.0x02.FBlockIDs.Status
(Data='FBlock List')

0x40N.NetBlock.N.FBlockIDs.Get

LogAdrN.NetBlock.N.FBlockIDs.Status
(Data='FBlock List')

0x3C8.NetworkMaster.0x01.Configuration.Status
(ConfigurationStatus='OK')

0x3C8.NetworkMaster.0x01.Configuration.Status
(ConfigurationStatus='OK')

0x3C8.NetworkMaster.0x01.Configuration.Status
(ConfigurationStatus='OK')

B

Fig. 4.9: Operational sequence of a system scan by the NetworkMaster

The FBlock NetworkMaster implements the following functions:

 Configuration (FktID: 0xA00): With the function Configuration, the Net-
workMaster disseminates information about the system state in a MOST system
by means of a broadcast (the parameter ConfigurationControl has the values

4.3 MOST Function Blocks 73

OK or NotOK). Additionally, newly added or disabled FBlocks are announced
(ConfigurationControl: NewExt or Invalid).

 CentralRegistry (FktID: 0xA01): Enables the querying of the current Central
Registry. The complete Central Registry can be queried, all instances of a given
FBlock can be retrieved, or a specific instance for an FBlock is queried. The
function CentralRegistry returns a corresponding list of triplets of logical de-
vice address, FBlockID and InstID.

 SystemAvail (FktID: 0xA10): The corresponding optional mechanism provides
information about the availability of the system. To this end the NetworkMaster
queries the function ImplFBlockIDs of all devices in the system. With the pa-
rameters DeviceAvail and FBlockAvail a Slave device may determine if all de-
vices have correctly responded to the NetworkMaster and if all implemented
FBlocks are currently available.

FBlock ConnectionMaster (FBlockID: 0x03)

The FBlock ConnectionMaster is used for the administration of the streaming con-
nections in the MOST system. It will be discussed in the next section.

FBlock PowerMaster (FBlockID: 0x04)

There is no particular FBlock specified for the PowerMaster. The FBlockID 0x04 is
only used for indicating the device with the corresponding functionality.

The PowerMaster is responsible for coordinating the shutdown of a MOST system.
This may be a regular shutdown, for example when the engine is switched off, or an
emergency measure, for example when the temperature is too high.

To shut down the other devices in the MOST system, the PowerMaster uses the
function ShutDown of the NetBlock. It first announces the shutdown by sending a
Shutdown.StartAck(SenderHandle, Query) message as a broadcast. This enables the
other devices to delay the shutdown by means of a Shut-
Down.ResultAck(SenderHandle, Suspend) message. Depending on the system ar-
chitecture, an ongoing telephone call, for example, could prevent the shutdown.

The PowerMaster repeats the announcement of the shutdown at regular intervals. If
it does not receive a ShutDown.ResultAck(SenderHandle, Suspend) message as a
response, it initiates the actual procedure for shutting down by broadcasting the
message Shudown.StartAck(SenderHandle, Execute).

If a device detects a high temperature, it can force the shutdown of the system by
broadcasting a ShutDown.ResultAck(SenderHandle, TemperatureShutdown) mes-
sage. The PowerMaster then executes the above described procedure for a normal
shutdown of the system.

74 4: Application Framework

4.3.5 Administration of Streaming Connections

Due to the fact that the transmission of multimedia data is a central application area
for a MOST system, the administration of the streaming connections, which are
used to transmit audio and video data, plays a central role in a MOST system. The
following section deals with the mechanisms and interfaces provided for that pur-
pose in the application layer.

Overview

In the MOST Specification, sources and sinks for multimedia data (audio and
video) are conceptually associated with an FBlock. Each FBlock can have one or
more sources and – at the same time – one or more sinks. The telephone FBlock, for
example, has a source for voice output via the loudspeaker system of the vehicle, as
well as a sink for voice input via the vehicle’s microphone system.

Each source of an FBlock is addressed by the unambiguous tag SourceNr of type
Unsigned Byte. The sinks of an FBlock are identified correspondingly via the tag
SinkNr.

The function StreamDataInfo can be used to determine which sources and sinks are
implemented by a specific FBlock:

 StreamDataInfo (FktID: 0x116): Returns a list with the source numbers and a
list with the sink numbers of the FBlock.

For a source, a streaming connection can be created, which is characterized by its
connection label and its bandwidth. The connection label is an unambiguous identi-
fier and described by the parameter ConnectionLabel of type Unsigned Word. The
bandwidth is described by the parameter BlockWidth also of type Unsigned Word,
which defines how many bytes per MOST Frame are transmitted for this connec-
tion. One or more sinks can be attached to an existing connection.

Figure 4.10 shows the procedure used when establishing a streaming connection be-
tween the source of one FBlock and the sink of another FBlock. The respective
functions for sources and sinks are discussed in the next paragraph.

4.3 MOST Function Blocks 75

ConnectionMgmt SourceFBlock SinkFBlock

opt

SourceInfo.Get
(SourceNr=_)

SourceInfo.Status
(SourceNr=_, ...)

Allocate.StartResultAck
(SenderHandle=_, SourceNr=_)

Allocate.ResultAck
(SenderHandle=_, SourceNr=_,
BlockWidth=_, ConnectionLabel=_)

Connect.StartResultAck
(SenderHandle=_, SinkNr=_, BlockWidth=_, ConnectionLabel=_)

Connect.ResultAck
(SenderHandle=_, SinkNr=_)

opt

SourceActivity.StartResultAck
(SenderHandle=_, SourceNr=_, Activity=’On’)

SourceActivity.ResultAck
(SenderHandle=_, SourceNr=_, Activity=’On’)

Fig.4.10: Establishment of a streaming connection

Functions for Sources

The MOST Specification requires the following functions for FBlocks with sources
of multimedia data. These functions are specified in the specification of the General
FBlock [GenFB] and are implemented by every FBlock with a source:

 SourceInfo (FktID: 0x100): The property SourceInfo returns information about
the properties of the indicated source, such as its content type (e.g., PCM,
SPDF or MPEG2).

 SourceName (FktID: 0x104): Returns a string that identifies the indicated
source.

 SourceActivity (FktID: 0x103): A source can be set to active or inactive using
the optional function SourceActivity. Accordingly, the source puts out data on
the attached streaming connection.

 Allocate (FktID: 0x101): By means of the function Allocate, the FBlock is re-
quested to create a streaming connection and to connect the indicated source
with it. At a certain point of time, only one source can be connected to a spe-
cific streaming connection.

 AllocateExt (FktID: 0x108): Is similar to the function Allocate but contains a
further parameter ClkSrcLabel to indicate the connection label for the clock
source that is necessary for isochronous connections.

 DeAllocate (FktID: 0x102): Disconnects the indicated source from its stream-
ing connection and deallocates it at the TimingMaster.

76 4: Application Framework

Functions for Sinks

The following functions for FBlocks having a sink for multimedia data are defined
accordingly:

 SinkInfo (0x110): Similar to SourceInfo, this property contains information
about the indicated sink.

 SinkName (0x114): The identification string of the sink.

 Mute (0x113): This function toggles the mute status of a connection. It also en-
ables querying the corresponding current status of the sink, in case, for exam-
ple, the status was set automatically by the FBlock to handle an error. The Mute
function is optional, since more complex mechanisms for that purpose are used
in some systems.

 Connect (0x111): Connects the indicated sink of the FBlock to the correspond-
ing streaming connection. More than one sink can be connected to one stream-
ing connection at one time.

 DisConnect (0x112): Disconnects the indicated sink from its streaming con-
nection.

FBlock ConnectionMaster (FBlockID: 0x03)

The MOST Specification defines the ConnectionMaster as a central administrative
unit for streaming connections. It establishes or removes streaming connections be-
tween given sources and sinks on request. Additionally, it administrates the infor-
mation about all connections that exist in a system.

For this purpose, the FBlock ConnectionMaster implements the following functions
(see [FBCM]):

 BuildConnection (FktID: 0x200): Establishes a connection between a source
and sink given by the respective FBlockIDs and InstIDs as well as the Sour-
ceNr and SinkNr. If necessary, a streaming connection is reserved. Basically,
the ConnectionMaster executes the procedure shown in figure 4.9.

 RemoveConnection (FktID: 0x201): Removes an existing connection between
an indicated source and a sink. The corresponding streaming connection is re-
leased, if necessary.

 ConnectionTable (FktID: 0x400): Keeps a list of all streaming connections
currently established in the system.

 AvailableChannels (FktID: 0.401): Indicates the remaining bandwidth for
streaming connections in a MOST frame (in bytes).

 MoveBoundary (FktID: 0x402): This function can be used to adjust the
boundary, that is the available bandwidth between streaming and packet con-
nections in a MOST system.

4.4 Standardized Application Interfaces 77

 BoundaryChange (FktID: 0x403): A device can set a notification of this prop-
erty to be informed about an onging boundary change.

When a central instance of an infotainment system administers the streaming con-
nections throughout the system considering additional criteria, such as a priority of
applications, this instance often also adopts the tasks of the ConnectionMaster. The
FBlock ConnectionMaster is, in this case, often only implemented for debugging
purposes.

4.4 Standardized Application Interfaces
Besides the system FBlocks the MOST Cooperation also standardizes FBlocks for
the interfaces of typical applications in vehicle infotainment systems.

This chapter provides an overview of the specified application interfaces. Some se-
lected interfaces will be discussed in more detail as examples. Finally, a more de-
tailed example for using an application FBlock in a MOST system is given, taking
as an example the AuxIn FBlock, which provides access to mobile MP3 players.

4.4.1 Function Library

The function catalog contains the current specifications for all FBlocks defined by
the MOST Specification. It contains not only the system FBlocks described in sec-
tion 4.3.4, but also the interfaces standardized for applications. Table 4.7 shows the
current content of the function catalog with all FBlocks together with their most re-
cent version number.

Kind Name FBlockID Version1 Description

 GeneralFBlock - 3.0.2
Common coordi-
nated functions

 GeneralPlayer - 2.5.1
Coordinated func-
tions for player
devices

Administration NetBlock 0x01 3.0.1
System-FBlock
implemented by
every device

 NetworkMaster 0x02 3.0.1 NetworkMaster
 ConnectionMaster 0x03 3.0.1 ConnectionMaster

1 As of 2nd quarter 2010.

78 4: Application Framework

Kind Name FBlockID Version Description

 Vehicle 0x05 1.6
Interface for vehi-
cle-related data

 Diagnosis 0x06 3.0
Access to diagnos-
tic functions

 DebugMessages 0x07 1.0.1
Functions for con-
trolling debug out-
put

 Tool 0x0E 1.0
FBlock for test
purposes

EnhancedTestabil-
ity

0x0F 3.0.1
Necessary for
compliance tests

Audio AudioAmplifier 0x22 2.4.2 Amplifier

 AuxIn 0x24 3.5
Interface for mo-
bile consumer
electronic devices

 MicrophoneInput 0x26 2.3.1
Interface for mi-
crophones

Drives AudioTapePlayer 0x30 2.3.1 Tape deck

 AudioDiskPlayer 0x31 2.4
CD player or
CD changer

 DVDVideoPlayer 0x34 3.0 DVD player
Receiver AmFmTuner 0x40 2.4.2 Radio tuner

 TMCTuner 0x41 2.3.1
Tuner for traffic
messages (TMC)

 TVTuner 0x42 2.3.2 TV tuner
 DABTuner 0x43 3.0, 4.0 DAB tuner

 SatRadio 0x44 2.4
Tuner for Satellite
Digital Audio Ra-
dio Service

Communica-
tion

Telephone 0x50 2.3.2
Interface for con-
necting a mobile
telephone

 GeneralPhonebook 0x51 2.3.2
Phonebook of a
telephone

 NavigationSystem1 0x52 1.11 Navigation unit
 GraphicDisplay 0x60 2.3 Display unit

1 Only unofficially released by the MOST Cooperation.

4.4 Standardized Application Interfaces 79

Kind Name FBlockID Version Description

 UniqueFunctions 0xFF 2.3

Collection of func-
tions for the area
of unique func-
tions

Table 4.7: FBlocks standardized by the MOST Cooperation

In table 2-2 of the MOST Specification [MOST 3.0], further FBlockIDs are defined
(such as the FBlockID 0x54 for Bluetooth), that have no specifications in the func-
tion catalog. These are either specifications, which were not published officially, or
they are placeholders for historic or future definitions.

4.4.2 Common Functions (GeneralFBlock)

Coordinated functions (0x000 to 0x1FF) must be implemented in the same way by
all FBlocks. They are administered by the MOST Cooperation and described in the
specification of the General FBlock, which is currently available in the version 3.0
[GenFB].

In addition to the functions mandatory for FBlocks (FktIDs, Notification and Noti-
ficationCheck), the GeneralFBlock describes functions for the administration of
data structures, such as for inserting elements into an array (see section 4.3.2). The
functions for the administration of streaming connections are also defined here (see
section 4.3.5).

The GeneralFBlock only serves as a template. When defining an FBlock, the neces-
sary functions from the current version of the GeneralFBlock are adopted as part of
the FBlock specification (i.e., they are not influenced by changes in a possibly new
version of the GeneralFBlock). If, however, an FBlock implements a coordinated
function, this function must not deviate from the specification in the GeneralF-
Block.

4.4.3 Application Interfaces

In order to provide an insight into the application interfaces standardized by the
MOST function catalog, some of the interfaces for important applications from the
area of vehicle infotainment system are described here in more detail. For lack of
space, it is not possible to give a detailed description of all FBlocks of the function
catalog.

80 4: Application Framework

CD Player, CD Changer (AudioDiskPlayer, FBlockID: 0x31)

The FBlock AudioDiskPlayer [FBADiskPl 2.4] describes a simple CD player or CD
changer. Since the MOST Cooperation defines FBlocks for different playing de-
vices (besides the one for a CD player, there is one for a cassette player), their gen-
eral functions are summarized in the FBlock GeneralPlayer [FBGenPl 2.5]. The
AudioDiskPlayer is a simple implementation of the GeneralPlayer. The latter also
provides additional functions such as for playing DVDs.

The FBlock AudioDiskPlayer describes the following groups of important func-
tions:

 The functions described in section 4.3.5 are implemented for accessing an au-
dio source. Via this source, the audio data of the currently played track can be
made available in the MOST system, for example for output on an amplifier.

 The current device status is contained in properties, such as DeckStatus, and
can be read out or set via corresponding operations. DeckStatus enables the
execution of the usual actions for a player device, such as play, pause, or stop.
Specific modes of the device can be set through further functions such as ran-
dom, scan, or repeat.

 Functions like AudioDiskInfo provide information about the inserted CD (or
CDs), concerning the type of CD (audio, video or CDROM) and its format
(e.g., CDDA, ISO9660). In the case of a CD changer, the status of the maga-
zine (MagazineStatus) and the active CD (ActiveDisk) can be queried.

 Additional functions give information concerning the play operation such as the
number of the current track (TrackPosition) or its play time (TimePosition). A
Controller usually requests a notification for these functions, in order to indi-
cate, for example, the remaining duration of a track on the user interface or to
be informed when the player changes to the next track in order to update the
meta information for this track. To some extent, the play operation or the selec-
tion of the current track via TrackPosition can be influenced through these
functions.

Amplifier (AudioAmplifier, FBlockID: 0x22)

A device with an audio amplifier that receives audio data, processes, amplifies, and
outputs the data via the loudspeaker system of the car implements the FBlock
AudioAmplifier [FBAudioA 2.4]:

 The audio data is received over one or more sinks, for which the FBlock im-
plements the necessary functions as described in section 4.3.5.

 Typical settings for the output of the audio signal (e.g., volume, bass, fader, and
treble) are controlled via corresponding functions.

4.4 Standardized Application Interfaces 81

 Additionally, the FBlock provides further functions to perform more specific
adjustments of the amplifier functions such as activating and defining an equal-
izer function (EqualizerOnOff, EqualizerSettings).

Radio Tuner (AmFmTuner, FBlockID: 0x40)

The FBlock AmFmTuner [FBAmFmT 2.4] for an AM/FM tuner is described here
as an example for the FBlocks defined by the MOST Specification for different
kinds of radio tuners (e.g., the FBlock DABTuner for the digitial radio standard
DAB or the FBlock SDARS for a digital satellite radio).

The following main functions are defined by the specification of the FBlock
AmFmTuner:

 The functions ATFrequency, ATWaveband and ATStationInfo deliver informa-
tion about the currently set frequency, the wave band and the station received
(e.g., its name or program type).

 A station scan is started with the function ATSeek where different settings are
possible (e.g., the direction of the scan, up or down).

 The FBlock AmFmTuner supports the administration of several lists with sta-
tion memories, though a simple tuner only needs to implement one station list.
By means of the function ATPresetSave, the current frequency can be stored in
a specific list. The functions ATPresetList1 and ATPresetList2 provide access
to station lists with detailed information, the functions ATPresetShortList1 to
ATPresetShortList8 to lists with limited station information.

 Further functions control the behavior of the AM/FM tuner when there are traf-
fic reports. The function TAInfo indicates the name of the current traffic pro-
gram. An active traffic report is signalized by the function TAMessage. It can
be interrupted by TAEscape. With TPSwitch the functionality for receiving traf-
fic reports is switched on or off.

 Additionally, the FBlock AmFmTuner has functions for different options to
control the behavior of the tuner. The function RDSSwitch, for example,
switches the use of the RDS signal on or off.

Connection of Mobile Devices (AuxIn, FBlockID: 0x24)

The FBlock AuxIn is also based on the FBlock GeneralPlayer (see [FBAuxIn 3.5])
and is implemented by a MOST device that acts as a gateway to connect mobile
MP3 players and other storage devices with music data to a MOST system.

The FBlock AuxIn supports mobile devices with their own administration of the
stored music data such as Apple’s iPod, or devices on which the data is only stored
in a generic file system such as a USB stick. In the specification of the FBlock
AuxIn, the former are called database devices, the latter mass storage devices. Ad-
ditionally, devices can also be connected via an analog audio input.

82 4: Application Framework

Additionally to the functions of the GeneralPlayer already described for the FBlock
AudioDiskPlayer, there are the following extensions:

 Some functions are an adaptation of functions of the GeneralPlayer that became
necessary due to the much higher number of tracks or different access modes.
These are AuxTrackPosition as adaptation for TrackPosition, AuxTrackInfor-
mation as supplement of TrackInformation, and AuxTimeInformation as sup-
plement of TimePosition.

 Additional functions provide information about the connected device. Its device
class as well as its concrete type can be determined via the function AuxDe-
viceInfo. The function DeviceBrowsingCapabilities informs about the catego-
ries of music files that can be queried on a database device such as querying all
tracks of an artist or all tracks of a specific genre.

 In order to query the possibly very comprehensive metadata for the music
tracks stored on a device, the FBlock AuxIn defines the function SelectAudio-
ListInfo, which supports querying functions comparable to database queries.
Two filters indicate which tracks are to be considered during the query and
which information about the tracks (e.g., title of the song, artist, and name of
the album) is to be sent back. In addition, the sorting sequence and a specific
section for the data to be transmitted can be indicated for optimizing the presen-
tation on the display. SelectCurrentAudioListInfo is similar to SelectAudio-
ListInfo. However, while SelectAudioListInfo considers all music files stored
on the attached device, SelectCurrentAudioListInfo only relates to the currently
selected track list.

 With the function SelectAudioListFilter, the current list of the tracks for play-
back can be selected by setting a filter similar to the one used for querying in
SelectAudioListInfo. The currently active filter is read out via the function
CurrentAudioListFilter.

 In version 3.5 of the AuxIn FBlock, the functions SelectCoverArt and Se-
lectCurrentCoverArt have been added to request information about the cover
art stored with the music files on the mobile device. The function RetrieveCov-
erArt can be used to retrieve the corresponding picture file.

 Various other settings can be determined via additional functions; for example,
whether the metadata is to be transmitted via the Control Channel or the Packet
Data Channel (AsyncControlSwitch).

4.4.4 Example of Use (AuxIn)

This section explains the use of an FBlock in a MOST system, based on the exam-
ple of the FBlock AuxIn. For this purpose, important message sequences when ac-
cessing the FBlock are described. These sequences are based on the ones described

4.4 Standardized Application Interfaces 83

in the specification of the FBlock AuxIn [FBAuxIn 3.5]. They are only an example;
the individual tasks could be implemented in a different manner.

When initializing the system, the Controller sets the notifications it requires, for ex-
ample, for updating the HMI representation (see fig. 4.11). In case of the FBlock
AuxIn, this is, amongst others, the status of the AuxIn device (DeckStatus), the
number of the currently active track (AuxTrackPosition and TrackInformation), and
its play time (TimePosition). Afterwards, the Controller is informed whenever the
device has moved to the next track and can update the information on the HMI ac-
cordingly.

If the user requests a functionality of the connected device, the Controller must
transform this request into a corresponding command to the FBlock AuxIn. In the
following example (fig. 4.12) the device is set into play mode via the property
DeckStatus. The resulting changes are sent back through the previously notified
properties. The Controller uses this information, as well as the metadata of the now
playing track that it queries actively from the Slave, for updating its HMI represen-
tation.

AUXIn.Controller AUXIn

Notification.Set
(Control='SetFunction', FktIDList='0x200, 0201,

0x434, 0x439')

0x200 - DeckStatus
0x201 - TimePosition
0x434 - TrackInformation
0x439 - AuxTrackPosition

DeckStatus.Status
(DeckStatus=_)

TimePosition.Status
(Pos={x='2'}, Data={TrackTime=_})

AuxTrackPosition.Status
(Track=_)

TrackInformation.Status
(CurrentNumberTracks=_,

CurrentRelativeTrackPosition=_)

Fig.4.11: Setting of notifications during initialization

Figure 4.13 shows the querying of information about the currently playing music
track. Via the function SelectCurrentAudioListInfo the identifier (tag), as well as

84 4: Application Framework

the title, the artist, and the media type of the currently playing track is queried. The
current track is indicated by the value zero for the parameter Start. In the response
the actual position of the track in the current track list is contained; in our example
it is the first track of the current track list.

The Controller initiates this sequence, for example, if it has requested an action of
the FBlock AuxIn (see above) or if the Slave notifies a change of its status, for ex-
ample that it has skipped to the next track.

If the user searches for a specific track by browsing through the media database of
the device via the HMI of the Controller, the Controller has to query the informa-
tion for the corresponding lists of media files from the FBlock AuxIn. Usually, the
HMI offers different options for viewing the list of tracks, indicating specific prop-
erties of the tracks (artist, album, genre, songs).

AUXIn.Controller AUXIn

DeckStatus.Set
(DeckStatus=’Play’)

DeckStatus.Status
(DeckStatus=’Play’)

par

Update Notifications

TimePosition.Status
(Pos={x='2'}, Data={TrackTime=_})

TrackInformation.Status
(CurrentNumberTracks=_,

CurrentRelativeTrackPosition=_)

AuxTrackPosition.Status
(Track=_)

AuxTimeInformation.Status
(Pos={x='2'}, Data={TotalTrackTime =_})

Request Current Metadata

Fig.4.12: Setting the play mode

4.4 Standardized Application Interfaces 85

AuxIn.Controller AuxIn

SelectCurrentAudioListInfo.StartResultAck
(SenderHandle=_, Start='0', Offset=_,

NumberResults='1', ResultData='Tag, Title, Artist,
Mediatype')

SelectCurrentAudioListInfo.ResultAck
(SenderHandle=_, Start='1', NumberResults='1',

ResultData='Tag, Title, Artist, Mediatype',
TotalNumberResults=_,

AudioMediaData='Metadata')

Fig. 4.13: Querying of metadata for the currently playing track

In the example given in figure 4.14, it is assumed that the user is looking for a spe-
cific artist and that three entries can be shown on one page of the HMI. Information
about the first three entries is thus queried via the function SelectAudioListInfo.
The result starts with the first track of the selected track list, consisting of the tag,
artist, and mediatype and is sorted by the names of the artists. If the user scrolls
down in this list, the entries from the next page are queried by the Controller by in-
creasing the starting point for the window by three. Usually the Controller builds up
a cache of the following tracks in advance in order to speed up scrolling.

AuxIn.Controller AuxIn

SelectAudioListInfo.StartResultAck
(SenderHandle=_, Start='1', NumberResults='3',

ResultData='Tag, Artist, MediaType',
SortOrder1='Artist', SortOrder2='-', SortOrder3='-',

FilterData= ‘HeaderInfoArtistFilter=“*”’)=

SelectAudioListInfo.ResultAck
(SenderHandle=_, Start='1', NumberResults=_,

ResultData='Tag, Artist, MediaType',
SortOrder1='Artist', SortOrder2='-', SortOrder3='-',
TotalNumberResults=_, AudioMediaData='{Tag=_,

HeaderInfoArtist=_, MediaType=''Playlist''},
{Tag=_, HeaderInfoArtist=_,

MediaType=''Playlist''}, {Tag=_,
HeaderInfoArtist=_, MediaType=''Playlist''}')

Fig. 4.14: Querying a list of artists

86

87

5 MOST Protocols
The MOST System uses either 44.1 kHz or 48 kHz sample rates for transmitting
digital audio signals in hi-fi quality. Devices with a different sample rate can be
adapted to the network by means of a sample rate conversion. In MOST systems, it
is recommend to use 48 kHz.

Since the MOST System transmits the audio data synchronously, additional data
buffering is not needed. This reduces the complexity of the device and thereby
saves costs.

5.1 MOST Frame
The MOST system offers three frame types with different features: MOST25,
MOST50, and MOST150.

5.1.1 MOST25 Frame

A MOST25 frame consists of 512 bits or 64 bytes. Sixty bytes are used for the
transmission of stream and packet data. Two bytes transport one part of the control
message that is made up of a total of 32 bytes for the administration of network and
nodes. The control message is transported over 16 frames that are combined into
one block. The first and the last byte both contain control information for the frame.
Table 5.1 gives an overview.

Byte Bit Description

0-3 Preamble
0

4-7 Boundary Descriptor
1 8-15 Data Byte 0
2 16-23 Data Byte 1
…. ….
60 480-487 Data Byte 59
61 488-495 Control frame Byte 0
62 496-503 Control frame Byte 1

504-510
Frame control and
status bits 63

511 Parity bit

Table 5.1: Structure of a MOST25 frame

88 5: MOST Protocols

Figure 5.1 shows the structure of a MOST25 frame.

64 Bytes = 512 Bits = 22,67 Microsecond @ 44,1 kHz Frame rate

packet data
0...9 Quadlets

Control
data

2 Bytes

Boundary Descriptor

Frame Control

Preamble Parity Bit

Fig. 5.1: MOST25 frame [MOST 2.4]

Preamble

The preamble of the MOST25 frame is used for synchronizing the TimingSlaves to
the bit stream and for the initial identification of the frame. The slaves use a PLL
switch to synchronize to the network.

The TimingMaster generates the preamble based on its oscillator frequency or its
S/PDIF input signal.

After the bit stream has been carried over all MOST nodes, it arrives at the master
with a phase shift caused by the signal propagation delay in each MOST node. The
master thus synchronizes itself to the oncoming frame by means of its PLL, recov-
ers all the bits, regenerates the frame and thus compensates the phase shift.

Boundary Descriptor

The Streaming Data Channel and the Packet Data Channel share a total of 60 bytes,
which are available in a frame. The bandwidths of the two channels can be adapted
to their corresponding requirements via the Boundary Descriptor.

The boundary between the two areas can be shifted in steps of 4 bytes (a quadlet).
The Streaming Channel can thus have a width between 24 and 60 bytes (6 to 15
quadlets) and the Packet Data Channel a width between 0 and 36 bytes (0 to 9
quadlets).

The value of the Boundary Descriptor ranges from 6 to 15. It is administered by the
MOST Network Interface Controller of the TimingMaster.

If the value of the Boundary Descriptor is changed by the TimingMaster, all syn-
chronous connections have to be re-established.

5.1 MOST Frame 89

The bandwidth of the Streaming and the Packet Channel is calculated by the follow-
ing formula:

Packet bandwidth = Total bandwidth – (Boundary * 4) (Equation 5.1)

Streaming bandwidth = (Boundary * 4)

Packet bandwidth + Streaming bandwidth = 60

Frame Control

The last byte of the frame is used for controlling of the frame.

Parity Bit

The parity bit enables the detection of bit errors in the frame.

5.1.2 MOST50 Frame

The MOST50 generation uses a bit rate of 50 Mbit/s for doubling the bandwidth.
The name MOST50 derives from this fact. Even though the sample rate does not
change, the frame length can be increased to 1,024 bits or 128 bytes.

Figure 5.2 and table 5.2 show the structure of a MOST50 frame. The control data is
placed in 4 bytes in the 11-bytes header, which also contains the Boundary Descrip-
tor and the System Lock Flag. The bandwidth of the stream and the packet data can
be adapted dynamically to current requirements without the need of re-establishing
the synchronous connections. It is controlled by the property NetBlock.Boundary.
The stream data can have a width of 0 to 29 quadlets plus one byte (0 to 117 bytes)
and the packet data can also consist of 0 to 29 quadlets (0 to 116 bytes).

packet data
0...29 Quadlets

 Administration
System Lock Flag
Boundary Descriptor
4 Bytes Control Data

Fig. 5.2: MOST50 Frame [MOST 2.5]

90 5: MOST Protocols

The bandwidth of the Streaming and the Packet Channel is calculated by the follow-
ing formula:

Packet bandwidth = Total bandwidth – (Boundary * 4) - 1

Streaming bandwidth = (Boundary * 4) + 1 (Equation 5.2)

Packet bandwidth + Streaming bandwidth = 117

Byte Bit Description

0-10 0-87

Administrative, includes
System Lock Flag
Boundary Descriptor
4 control data bytes

11-127 88-1023 data bytes

Table 5.2: Structure of a MOST50 frame

5.1.3 MOST150 Frame

The MOST150 frame has a similar structure to MOST50. Using the same sample
rate und three times higher baud rate as MOST50, the frame length amounts to
3,072 bits or 384 bytes.

packet data
0...93 Quadlets

Administration
Preamble
System Lock flag
Shutdown Flag
Boundary Descriptor
4 Bytes Control Data

Fig. 5.3: MOST150 Frame [MOST 3.0]

Figure 5.3 and table 5.3 illustrate the structure of a MOST150 frame. The control
data and the Boundary Descriptor are also placed in 4 bytes in the 12-bytes header.
The bandwidth can be adapted dynamically too. The stream data can have a width

5.1 MOST Frame 91

of 0 to 93 quadlets (0 to 372 bytes) and the packet data 0 to 93 quadlets (0 to 372
bytes) as well. It is possible to use the total available bandwidth both for streaming
data or for packet data.

Byte Bit Description

0-11 0-95

Administrative, includes

 Preamble

 System Lock Flag

 Shutdown Flag

 Boundary Descriptor

 4 control data bytes

11-383 96-3071 data bytes

Table 5.3: Structure of a MOST150 frame

Boundary Descriptor

The Boundary Descriptor is also controlled by the property NetBlock.Boundary and
can be changed without the need of re-establish the synchronous connections. Only
the application on the node with the TimingMaster function can change the value.
The initial value is set in the TimingMaster’s configuration.

The bandwidth of the Streaming Channel and the Packet Data Channel is calculated
by the following formula:

Packet bandwidth = Total bandwidth – (Boundary * 4)

Streaming bandwidth = (Boundary * 4)

Packet bandwidth + Streaming bandwidth = 372

Table 5.4 summarizes the influence of the boundary value for all versions.

92 5: MOST Protocols

 MOST25

Available bandwidth
 (in number of bytes
per frame)

MOST50

Available bandwidth
 (in number of bytes
per frame)

MOST150

Available bandwidth
 (in number of bytes
per frame)

NetBlock.
Boundary

Stream-
ing Data

Packet
Data

Stream-
ing Data

Packet
Data

Stream-
ing Data

Packet
Data

0 1 116 0 372

1 5 112 4 368

2 9 108 8 368

3 13 104 12 360

4 17 100 16 356

5

n/a

21 96 20 352

6 24 36 25 92 24 348

…

14 56 4 57 60 56 316

15 60 0 61 56 60 312

16 65 52 64 308

…

29 117 0 116 256

30 120 252

…

92 368 4

93

n/a

n/a

372 0

Table 5.4: Boundary influence on the bandwidth for MOST25, 50, 150

Network Service

Control Messsage
Service

Packet Data
Transmission Service

Synchronous

D
is

cr
et

e
F

ra
m

e
Is

oc
hr

o
no

u
s

S
t r

e a
m

in
g

A
/ V

 P
ac

k e
ti z

e
d

I s
o

ch
ro

n o
u

s
S

t r
e

a m
i n

g

Q
o S

 I
P

S
tr

e
am

i n
g

IsochronousControl Data

Message Transfer
(single + segmented)

Packet Data

Streaming Data

Fig. 5.4: MOST data transport mechanisms

5.2 MOST Data Transport Mechanisms 93

5.2 MOST Data Transport Mechanisms
MOST defines data transport mechanisms for control, streaming and packet data
(see fig 5.4). The three MOST versions do not support all mechanisms. The follow-
ing paragraphs describe them.

5.3 Streaming Data
The MOST Specification Rev. 3.0 distinguishes between synchronous and isochro-
nous data. The latter can be transported only by MOST150.

The bandwidth of the Streaming Data Channel depends on the Boundary Descriptor
(see section 5.1.2) and the frame version. It can be calculated using the following
formula:

FsBitsSBCBW 84 @MOST25; MOST150 (Equation 5.3)

FsBitsSBCBW 8)14(@MOST50

BW: Bandwidth

SBC: Boundary Descriptor (synchronous bandwidth control)

Fs: Sample rate

Summary

 MOST25 MOST50 MOST150

Sample rate
(kHz)

44.1 48 48

minimum band-
width

(Mbit/s)
8.467 0.384 0

maximum band-
width

(Mbit/s)
21.168 44.928 142.848

Table 5.5: Bandwidth of the different frames

94 5: MOST Protocols

5.3.2 Synchronous Data

Synchronous data is used for the real-time transmission of audio and video data. Be-
fore the data can be transmitted a connection must be established by the Connec-
tionMaster, which uses the Application Message Service (AMS).

The NIC used a so-called Routing Engine (RE) for that purpose.

The INIC uses sockets instead of the Routing Engine. For this purpose, one socket
has to be created and connected at the interfaces to the frame (MOST network port)
and to the local resource (MediaLB or streaming port) (see also section 10.4.3).

Thus, up to 15 stereo connections (2x16 bits per channel) or 60 1-byte connections
can be established simultaneously on a MOST25 frame. MOST50 can transport up
to 29 stereo connections and MOST150 a maximum number of 93. Each connection
has exactly one source and an arbitrary number of sinks. The content of the frame
remains unmodified until the frame arrives back at the sending node.

The quasi-static establishment of connections on a channel is denominated as Time
Division Multiplexing (TDM). The data are transmitted cyclically in a specified
time pattern at the same frame position. There is no repetition in the case of com-
munication errors. A valid value is then available during the next cycle.

5.3.3 Isochronous Data

MOST25/50 can solely transmit synchronous data. An MPEG data stream is artifi-
cially “stuffed” with bits, or the stream is converted (transcoded) to a fixed bit rate.
Sample rate converters are sometimes used for audio applications to adapt PCM au-
dio data to the MOST frame rate. However, not all audio or video data streams can
be simply synchronized to this MOST time base.

MOST150 introduced isochronous transfer. Isochronous channels are handled in
much the same way as synchronous channels in MOST: the required bandwidth is
firmly reserved, which means channels for isochronous data are allocated, and the
data is routed as needed. MOST150 can handle three different isochronous mecha-
nisms designed for different applications. Accessing is provided by TDM and allo-
cation of quasi-static physical channels.

A/V packetized isochronous streaming

This mechanism permits transfers of video data streams that arrive without any ref-
erence to the MOST time frame. The data is already consolidated in small data
packets, which can optionally include a time stamp. MPEG data streams that are
coded either with variable (VBR) or constant bit rates (CBR) are a typical example

5.3 Streaming Data 95

of this. A MOST transfer initially reserves the maximum isochronous bandwidth
required. Figure 5.5 shows this mechanism.

Is
o

ch
ro

n
o

us
 F

ra
m

e
 B

uf
fe

r

INIC

MPEG
Stream

Time

Fig. 5.5: A/V packetized isochronous streaming (source: SMSC Europa)

The data arriving at the MOST Network Interface Controller is transferred auto-
matically by INIC to internal memory whose content is transferred cyclically via
MOST. The Network Interface Controller of a data sink can copy the isochronous
data from the bus to its internal memory, and pass it via a suitable interface on to
the external hardware—an MPEG decoder, for example. The whole handling of
MPEG data is encapsulated completely in the MOST150 INIC, so that all the appli-
cation has to do is reserve the required isochronous bandwidth and configure the
corresponding connections.

TimingMaster

Source Device

MOST150
48 kHz

Data

TDAT TDAT

TCLK TCLK

TSYN TSYNTS
I

P
or

t

TS
I

P
or

t

Sink Device

Fig. 5.6: Isochronous data
transfer of MPEG data over
an isochronous port/socket
and the TSI (source. SMSC
Europe)

Besides a range of standard interfaces, the MOST150 INIC includes a transport
stream interface (TSI), now an established standard for video chipsets. Figure 5.6
shows the isochronous data transmission of MPEG data via one isochronous
port/socket per node.

96 5: MOST Protocols

DiscreteFrame Isochronous streaming

Although audio data streams are synchronous in nature (a constant volume of data
per time unit that is dispatched together with a highly accurate clock signal), they
are often not synchronized to the same time base as MOST. One example is trans-
fers of PCM audio data, which might have been sampled at a frequency of 44.1 (or
96) kHz, via a MOST150 network operating at a MOST frame rate of 48 kHz. The
sample rate used for audio CDs is 44.1 kHz. Another example is the transfer of an
S/PDIF signal (Sony Philips Digital Interface or Sony Philips Digital Interconnect
Format) via MOST. S/PDIF is an interface standard used to interface audio data on
decoder chipsets and in general used in the home audio domain, using optical
TOSLINK or electric cinch and/or RCA jacks. Home audio equipment usually fea-
tures components with one or more digital S/PDIF inputs or outputs. The interface
is used for unidirectional transfer of PCM audio data according to IEC 60958 or
compressed audio data according to IEC 61937 such as DTS, Dolby Digital (AC-3)
or THX. Using isochronous transfer, these types of data streams can be “tunneled”
via MOST, without the need to synchronize them to the MOST frame rate or con-
vert the data with a sample rate converter.

TimingMaster

Source Device

MOST150
48 kHz

Data

Time Base

TDAT TDAT

RMCK recovered

TCLK TCLK recovered

TSYN
e.g. 44.1 kHz

TSYN recovered
e.g. 44.1 kHzS

tr
e

am
in

g
 P

or
t

S
tr

e
am

in
g

 P
or

t

Sink Device

RMCK
Port

Fig. 5.7: Isochronous data transfer of audio data via two isochronous ports/sockets
(source. SMSC Europe)

To transfer an audio signal isochronously, it is not enough to simply tunnel the data
via MOST. In addition, the time base has to be maintained. This means the time
base must be transferred and the sink needs to re-synthesize the clock with high
precision.

The MOST150 INIC features inputs for non-MOST clock signals. The incoming
signal needs to be sampled and the time base needs to be transferred along with the
data. The time base (representing the clock) is restored in the sink after transfer
through the network by a dedicated unit in the INIC, and the data is re-output at this
clock rate.

5.4 Packet Data Channel 97

Figure 5.7 shows the isochronous data transfer of audio data via two isochronous
ports/sockets, one for data and the other for the time base.

QoS Isochronous mode

QoS Isochronous mode is also called QoS IP (Streaming) and is presented in sec-
tion 5.8.3.

The MOST Stream Transmission Specification [MOST Stream] describes the
isochronous data in details.

5.4 Packet Data Channel
The Packet Data Channel provides transmission of longer data packets and control
data. Its bandwidth also depends on the Boundary Descriptor. It uses a data link
layer protocol and transports packet data which is not transmitted cyclically (see
section 5.7), such as the TCP/IP protocol or MOST High Protocol (MHP).

The MOST specification describes a total of four packet data protocols. Figure 5.6
shows the protocols for MOST25 and MOST 50, and figure 5.7 for MOST150.

5.4.1 Packet data protocol for MOST25 and MOST50

The protocols for MOST25 and MOST50 are used with two different data field
lengths (fig. 5.8). The 48-byte data link layer protocol transports up to 48 data bytes
and the other layer up to 1,014 data bytes.

Target address
Data area length = roundup((Data+2)/4)= 1...254 Quadlets

Data area

Source address (own address)

Arbitration

CRC

Alternative data link layer (MOST25/50) N = 1014
48 bytes data link layer (MOST25) N = 48 bytes

1Size (bytes) 12 2 N 4

Fig. 5.8: Structure of the packet data protocols for MOST25 and MOST50

The NIC supports both data field lengths, but its internal cache is only sufficient for
the 48-bytes protocol. The INIC uses the 48-bytes protocol, if it is controlled via the
I²C bus. For the 1,014 byte data link layer protocol, it requires MediaLB (see also
chapter 10).

98 5: MOST Protocols

The protocol header consists of the arbitration field (1 byte), in which the token is
stored, the target address (2 bytes), the data field length (1 byte) and the source ad-
dress (2 bytes). The protocol is secured by a CRC sum (4 bytes), which is automati-
cally generated by the MOST Network Interface Controller. There is no automatic
retransmission if there is a CRC sum error. This has to be handled by the higher
layers.

5.4.2 Packet data protocol for MOST150

The packet data protocol of MOST150 has a different structure from MOST25/50
and provides two addressing mechanisms:

 16 bit Target Address (classic MOST addressing)

 48 bit Target Address (MAC addressing)

The CRC sum is placed in front of the data field and the data length is part of the
header (fig. 5.9).

If the 16 bit addressing mode is used, the first 6 data bytes contain the header of the
MOST High protocol.

The 48 bit addressing is used by Ethernet over MOST. In this case the CRC sum is
calculated by the Ethernet FCS algorithm. See section 5.8.2 for more details.

Both addressing modes support low-level retries. The number of low-level retries
and the propagation time between the retries is defined by the System Integrator.

Target address

Data area

Source address (own address)

Arbitration
Length in bytes
Transmission status
Addressing type identifier (16 bit or 48 bit mode)

CRC

16 bit Target Address (classic MOST addressig) I = 2 N = 6....1014 bytes
48 bit Target Address (MAC addressing) I = 6 N = 0....1506 bytes

Size (bytes)
I I N4

Fig. 5.9: Structure of the data link layer protocols for MOST150

5.4.3 Arbitration algorithm

Access control takes place on the packet data channel by means of a token (fig.
5.10). If none of the nodes wish to send data, the token is passed on from one node
to the next.

5.5 Control Channel 99

Node B

Node A

(TimingMaster)

Node D

Node C

Token

Address
0x400

Address
0x401

Address
0x402

Address
0x403

Fig. 5.10: Ring bus structure with four
nodes

If a node wishes to send data, it has to wait for the token. It takes the token from the
bus and thus gains the exclusive access authorization for the packet data channel.
The node sends a single packet and subsequently places the token back onto the
bus. If it has several packets to be sent, it has to wait for the token again.

The prioritization of the packet data transfer takes place via an access disclaimer of
the token, i.e. a node with a low priority lets the token pass by several times – in
spite of ready-to-transmit state - before taking it from the bus. This gives other
nodes a higher priority for taking the token.

5.5 Control Channel
The Control Channel provides Control Message Services (CMS) that are used for
network administration. It is generally specified for event-oriented transmissions at
low bandwidth and short packet lengths. The Control Channel is secured by a CRC
and has an ACK/NAK mechanism with automatic retry. The control messages pro-
vide single and segmented Application Message Services (AMS).

The following both sections introduce the different control messages in the three
versions.

5.5.1 CMS for MOST25

Fig. 5.11 shows the structure of the control message for MOST25.

100 5: MOST Protocols

Target address

17 Bytes Data area

Source address
CRC

Acknowledgement
Reserved

Arbitration

Message type

8 Bit
FBlock ID

8 Bit
Inst ID

12 Bit
Fkt ID

4 Bit
OP Type

4 Bit
Tel ID

4 Bit
Tel Len

12 Bytes
Data

4Size (bytes) 2 22 2 21

Fig. 5.11: Structure of a control message (source: [MOST 2.4]

In order to prevent the Control Channel from claiming too much bandwidth per
frame, it is distributed over 16 frames which are combined into one block (see fig.
5.12). Each frame transports 2 bytes of the channel. The preamble of the first frame
of a block has a specific bit pattern to identify the block.

16 Frames = 1 Block

32 Bytes
16 x 2 Bytes

1 Control date frame

 362.81 Microsecond @ 44.1 kHz Sample rate

Fig. 5.12: Mapping of the Control Channel onto the MOST25 Frame

The protocol of the Control Channel has a constant length of 32 bytes.

Arbitration

The arbitration according to the Carrier Sense Multiple Access (CSMA) procedure
relies on the first two frames (4 bytes). The access procedure guarantees fair bus al-
location, even if the bus load is high, because the priority of a message is not de-
pendent on the node position in the ring. The arbitration is executed automatically
by the MOST Network Interface Controller.

5.5 Control Channel 101

Addresses

Bytes 4 and 5 contain the destination address, the two subsequent bytes contain the
source address.

Message Type

Byte 8 transports one of the following message types (fig. 5.11):

 Normal message (0x00)

 System message

o Resource Allocate (0x03)

o Resource DeAllocate (0x04)

o Remote GetSource (0x05)

o Remote messages

 Remote Read (0x01)

 Remote Write (0x02)

Normal Messages

A normal message (message type: 0x00) contains data packets for the Control Mes-
sage Service (CMS), i.e., it transports the data for modifying properties and starting
functions of a function block, as well as the resulting response messages. A CD
player, for example, can be controlled by means of a function block.

The actual data is transported in 17 data bytes. The normal messages can be sent to
one receiver (single cast), to a defined group of receivers (group cast) or to all nodes
(broadcast).

System Messages

The system messages have a code between 0x03 and 0x05. They are used exclu-
sively by the MOST Network Interface Controller and are not visible to the applica-
tion. The system messages for the resource management, such as Resource Allocate
(message type: 0x03) and Resource DeAllocate (message type: 0x04) can be dis-
patched by all stream data sources. However, they are exclusively received and
evaluated by the TimingMaster.

Remote functions, such as Remote Read (message type: 0x01) and Remote Write
(message type: 0x02) are additional system messages. Through these functions, a
NIC can write or read 1 to 8 data bytes into another interface controller. These func-
tions are only intended for debugging and should not be used in the normal operat-
ing mode. The INIC no longer supports these message types, as it does not have a
register wall (see chapter 10).

102 5: MOST Protocols

Message type 0x05 characterizes the Remote GetSource message. Through this
message, the source of a streaming channel can be ascertained. It is normally sent as
a broadcast message and ascertains the physical, the logical and the group address
of the streaming source. If there are, by mistake, several sources for one channel,
the message can be sent as single-cast message, in order to ascertain the sources and
to resolve the conflict.

Control
 Message

System
Message

Normal
Message

Remote
Message

Remote
Read

Remote
Write

Remote
GetSource

Resource
De-Allocation

Resource
Allocation

- Single cast
- Groupcast
- Broadcast
- Target is always the TimingMaster

0x01 0x02

0x03 0x04 0x05

0x00

Fig. 5.13: Message types (source: [DS 8104])

CRC

The CRC sum enables the receiver to identify transmission errors.

Acknowledgement Flag

The receiver of a control message can inform the sender about error-free reception
by using the acknowledgement flag (byte 28 and 29). The following states are pos-
sible:

 Message successfully received

 Cache blocked

 CRC error

The receiver can only write on the flag and has no possibility to reset it. Thus the
sender can recognize, even in groupcast and broadcast messages that the message
did not arrive properly in at least one of the receivers. It can, however, not discern
which receiver is concerned.

By default, five repetitions are executed in case of communication errors. The num-
ber can be changed in the register bXRTY of the NIC (OS8104). For the INIC, the

5.5 Control Channel 103

function RetryParameters is used. Before each repetition, the MOST Network Inter-
face Controller (NIC) waits for a configurable number of blocks (11 by default). In
the NIC (OS8104), the number can be set in the bXTIM (transmit retry time) regis-
ter. The INIC, again, uses the function RetryParameters.

If it cannot successfully send the telegram by the last retry, it informs the host con-
troller.

Data Field

The 17 data bytes transport the application message The structure, having a De-
viceID, function block ID (FBlockID), instance ID, function ID, operation code and
the related parameters, are very closely connected to the function blocks. The fol-
lowing syntax is used for the functional addressing on the application level:

DeviceID.FBlockID.InstID.FktID.OPType (Parameters)

Section 4.2 gives a detailed overview of that matter.

If a service needs more than 12 bytes for the parameters, the message must be seg-
mented (TelID > 0). Additionally, the first data byte is used as telegram counter,
i.e., there are only 11 data bytes available for the parameters. The first telegram has
the TelID 1, the counter is set to zero. All further telegrams have the TelID 2. The
counter continues from 0x01 to 0xFF and starts again with 0x00. The last telegram
has the TelID 3. The TelLen indicates the number of bytes per telegram, i.e., for the
TelID 1 or 2, the TelLen is always 12. It can be shorter for the TelID 0 or 3.

Data Rate

The number of control messages that can be transmitted each second depends on the
sample rate. Only 62 of 64 transmitted blocks are available for control messages.
Two blocks are used for the intra-system network administration such as the trans-
mission of the channel resource allocation table. Since 16 frames are required for
one control message, the number of messages per second is calculated according to
the following formula [Found 04]:

kHzsMsg
Fs

CM 1.44@/670,2
1664

62
 (Equation 5.4)

with: CM: Control messages per second

Fs: Sample rate

Since each message carries 19 bytes (17 bytes data + 2 bytes DeviceID), the gross
data rate (DRgross) is calculated as follows:

kHzskbits

BitsCMDRgross

1.44@/84.405

8*19*

 (Equation 5.5)

104 5: MOST Protocols

After the successful transmission of a control message, each node has to pause for
two messages, i.e., the net data rate (DRnet) is one third of the gross data rate, pro-
vided that no higher prioritized node needs to send data:

kHzskbits
DR

DR
gross

net 1.44@/28.135
3

 (Equation 5.6)

The real data rate also depends on the interface used at the NIC.

5.5.2 CMS for MOST50

MOST50 frames contain 4 bytes per frame for control data within the header.
Therefore, a CMS message is split into 4 byte/frame pieces. In contrast to the
MOST25 frame, the control message length can vary depending on the specifics of
the message, hence a CMS is based on a variable number of frames. The result is
better utilization of the bandwidth. The minimum number of single frames is 6
(TelLen = 0) for commands without payload and the maximum number of single
frames is 9 (TelLen = 12). Figure 5.14 shows the control message structure. CMS
messages with a payload greater than 12 bytes are transported by segmented trans-
fer and have a maximum length of 65535 bytes. Like MOST25, it covers the AMS.
The Message type no longer exits.

8
Fblock ID

8
Inst ID

12
Fkt ID

4
OP Type

4
Tel ID

4
Tel Len

N Bytes
Data

Application Message Service

Control Message Service

Arbitration
Length
PACK
CACK

Source address

Target address

Size (bits) 16 16
CRC

1696
(12 bytes)

Fig. 5.14: Control message structure of MOST50

The header contains 12 bytes with arbitration, message length, preemptive ac-
knowledge (PACK) and complete acknowledge (CACK).

Preemptive acknowledge (PACK)

The PACK byte is used for flow control. It is driven by the receiver and indicates ei-
ther a receiver ready, full receive buffer or wrong target, leading to an aborted mes-
sage.

5.5 Control Channel 105

Complete acknowledge (CACK)

A complete acknowledge (CACK) sent at the end of the message is also driven by
the receiver and indicates a wrong CRC or successful transmission.

Data rate of a single frame

The number of messages per second is calculated according to the following for-
mula:

framesofnumber

Fs
CM

__
 (Equation 5.7)

0;48@000,8
6

48000
max TelLenkHzCM

12;48@333,5
9

48000
min TelLenkHzCM

If none of the messages transport additional payload (TelLen = 0), 8,000 Control
Messages per second is the best case. If all messages have the maximum size of
payload (TelLen = 12) the result is 5,333 messages/s.

Payloadmin amounts to 7 bytes (DeviceID, FBlockID, InstID, OPType, TelID, Tel-
Len) and payloadmax amounts to 19 bytes (payloadmin + 12 bytes data). Therefore,
the net rate is calculated with following formulas:

0;48@/448

8*7*000,8

8**_ minmaxmin

TelLenkHzskbit

Bits

BitspayloadCMDRgross

0;48@/33.149
3

_ min_
min TelLenkHzskbit

DR
DR gross

net

12;48@/62.810

8*19*333,5

8**_ maxminmax

TelLenkHzskbit

Bits

BitspayloadCMDRgross

106 5: MOST Protocols

12;48@/21.270
3

_ max_
max TelLenkHzskbit

DR
DR gross

net

MOST50 has a theoretical minimum net data rate of 149.33 kbit/s and a theoretical
maximum net data rate of 270.21 kbit/s.

5.5.3 CMS for MOST150

MOST150 is similar to MOST50. The frames also contain 4 bytes per frame for
control data within the header. The control message length also can vary depending
on the specifics of the message. The minimum number of single frames is 6 (TelLen
= 0) for commands without payload and the maximum number of single frames is
18 (TelLen = 45). Figure 5.15 shows the control message structure. CMS with the
payload greater than 45 bytes are transported by segmented transfer and have a
maximum length of 65535 bytes. MOST High protocol over the Control Channel is
no longer supported.

Source address

Target address

8
Fblock ID

8
Inst ID

12
Fkt ID

4
OP Type

4
Tel ID

32
Message ID

12
Tel Len

N Bytes
Data

Size (bits) 16 16
CRC

1696
(12 Bytes)

Application Message Service

4

Arbitration
Length
PACK
CACK
PIndex

Fig. 5.15: Control message structure of MOST150 single frame

The header contains— additional compared to MOST50—the PIndex. The PIndex
increments with each new control message sent by a particular node. It stays con-
stant for low-level retries.

The Message ID covers the AMS parameters FBlockID, InstID, FktID and OPType.
AMS sets the last 4 bits of the Message ID to 0x0F in the case of a segmentation
error.

5.5 Control Channel 107

Data rate of a single frame

The number of messages per second is calculated according to the following for-
mula:

framesofnumber

Fs
CM

__
 (Equation 5.8)

0;48@000,8
6

48000
max TelLenkHzCM

45;48@666,2
18

48000
min TelLenkHzCM

If none of the messages transport additional payload (TelLen = 0), 8,000 Control
Messages per second is the best case. If all messages have the maximum size of
payload (TelLen = 45) the result is 2,666 messages/s.

Payloadmin amounts to 8 bytes (6 bytes Message ID, TelID, TelLen and 2 bytes tar-
get address) and payloadmax amounts to 53 bytes (payloadmin + 45 bytes data).
Therefore, the net rate is calculated with following formulas:

0;48@/512

8*8*000,8

8**_ minmaxmin

TelLenkHzskbit

Bits

BitspayloadCMDRgross

45;48@/130,1

8*53*666,2

8**_ maxminmax

TelLenkHzskbit

Bits

BitspayloadCMDRgross

MOST150 has theoretical minimum net data rate of 512 kbit/s and a theoretical
maximum net data rate of 1,130 kbit/s.

Note that a MOST device cannot use the overall available control message band-
width of the MOST network, typically caused by limitations by the IO interface, the
device driver, the network stack and the application.

108 5: MOST Protocols

5.6 Summary
 MOST25 MOST50 MOST150

Frame size (bits) 512 1024 3072
Sample rate

(kHz)
44.1 48 48

Streaming data

Minimum

(bytes)
24 0 0

Maximum

(bytes)
60 117 372

minimum bandwidth

(Mbit/s)
8.467 0.384 0

maximum bandwidth

(Mbit/s)
21.168 44.928 142.848

Packet data

Minimum

(bytes)
0 0 0

Maximum

(bytes)
36 116 372

minimum bandwidth

(Mbit/s)
0 0 0

maximum bandwidth

(Mbit/s)
10.8411 44.544 142.848

Control data

Bytes per frame 2 4 4
Min. number of frames 16 6 6
Max. number of

frames
16 9 18

Min. data bytes 19 7 8
Max. data bytes 19 19 53
Min. gross bandwidth

(kbit/s)
405.84 448 512

Max. gross bandwidth

(kbit/s)
405.84 810.62 1130

Table 5.6: Summary of the frame parameters of MOST25, 50 and 150

1 for calculation see appendix B

5.7 Addressing 109

5.7 Addressing
On level 2 of the ISO layer, the MOST network supports five modes of addressing
for the data link layer protocol and the Control Channel:

 Internal Node Communication address (reserved for internal communication in
a node)

 Node position address (RxTxPos)

 Logical node address (RxTxLog)

 Group address

 Broadcast address

 Ethernet MAC address (only MOST150)

16 bit addresses are always used, except for the Ethernet MAC address (it is 6 bytes
long). Table 5.7 shows the division of the address domains. The four uppermost ad-
dress bits are currently not in use; they are, however, reserved for future applica-
tions.

Address range Mode

0x0000...0x000F Internal Communication
0x0010…0x00FF Static address range
0x0100…0x013F Dynamic calculated (0x0100+POS) address range
0x0140…0x02FF Logic address range; statically assigned
0x0300…0x03C7 Group addresses
0x03C8 Blocking broadcast address
0x03C9…0x03FE Group addresses
0x03FF Unblocking broadcast address
0x0400…0x043F Node position (0x0400 + POS) address range
0x0440....0x04FF Reserved
0x0500…0x0FEF Logic address range; statically assigned
0x0FF0 Optional debug address
0x0FF1…0x0FFD Reserved
0x0FFE Init address of Network Service
0x0FFF Init address of MOST Network Interface Controller
0x1000…0xFFFE Reserved for future use
0xFFFF Uninitialized logical node address

Table 5.7: Address ranges of the MOST network [MOST 3.0]

Node Position Address (RxTxPos)

Each node of a MOST network has a unique identification which depends on its po-
sition in the ring and is dynamically ascertained by the link layer. This identification

110 5: MOST Protocols

is called node position. The TimingMaster always has node position 0x00, the fol-
lowing node 0x01, etc. (fig. 5.16). The maximum number of nodes in the ring is 64.

By means of the node position, the delay between signal source and signal sink can
be determined quite easily by the source informing the sink of its position and the
sink determining the number of network nodes through which the signal has passed.

Node E

Node A
(TimingMaster)

(TimingSlave)

(TimingSlave)(TimingSlave)

(TimingSlave)

Node D

MOST frame

Node position
0x00

Node position
0x01

Node position
0x02

Node position
0x03

Node position
0x04 Node B

Node C

Fig. 5.16: MOST ring with the node addresses

The node position address is derived from the node position and is thus unambigu-
ous in the network. When the system is started, the address is defined by the Tim-
ingMaster, as soon as the MOST Network Interface Controller is in lock status and
has opened the bypass. The address domain starts with the address 0x400, which is
always occupied by the TimingMaster. The node position address (RxTxPos) is cal-
culated according to the following equation:

RxTxPos = 0x400+Pos

Since there is a possible maximum of 64 nodes in the ring, the last address is
0x043F; the remaining addresses are currently not being used.

Logical Node Address (RxTxLog)

The logical node address (RxTxLog) is a unique address in the network. After
power-up, all uninitialized nodes have the address 0xFFFF. After the initialization,
the logical node address is dynamically assigned according to the following equa-
tion (similar to the node position addresses) upon initialization of the network:

RxTxLog = 0x100+Pos

5.7 Addressing 111

The TimingMaster has the logical address 0x100, the first node has the address
0x101, etc.

Anyhow, the system designer can statically assign the logical address in the address
domains 0x140…0x2FF and 0x500…0xFEF. The address can already point at the
function of the nodes (e.g., first video monitor 0x200, second video monitor 0x201),
or at the position in the vehicle (e.g., 0x100 passenger cell left, 0x200 passenger cell
right, 0x500 trunk).

In the NIC, the logical address is stored in two registers (bNAH and bNAL). The
INIC uses the function NodeAddress. Before the NIC accepts the address, it can
automatically check the uniqueness of the allocated address by means of the start-
address-initialization function.

Group Address (GA)

The group address represents the allocation to a system class, such as amplifier, au-
dio CD player or digital sound processor.

Group addresses occupy the address range 0x300…0x3C7 and 0x3C9…0x3FE. The
initial group address is derived from the function block ID according to the follow-
ing equation:

GroupAddress = 0x300+FBlockID

The FBlockID of the characteristic FBlock of the node is used here, assuming that
this will be the most requested.

In the NIC, the group address is stored in the bGA (Group Address) register. The
INIC uses the function GroupAddress for modification.

Broadcast

A blocking broadcast address is a unique address (0x3C8) addressing all nodes in
the ring. All other control messages are delayed until all nodes have acknowledged
the received broadcast. This reduces the bandwidth if used excessively.

An unblocking broadcast message (0x03FF) does not block the transmission of
other control messages. This kind of transmission can be used for uncritical data
transmission, which might not necessarily be received by all devices.

Due to the fact that broadcast messages require extensively utilize system resources,
they should only be used for management functions, e.g., in order to receive the cor-
responding function blocks from all nodes during initialization. A further applica-
tion area is querying all hardware and software versions of the components used in
a car.

112 5: MOST Protocols

When a group address is used, the maximum data length of broadcast messages is
reduced by one byte for the checksum.

Ethernet MAC Address

The Ethernet MAC address is a unique address in EUI-48 format and has a length
of 48 bits (6 bytes) and is only supported within MOST150 networks. It is in the re-
sponsibility of each manufacturer to acquire its own OUI resp. block to build EUI-
48 and MAC addresses.

The address supports the Ethernet-typical address comparison modes:

 Unicast (Perfect Filtering, 48 bit match)

 Multicast (Hash Filtering)

 Broadcast (0xFFFF FFFF FFFF)

 Promiscuous (unfiltered)

The mode is configured in the MOST Network Interface Controller.

5.8 Higher Protocols
The MOST Specification defines the MOST High Protocol and the adaptation layer
MAMAC (MOST Asynchronous Medium Access Control) for the connection-
oriented transmission of packet data on the transport layer level of the OSI model.
This enables the TCP/IP stack to be attached to the data link layer protocol. By
means of these protocols, packet data is sent with individual frames or as segments,
for example navigation data. MOST150 networks do no longer support MAMAC
because MOST150 offers a real Ethernet transmission.

5.8.1 MOST High Protocol (MHP)

The MOST High Protocol is a connection-oriented protocol and uses some of the
mechanisms of the TCP protocol. However, the overhead for the control of the data
flow was reduced to a minimum. As it is shown in figure 5.17, the protocol is at-
tached to the Network Services Layer I. It can be implemented on the Packet Data
Channel and is unidirectional, i.e. there is a transmitter and a receiver module. If
data is to be transmitted bidirectionally, two connections are necessary.

5.8 Higher Protocols 113

MOST High
Protocol

Network Service Layer I

MOST Network Interface Controller

Network Service
Layer II

Tx Section Rx Section

Packet Data
Transmission Service

Fig. 5.17: Typical layer structure of the MOST High Protocol (source: [PFLNet])

Application Viewpoint

From the point of view of the application, the MOST High Protocol is located be-
tween Network Services and the function blocks of a MOST device (see fig. 5.18).
The Controller sends application data to a function of a function block in the re-
ceiver. The interface between the Controller and the MOST High Protocol corre-
sponds to the one for the control messages of the function blocks.

DeviceID.FBlockID.InstID.FktID.OPType(Data)

Since the protocol is a connection-oriented one, a communication always consists of
three parts:

 Connection establishment

 Data transmission

 Connection termination

FBlock
(Controller)

FBlock
(Controller)

FBlock FBlock

Func
tion

Func
tion

Application
Protocol

FlowControl

FlowControl

Data

Data
…

Data

Application
Protocol

MOST
High

Protocol

MOST
High

Protocol

Network Services Layer I Network Services Layer I

Network Service
Layer II

Network Services
Layer II

Fig. 5.18: View of the application to the MOST High Protocol (according to [MHP])

114 5: MOST Protocols

Additionally, the receiver informs the transmitter about the correct reception of the
data by sending a positive acknowledgement, or requests the data again with of a
negative acknowledgement. This is also characterized as flow control (FlowCon-
trol) (fig. 5.18).

MHP on
Control
Channel

MHP on Packet Data Channel

 (legacy only)
48-bytes data
link layer pro-

tocol

1,014-bytes
data link layer

protocol

1,512-bytes
data link layer

protocol
Usable data bytes 17 48 1014 1524
Header length
(bytes)

5 6 6 6

Flow control (bytes) 1 2 2 2

Max. data field
length per frame
(bytes)

11 40 1006 1518

Max. user frames per
block

15 255 255 255

Bytes per block 1...165 1....10200 1...65535 1…65535

Table 5.8: MHP parameter for the control channel and for the transmission in the Packet
Data Channel

PACKET

Frame 1 Frame 1

Block 1 (max. 64 kBytes) Block m (max. 64 kBytes)

n-Frame n-Frame
Frame n Frame n

FrACK
High-Cmd

Fig.5.19: Structure of the MOST High Protocol (source: [MHP])

5.8 Higher Protocols 115

Protocol

MHP differentiates between packet, blocks and frames (see fig. 5.19). A packet
consists of a number of blocks, which, in turn, consist of up to 256 frames. The
number of frames in a block and the maximum data field length of the frames de-
pend on whether MHP was implemented on the Control Channel (legacy only) or
on the Packet Data Channel (table 5.8). The block size is always limited to 64
Kbytes.

High-
Cmd

Name Description

CA Request Connection Indicates the existence of data, the priority of con-
nection, the maximum number of usable data bytes
per frame, and the revision number of MHP,
which is provided by the sender

F2 Start Connection Command for establishing communication
F3 END Connection

from sender
Connection termination request by sender

FC END Connection
from receiver

Connection termination request by receiver

FA Frame ACK Acknowledge of the receiver about received frame
or block

FB Request Request for a certain single frame or an entire
block

FF Multiple Frames Re-
quest

Request for several frames of the current block

F0 Adjust Rate Request from the receiver to increase or decrease
the transmission rate

FD Ready for Data Acknowledge for connection is established
F1 Hold Connection

from Sender
Indicates the interruption/continuation of the
communication by the sender, e.g., if the transmit
buffer is empty

FE Hold Connection
from Receiver

Indicates the interruption/continuation of the
communication by the receiver, e.g., if the receiver
buffer is full

Table 5.9: Commands of the MHP flow control (source: [MHIGH])

A frame consists of a Data Link Layer Header, which is structured analogously to
the header of a control message, and the Transport Layer Header. For a flow control
message (control data) the Transport Layer Header consists of the Command Token
(High-Cmd). For a Data Frame (User Data Frame) it consists of the Frame Ac-
knowledgement (FrACK). Figure 5.19 shows the frame structure.

116 5: MOST Protocols

Table 5.9 gives an overview of the commands of the flow control.

An acknowledgment can be sent for each frame of each block. Figure 5.20 shows a
sequence diagram for MHP, in which an acknowledge is sent after each block. The
individual steps can be understood on the basis of table 5.9. The 0-FRAME is the
first frame of a block.

Fig. 5.20: MHP control and data flow

Additional information and the MSCs relating to the individual commands can be
found in [MHIGH].

5.8 Higher Protocols 117

5.8.2 Ethernet over MOST

MOST Ethernet Packets

The MOST Packet Data Channel (PDC) is used for sending asynchronous packet
data and supports two different addressing formats:

 16 bit addressing; MOST Data Packets (MDP)

 48 bit addressing; MOST Ethernet Packets (MEP)

MDP and MEP packets can be transmitted simultaneously by every device in the
MOST network by sharing the bandwidth of the Packet Data Channel between these
packet types. The arbitration mechanism guarantees fair access to the channel for
every device. The bandwidth of the PDC can be dynamically changed by adjusting
the Boundary Descriptor. The protocol is CRC protected and a packet is automati-
cally retried if a CRC fail is detected by the receiver, or the receive buffers are full.

The MEP format supports 48 bit MAC addressing and is compliant with the IEEE
Ethernet standard (refer table 5.10).

MAC DestAddr MAC SrcAddr Data CRC

48 bits 48 bits Maximum 1506 bytes 32bits

Table 5.10: Structure of the 48 bit MAC address

The data field can include an optional 32 bits VLAN (IEEE 802.1Q) field. How-
ever, the 16 bits length/type field is mandatory.

The INIC stores the MAC address and carries out address filtering, i.e., the filter
can be set up to only pass packets to the EHC that are of interest to the application
running on the EHC. The 48 bit addressing format supports the following standard
IEEE Ethernet MAC address filter modes:

 Unicast (Perfect Filtering, 48 bit match)

 Multicast (Hash Filtering)

 Broadcast (0xFFFF FFFF FFFF)

 Promiscuous (unfiltered)

MEP packets transmit standard IEEE Ethernet frames on the Packet Data Channel.
Therefore, a standard TCP/IP stack can be used without any change on top of the
MOST Ethernet Driver.

Note: A low-level filter mechanism must be implemented to move MEP data to the
MOST Ethernet Driver and MDP data to the standard MOST Network Services
framework. The filter is necessary because MDP and MEP packets share the same
data channel. Figure 5.21 shows the details.

118 5: MOST Protocols

Fig. 5.21: MOST Ethernet driver concept

5.8.3 MOST Isochronous QoS IP (Streaming)

The MOST isochronous transmission subclass QoS IP (Streaming) can be used for
transmitting packet data that requires guaranteed bandwidth, e.g., camera or video
server applications.

The MOST Packet Data Channel shares the bandwidth between all devices on the
MOST network. Therefore, it does not guarantee a certain bandwidth for an applica-
tion. The QoS IP channel guarantees exclusive access to a certain bandwidth on the
MOST network for a source device. It supports both point-to-point and point-to-
multipoint connections. Furthermore, it is unidirectional and connection oriented.
The connection is usually set up by a Connection Manager that instructs the source
to allocate bandwidth on the MOST network and then instructs the sink(s) to con-
nect to this particular channel.

Native MOST-aware applications use the QoS IP channels directly because they are
aware of the QoS IP channels.

5.8 Higher Protocols 119

5.8.4 MOST Ethernet with QoS IP

The MOST Ethernet driver can handle MEP packets on the Packet Data Channel as
well as QoS IP channels. It sets up single or multiple QoS IP channels for sending
QoS classified packets to all targets. All other packets, which are not QoS classi-
fied, are sent on the shared Packet Data Channel. With this approach, a standard
TCP/IP stack, IP-based communication protocols and network application can run
on top of the MOST Ethernet driver without any adaption.

If QoS IP is required, an application only tags the TOS field in the IP header of the
outgoing data, or it uses reserved ports for access to the QoS IP channels. Non QoS
tagged packets will always be sent over the shared Packet Data Channel. Figure
5.22 shows the mechanism.

Fig. 5.22: MOST Ethernet with QoS

120 5: MOST Protocols

5.8.5 MAMAC

MAMAC (MOST Asynchronous Medium Access Control) is an adaptation layer
which enables a simple transmission of TCP/IP protocols over the Packet Data
Channel. It can be used simultaneously with the MHP and is distinguished via the
TelID (see fig. 5.19). MAMAC maps Ethernet versions 1 and 2, as well as SNAP
and LLC directly onto the Packet Data Channel. It is supported by MOST25 and
MOST50. Further details can be found in [MAMAC].

121

6 Physical Layer

The MOST Physical Layer Specification specifies both optical and electrical tech-
nologies for the physical layer. The optical transmission layer has now been used
several years in the automotive area and is widely spread. It currently uses optical
fibers (polymer optical fibers, POF) made of polymethyl methacrylate (PMMA)
with a core diameter of 1 mm as transmission medium, in combination with light-
emitting diodes (LEDs) in the red wavelength range as transmitters and silicon
photo diodes as receivers. The optical physical layer has been introduced with a
data rate of 22.6 Mbit/s [MOST BaPhy], commonly shortened with the term
MOST25. The first edition of this book focused on that technology in detail. Higher
bandwidth requirements for today’s systems made it necessary to further develop
the optical physical layer. The MOST Optical Physical Layer Sub-Specification
[MOST Phy150] is released as the follow-up specification with an increased band-
width of 147.5 Mbit/s, which is described in the following sections as the
MOST150 technology. In addition to signal requirements, the transmission proper-
ties of polymer fibers and the currently used transceiver technologies will be dis-
cussed. The chapter concludes with an overview of further developments of electri-
cal and optical physical bus layers.

6.1 Introduction
According to the OSI layer model, the term Physical Layer is characterized as the
lowest level of a network. It thus represents the physical connection between two
MOST control components (MOST Network Interface Controller). The MOST
Physical Layer Basic Specification [MOST BaPhy] defines four specification points
SP1, SP2, SP3, and SP4 along this point-to-point connection (see fig. 6.1) and out-
lines the basic measurement techniques and parameters for different physical layer
technologies.

The Specification points SP1 and SP4 describe the electrical signal requirements
between a MOST NIC and a converter (e.g., electrical signal levels, electrical ramp
response and connection timeout, jitter requirements). The interface properties be-
tween a MOST device plug and a wiring harness are defined by the specification
points SP2 and SP3. In a system with an optical physical layer, the parameters at
SP2 and SP3 are, for example, the wavelength, optical power, optical rise and fall
times, and, moreover, the mechanical dimensions of the MOST device plugs.

122 6: Physical Layer

Before going into detail with respect to the individual interface requirements at the
specification points, basic properties of optical fibers and opto electronic transmit-
ters and receivers will be introduced in the following sections. For further reading
regarding a detailed description of opto-electronic transmission technologies, refer
to [Gus 98], [Vog 02].

Fig. 6.1: Definition of the specification points SP1, SP2, SP3, and SP4 along a point-to-
point connection

6.2 POF Plastic Optical Fibers
Optical fibers are utilized more and more frequently for applications with a high
data rate due to increasing EMC requirements (Electromagnetic Compatibility).
Transmission lines with optical fibers do not cause any interference radiation and
are insensitive to electromagnetic interference irradiation (Electromagnetic Interfer-
ence, EMI). In contrast to shielded electric data lines, optical fibers are, moreover,
lighter and more flexible and can thus be used more easily. The following section
describes a number of important basic principles of POF optical fibers for MOST
applications.

6.2.1 Basic Principles

Optical fibers consist of a light-conducting core which is surrounded by an optical
cladding of a lower refractive index. Figure 6.2 shows a structural diagram of an
optical fiber. If a light ray is coupled into the front end of a fiber within the accep-
tance cone, the light is guided along the core-cladding interface due to total reflec-
tance. The ray travels along a zigzag path and all the light is conducted inside the
optical fiber.

The widest angle under which light can be coupled into the front side of an optical
fiber is called acceptance angle or numerical aperture. The acceptance angle φa and
the numerical aperture NA are calculated from:

6.2 POF Plastic Optical Fibers 123

22sin claddingcorea nnNA (Equation 6.1)

where ncore is the refractive index of the optical fiber core and ncladding the refractive
index of the optical fiber cladding. The wider the difference of the refractive indices
of the core and the cladding material, the wider the acceptance angle or numerical
aperture.

Fig. 6.2: Schematic diagram of light
propagation through an optical fiber

Taking the standard polymer fiber for MOST applications with a core refractive in-
dex of ncore = 1.49 and ncladding = 1.40 as an example, a numerical aperture of 0.5 is
resulting, corresponding to an acceptance angle φa of 30°. With a high numerical
aperture, light can be coupled in more easily. This is particularly interesting if
LEDs, which have divergent radiation characteristics, are used as a light source.

A high numerical aperture has, however, the disadvantage of a high mode disper-
sion. Mode dispersion results from the different propagation delays of light rays,
which are coupled in at different angles φ. Light rays with a small angle φ travel
faster through the optical fiber than light rays with a wide angle φ. The mode dis-
persion results in distortions of a rectangular pulse along the optical fiber. Figure
6.3 shows the effects of mode dispersion in a diagram. An ideal rectangular pulse at
L0 expands after a length L1 by the value Δτ1 and after a length L2 by the value Δτ2.
The longer the optical fiber, the higher the resulting pulse distortion.

Fig. 6.3: Schematic diagram of
pulse widening

For a step-index fiber, the pulse distortion Δτ is calculated according to the formula:

124 6: Physical Layer

L
cn

nnn

cladding

claddingcorecore

0

)(
 (Equation 6.2)

where c0 is the speed of light and L is the length of the optical fiber. The pulse dis-
tortion limits the maximum bit rate of the wave guide. The maximum bit rate can be
approximated by means of the equation:

1
B (Equation 6.3)

Taking a standard polymer fiber for MOST applications with the core refractive in-
dex of ncore = 1.49 and ncladding = 1.40 as an example, one gets a pulse distortion of
about 320 ps for a length of one meter. Connections in a vehicle usually have a
maximum length of 20 m, which, according to theory, results in a maximum per-
missible bit rate of 150 Mbit/s. In practice, the bit rates can be higher when trans-
mitting signals via polymer fibers. This is due to the fact that not all possible light
rays with different launching angles need to be stimulated when the radiation source
emits directed radiation. In the most favorable case, only rays with a small angle φ
are present, which results in a lower mode dispersion. An overall conclusion regard-
ing the maximum transmittable bit rate is thus not easy. In the case of specified
stimulation characteristics, bit rates of more than 500 Mbit/s can be reached for fi-
ber lengths of about 20 m [Dau 01].

6.2.2 Polymer Fibers – Properties and Advantages

The properties of different core and cladding materials of polymer fibers for differ-
ent applications have been examined since the late 60s [Wei 99]. Fibers with a core
of polymethyl methacrylate (PMMA) and a fluorinated acrylate of a lower refrac-
tive index extruded thereon, are used both as light guides for lighting and for short-
range transmission systems with a length of less than 100 m. In short transmission
ranges polymer fibers with a 1 mm diameter have advantages over glass fibers:

 Flexibility:
Plastic fibers are much more flexible compared to glass fibers of the same di-
ameter. Fibers with a large core diameter of, e.g., 1mm have good bending
properties due to the high flexibility of the polymer material.

 Large fiber diameter:
Due to the large fiber diameter and the high numerical aperture of about 0.5,
the adjusting tolerances for the transmitter and receiver elements are relatively
large. It is thus easy to position plastic optical fibers in front of a transmitter or
receiver element, as the tolerance requirements are not very high. Transmitter
and receiver modules (transceiver) and plug-in connectors can therefore be

6.2 POF Plastic Optical Fibers 125

manufactured cost-efficiently using injection molding, which is quite interest-
ing for use in vehicles.

 Easy to process:
Plastic fibers can be easily processed, as the material is soft. The surface can be
finished by cutting, grinding or melting. The processing can be carried out with
simple hand tools and is not very time-consuming.

 Resistant to contamination:
Due to the large fiber diameter, slight contaminations at the end surface of the
fiber, such as dust or condensation of humidity, only cause little additional at-
tenuation. Plastic fibers can thus be utilized under rough environmental condi-
tions.

 Low costs:
All the aforementioned advantages result in lower costs, compared to glass fi-
bers. Particularly in cars, short-range connections of less than 20 m on the basis
of polymer fibers have a very good price-performance ratio, since the system
costs are basically determined by the price of connectors and transceivers, and
by the installation and maintenance efforts.

Fig. 6.4: (a) Schematic diagram of the structure of a polymer fiber with buffer and cable
coating and (b) the magnified picture of a MOST POF

Figure 6.4 shows the structure of a polymer fiber with protective cladding, accord-
ing to the requirements for use in vehicles. The PMMA fiber consists of an optical
core with a diameter of 980 µm, which is coated with a 10 µm cladding material.
The overall diameter of the optical PMMA fiber thus amounts to 1 mm. The optical
fiber is surrounded by a black buffer (protective cladding), which is fixed to the op-
tical fiber and cannot be stripped. A high detachment resistance is necessary, since
the optical contacts at the end of the fiber are attached to the buffer by means of la-
ser welding or crimping (see section 6.3). A cable coating surrounds the buffer and
provides additional protection from mechanical damage and other influences, such
as humidity or vehicle operating fluids.

126 6: Physical Layer

Fig. 6.5: Typical attenuation spec-
trum of a PMMA fiber

Optical attenuation is an important parameter of an optical fiber. The attenuation of
an optical fiber is usually specified by the logarithmic attenuation coefficient α as
dB/m. Figure 6.5 shows the attenuation of a PMMA fiber depending on the wave
length. The attenuation spectrum of a standard step-index (SI) PMMA fiber has
three minima at 520 nm, 570 nm and 650nm in the visible wavelength range.
MOST applications use the window in the red wavelength range at 650 nm, as low-
priced transmitter and receiver elements are available for this wavelength. The at-
tenuation minimum at 650 nm is 0.14 dB/m.

Standard PMMA harness fibers are qualified to a temperature range up to 85 °C.
For that reason, the use of standard PMMA fibers in vehicles usually is limited to
the interior. Since the introduction of optical fibers for MOST, the allowed
temperature range could be increased up to 105 °C. However, it may be necessary
to use heat protection in the installation spaces, where higher temperatures occur.
Polycarbonate fibers were developed for even higher temperature requirements and

Fig. 6.6: Typical graph of the
attenuation of a full launched
PMMA fiber depending on the
bending radius

6.3 Contacting of PMMA Fibers 127

can endure up to 135 °C. The attenuation of these fibers, however, is higher; it is
0.4 dB/m at the minimum [Wei 99].

Next to deterioration possibly due to aging, the attenuation of an optical fiber dur-
ing operation is mainly influenced by additional losses through bending. Figure 6.6
shows the attenuation of a PMMA fiber depending on the bending radius. At a
bending radius of less than 10 mm, the attenuation rises by more than 0.5 dB com-
pared to the basic attenuation. At a bending radius of more than 25 mm, there is vir-
tually no rise in attenuation due to bending.

Note: In order to prevent additional losses in a vehicle connection, the bending ra-
dius shall not go below 25 mm for general applications. This also ensures that the
fiber is not damaged by too sharp bending when the connection is manufactured and
installed into a vehicle.

6.3 Contacting of PMMA Fibers

Figure 6.7 gives examples of different contacting technologies for PMMA fibers.
For the crimp method, a metallic ferrule (usually made of brass) is mechanically
pressed onto the buffer. For the ultrasonic welding procedure, a plastic ferrule is
melted onto the buffer. For serial production it is very attractive to attach the ferrule
by way of laser welding. A laser beam melts the buffer material with the ferrule ma-
terial. This makes it necessary to use a ferrule material that is transparent to the la-
ser beam so that the welding point can be set between buffer and ferrule. In order to
reach a high absorbance at the buffer material, carbon particles are blended in when
the buffer is extruded. It is particularly important for high processing reliability of
laser welding that the laser welding beam be highly stable and that the absorbance
of the buffer material and the transparency of the ferrule are highly homogeneous.

Hand tools are available on the market for assembling optical fibers by means of
crimping. Figure 6.8, left side, shows tools for stripping and cutting an optical fiber.
A metallic ferrule is subsequently attached to the fiber end by a crimping tool, as
shown in figure 6.8 at the right side.

Fig. 6.7: Contacting technologies
for polymer fibers (source: Tyco
Electronics)

128 6: Physical Layer

Fig. 6.8: Hand tools for as-
sembling optical fibers
(source: Rennsteig
Werkzeuge)

A number of manufacturers offer fully automatic machines for manufacturing laser
welded ferrules for serial production. Figure 6.9 shows an example of a fully auto-
matic machine with several processing steps for cutting the POF fibers according to
the customer’s requirements, stripping the ends of the fibers and attaching the plas-
tic ferrules by means of laser welding after finishing the end-face of the fiber and
measuring the attenuation.

Fig. 6.9: Fully automatic machine
for assembling polymer fibers
(source: Schäfer)

The assembled optical fiber cables are delivered to a manufacturer of cable har-
nesses and are incorporated there into the complete cable harness which is then de-
livered to a car manufacturer. Specific limiting stresses, such as temperature, hu-
midity and bending radius are to be observed during the entire logistics chain. If re-
quired, the optical fibers must be protected by bending radius limiters and dust pro-
tection covers (see chapter 16).

The use of inline connectors makes modular construction of the cable harness pos-
sible. Figure 6.10 shows an example of an inline connector by means of which two
fiber ferrules can be firmly connected by a guide sleeve and a catch mechanism. It
is to be considered that including such a kind of disconnection point may cause ad-
ditional losses of up to 2 dB due to an air gap, an axial displacement and Fresnel re-
flections at the end faces of the fibers.

Note: If inline connectors are used, the additional attenuation of 2 dB has to be ac-
counted for when designing the system (see section 6.5.3).´

6.4 Opto-Electronic Transceivers 129

Fig. 6.10: Inline connector for optical fi-
ber disconnection points (source: Tyco
Electronics)

6.4 Opto-Electronic Transceivers
Ever since MOST was established, LEDs (Light-Emitting Diodes) have been used
as transmitter units in the red wavelength range for converting electrical signals into
optical signals. PIN photo diodes are used as receivers. A component which incor-
porates both transmitter and receiver is called a transceiver (a fusion of the words
transmitter and receiver). The following sections will go into detail with regard to
basic properties of LEDs and PIN photo diodes. In addition, typical packaging de-
signs of MOST transceivers will be introduced.

6.4.1 LED Transmitter Devices

Light-emitting diodes having an emission wavelength of 650 nm are attractive
transmitter units for cost-efficient PMMA networks of less than 100 MHz band-
width. At 650 nm, LEDs are usually made from the compound semiconductor Al-
InGaP.

Figure 6.11 shows the schematic structure of a typical LED. On applying a voltage
in the forward direction, photons are generated at the p-n junction by recombining
carriers. The direction of the generated photons is statistically distributed, which re-
sults in the fact that not all photons are coupled out at the surface of the semicon-
ductor crystal. The efficiency of a standard LED is thus only 2-4 %. It is possible to
considerably increase the external efficiency of LEDs by means of suitable structur-
ing measures and suitable packaging. LEDs are often designed into reflectors, in
order to utilize the rays emitting at the side. Mirror structures at the backside of
LEDs are used to reflect the rays hitting the base of the substrate back to the sur-
face. The LED surface may be roughened or covered by a polymeric hood, which
results in higher out-coupling. If the necessary measures are taken, the external effi-
ciency reached today can amount to more than 20 %.

130 6: Physical Layer

Fig. 6.11: Schematic diagram of an LED

At a forward current of between 10 and 40 mA the optical power of an LED for ap-
plications in data communication is typically between 0.1 and 1 mW. It is often
characterized by the logarithmic unit dBm (related to 1 mW optical power) and is
calculated by way of the following equation:

dBm
mW1

log10

 mW

dBm

P
P (Equation 6.4)

The optical power of 1 mW thus corresponds to 0 dBm; the optical power of
0.5 mW amounts to -3 dBm, which is 3 dB less.

The modulation bandwidth of a commercially available LED amounts to a maxi-
mum of about 100 MHz. The bandwidth can be increased by changing the doping
concentration in the active layer. However, the output power is further decreased
due to the inserted impurities. Another possibility of increasing the bandwidth is
peaking, as it is called, where the driving current at the start of a data pulse is
raised, thus achieving a shorter rise time. However, complex control circuits are re-
quired for that purpose in order to be able to control the overshooting behavior. It
seems that bandwidth and efficiency cannot be optimized at the same time.

In the early 90s resonant cavity LEDs (RCLEDs) were introduced for the first time.
In RCLEDs the light-emitting active layer is embedded between a short resonator,
by which an increase of efficiency and modulation bandwidth can be achieved.
Components with both higher bandwidths and a higher output performance can thus
be realized. Due to their specific structure, the performance of RCLEDs is, how-
ever, more sensitive to temperature than the performance of LEDs, which must be
compensated for by a suitable driver. Recently manufacturers have started to offer
suitable driver-RCLED combinations [DS FCM110] which are designed for MOST
applications.

Due to their high efficiency and a modulation bandwidth of far more than 500 MHz,
red laser diodes would be well suited for PMMA networks. At present, however,
the admissible surrounding temperature of available red laser diodes is restricted to
ca. 70 °C, which would require a complex component cooling, if these diodes are
used.

6.4 Opto-Electronic Transceivers 131

6.4.2 PIN Photodiodes

Silicon-PIN photodiodes are used as cost-efficient receiver components for convert-
ing optical signals into electrical signals in a wavelength range of 400 nm to 1100
nm. Figure 6.12 shows the schematic structure of a PIN photodiode on the left side
and the responsivity RPh along the wavelength on the right side. The responsivity
increases virtually linearly from 0.32 A/W at 500 nm to 0.7 A/W at 900 nm. At
650 nm the responsivity is ca. 0.47 A/W. Large-area diodes are necessary for effi-
ciently converting light of PMMA fibers with a core diameter of 1 mm. A large re-
ceiver area, however, also means a high capacity, which in turn reduces the band-
width. With bandwidths of up to 100 MHz and photo diodes of 1 mm diameter a re-
ceiver sensitivity of less than -30 dBm can be achieved.

Fig. 6.12: Schematic diagram of a PIN photodiode and typical gradient of the responsivity
of a silicon photodiode

6.4.3 Transceiver Housing and Connectors

A couple of manufacturers have developed transceivers (Fiber Optic Transceiver,
FOT) with integrated opto-electronic components for MOST networks. Figure 6.13
shows an example of an LED transmitter and a PIN photodiode receiver for MOST.
The LED and the driver component, or the photodiode and the receiver amplifier as
the case may be, are attached onto a leadframe and encapsulated in a transparent
plastic material. Seven electrical connecting pins lead out of the plastic housing to
provide the contacts for current supply, differential data signals and other status or
control lines. The MOST Physical Layer Sub-Specification [MOST Phy150] de-
scribes this kind of package THM (Trough Hole Mount), because the opto-
electronic components are mounted through PCB holes. The handling of the THM
package is well known from the MOST25 technique and appropriate standard proc-
esses have been established at the component manufacturers.

132 6: Physical Layer

LED

LED Driver

Photodiode

PD Amplifier

Fig. 6.13: Transpar-
ently cast transmitter
and receiver elements
(source: Hamamatsu
Photonics)

The assignment of the individual electrical connecting pins is defined by the MOST
Specification. Figure 6.14 shows the used pin assignment. Both transmitter and re-
ceiver components each have supply connections (Vcc, with 3.3 V) and a ground
connection (GND). Besides the differential data input (Tx+ and Tx-) and data out-
put (Rx+ and Rx-), the Reset (\RST) pin at the transmitter allows to switch on and
off the optical output at a defined time during startup and shutdown to avoid optical
glitches. The status pin at the receiver is used to set the MOST Network Interface
Controller into a ready-to-receive state as soon as the receiver receives data signals.
Further information concerning the electric circuit of the components can be gath-
ered from the data sheet of the respective manufacturer.

Fig. 6.14: Typical pin assignment of
a THM packaged FOT

Since the introduction of the MOST150 technology, there is also an SMD packaged
transceiver available to be compatible with state-of-the-art assembly and soldering
processes. The SMD package shows better EMI performance, compared to the
THM package, and is basically qualified for even higher data rates up to the gigabit
region. Furthermore the use of the SMD technology results in more flexibility in the
supply chain, because it is no longer necessary to purchase the FOT together with
the connector and pigtail. The opto-electronic component can be ordered directly
from the FOT vendor with huge cost benefits.

 Figure 6.15 shows the pin assignment and a sample of a SMD packaged trans-
ceiver. The transceiver package is based on the SOIC (Small Outline Integrated
Circuit) standard. To contact the fiber in the vertical direction a special spring

6.4 Opto-Electronic Transceivers 133

mechanism is specified. The spring forces are defined to have both a soft plug-in for
the assembly and a sufficient holding force to confirm a stable connection of the fi-
ber.

Fig. 6.15: SMD transceiver
pinout and sample device
(source: Melexis).

For both the THM packaged transceiver and the SMD packaged transceiver, there
are device connectors available to offer the end user a standardized connector inter-
face for MOST. Figure 6.16 shows schematic drawings of device connectors, char-
acterized as 2+0 and 4+40.

Fig. 6.16: Schematic and exploded drawing of a MOST150 2+0 header connector (left) and
a MOST150 4+40 (right) header connector (source: Yazaki Corporation)

The designation indicates the number of optical and electrical contacts. The 2+0
connector, shown in the left hand side has two optical contacts (one for the trans-
mitter and one for the receiver), and no electrical contacts. The 2+0 header connec-
tor features a compact design to connect the THM packaged transceivers to the wir-
ing harness, as well as low costs. The 4+40 connector, shown in Figure 6.16 on the
right hand side has four optical contacts, and 40 electrical contacts. Between the
SMD packaged transceiver and the device connector a flexible pigtail is used. In the
case of the flexible pigtail, the FOTs are outside the actual connector housing of the
control device. This has the advantage that the active components can be randomly
placed on the circuit board of the control device. It is thus easy to place the FOTs

134 6: Physical Layer

near the MOST Network Interface Controller and at the same time avoid electro-
magnetic interference problems. The pigtail consists of a standard high temperature
polymer fiber with attached transceiver ferrules. A maximum insertion loss of 1.5
dB is allowed, including fiber attenuation, fiber mismatch and surface roughness. A
bending protector could be applied to the pigtail fiber to prevent a too low bending
radius

Fig. 6.17: Connector variants for
MOST interfaces
(source: Tyco Electronics)

Figure 6.17 shows an overview of typical standard interfaces for MOST. The as-
signment of the optical contacts is defined by the MOST standard, whereas the elec-
trical contacts can be defined by the end user as desired. The MOST standard only
defines the connector housing at the control device. The connector at the wire har-
ness is not part of the standard. Due to the nature of the wire harness connector,
however, a maximum permissible optical insertion attenuation of 2.5 dB is to be ob-
served. A detailed definition of the device connector geometry can be gathered from
the Interface-Drawings of the MOST Physical Layer Sub-Specification
[MOST Phy150]. Further requirements, such as the plug-in or unplug force are
typical of a specific end user and thus not part of the MOST standard. Apart from
the connector groups showed in figure 6.16, the MOST standard lists a 2+20 alter-
native.

The individual parts of a control device connector and a wire harness connector are
illustrated in example 6.18. The exploded drawing shows a 2+0 control device con-
nector and a 2+0 wire harness connector, where the fiber ferrules are connected in
an internal housing. As required, a bending protector for the polymer fiber can be
attached to the wire harness connector so that the minimum admissible bending ra-
dius of 25 mm is observed. The individual parts of the interfaces are sold separately
by most connector manufacturers. Wire harness connectors with optional line
lengths can thus easily be produced by the users themselves. If it needs repair, the
wire harness connector can be disassembled into its individual parts with little ef-
fort.

6.5 System Considerations for the MOST Physical Layer 135

Fig. 6.18: Exploded drawing of a 2+0 connector housing with wire harness connector
(source: Yazaki Corporation)

6.5 System Considerations for the MOST Physical Layer
This section describes the electrical and optical parameters and requirements of the
physical bus layer. Before explaining the exact specification parameters, a number
of basic parameter definitions are stated. The section will be concluded by consider-
ing power budget and timing.

6.5.1 Basic Principles of Electrical and Optical Parameters

Data Rate and Coding

The data rate of MOST150 systems results from the product of the frame size (BPF,
bits per frame) of 3072 bits and the frame rate (Fs, frame synchronization). At the
typically used sampling rate 48 kHz, the required bit rate is 147.56 Mbit/s. The
pulse length UI (unit interval), which is used as the basic pulse length unit, is de-
fined as the half bit transfer time and can be calculated with the equation 6.5:

.
2

1

BPFFs
UI

 (Equation 6.5)

At a frame rate Fs = 48 kHz and the number of bits per frame (BPF = 3072), one
unit interval is 3.391 ns. The MOST150 encoding is according to a DC adaptive
coding (DCA). The DCA coding compensates DC offsets by limiting the accumu-
lated DC offset contained in the data. Five different symbol lengths are defined,
while the shortest pulse is 2 UI and the longest 6 UI. Depending on the data content
there are 2, 3, 4, 5, and 6 UI but never 1 UI pulses (see fig. 6.19). By avoiding the

136 6: Physical Layer

1 UI pulse length, the needed transmission bandwidth is reduced. The 6 UI pulses
only appear as preamble at the beginning of a new data frame and serve for syn-
chronization.

Fig. 6.19: Schematic view of the possible pulse length for MOST150

Figure 6.20 gives a schematic view of the influences of various effects which result
in a modification of the ideal rectangular pulse. The pulse width can differ slightly
from the 2, 3, 4, 5, and 6 UI widths. Due to variations of temperature, noise, nonlin-
earities of drivers, etc., duty cycle variations (pulse width variations) jitter (phase
distortions) is generated. The bandwidth of all components in the transmission sec-
tor limits the rise-time and fall-time of a pulse, and the control in driver and ampli-
fier components causes overshoot and undershoot in the signal.

The MOST Specification defines limit values for the maximum deviations from the
ideal signal at the interfaces SP1, SP2, SP3 and SP4 in order to reach an error rate
of less than 10 9. Since the time-critical signal parameters are influenced by many
factors, these effects will be described in detail in the following.

Timing Distortions

The MOST Specification combines the time-critical parameters under the generic
term timing distortions according to figure 6.21. The timing distortion alignment jit-
ter Aj and duty cycle are effects which are characteristic for a single link. They are

Fig. 6.20: Schematic diagram of
ideal and real pulse shapes

6.5 System Considerations for the MOST Physical Layer 137

relevant if the signal integrity at the specification points SP1, SP2, and SP4 is
measured with an eye diagram. The alignment jitter is the jitter relative to the re-
covered clock. In MOST150 systems, the alignment jitter is observed for a band-
width larger than 125 kHz, because the Phase-Locked Loop (PLL), used in the
MOST Network Interface Controller, is able to track and eliminate phase variations
up to this frequency. To measure alignment jitter, the MOST specification defines a
“Golden PLL” model, given in the form of a low-pass transfer function with a cut-
off frequency of 125 kHz. The timing distortions system clock deviation, wander
and transferred jitter Tj describe modifications in the timing which can propagate
over one or several active nodes. The accumulation of these timing distortions may
not hit the system margin for the Master Delay Tolerance (see section 6.5.4) and
therefore limits the maximum number of nodes in the network. Due to the low-pass
characteristic of a NIC, the jitter transfer in each node is bandwidth limited. Be-
cause of that, the NIC has an effect of a “Jitter Filter” and is able to eliminate jitter
at a frequency up to 200 kHz.

Fig. 6.21: Overview of the timing-distortions

The MOST25 Physical Layer Specification defined maximum values for each tim-
ing distortion by a separate parameter. However, this specification did not allow
sharing system reserve between different types of timing distortions. Furthermore,
low bandwidth distortions, which basically can be eliminated by PLL tracking,
made measurement results worse. For MOST150 systems, these issues have been
solved by using an eye diagram measurement and PLL triggering.

Eye Diagram and PLL Triggering

An eye diagram shows an overlay of all pulses a digital signal takes on during a bit
period (UI). The bit period is defined by the data clock, which is necessary to
measure the eye pattern. Usually an eye diagram is acquired by using a reference
clock as a trigger. If the reference clock is not available as a discrete signal, a
virtual reference clock can be recovered by using the PLL trigger method of a serial

138 6: Physical Layer

data analyzer. With each virtual trigger, the signal is sampled and stored in a
persistence map.

Fig. 6.22: Example of an eye diagram measurement, indicating the eye mask (left) and
definition of the transfer function for the Golden PLL and the Jitter Filter (right).

Figure 6.22 shows an example of an eye diagram on the left hand side, measured
with a PLL model according to the MOST150 “Golden PLL”, indicated on the right
hand side of Figure 6.22. The advantage of eye diagram measurement is that the
timing tolerances for all kinds of timing distortions are shared. That means good
duty cycle conditions allow more alignment jitter or low jitter allows more duty cy-
cle. The signal quality can be evaluated by comparing the acquired eye diagram
with an eye mask. The masks are keep out areas that shall not be touched by the
signal trace. For the eye diagram measurement, different masks for SP1, SP2, and
SP4 are specified. Figure 6.22 indicates the specification parameters Ax, Bx, … Fx
for the link quality measurement, with the index x = 1, 2, 4 according to the specifi-
cation point (SP) under investigation. To prevent exceeding the maximum voltage
levels at SP1 and SP4, further mask definitions with the parameters Gx and Hx have
to be considered. Details can be found in the Optical Physical Layer Sub-
Specification.

For a MOST system with several nodes, the transferred jitter is significant. Jitter
can be passed on from slave to slave and possibly become so high that the Net-
workMaster can no longer synchronize the MOST signal correctly due to the degra-
dation. It is therefore important for the entire system that the sum of all jitter and
delay effects does not exceed the Master Delay Tolerance, which is discussed in de-
tail in section 6.5.4. Figure 6.23 shows the procedure to measure transferred jitter.
After acquiring the waveform, the time-interval error (TIE) is calculated by the
phase deviations between the waveform and the best matching fix clock signal. The
TIE graph then is filtered with the low-pass Jitter Filter characteristic, given in Fig-
ure 6.22 on the right hand. The parameter transferred jitter Jtr finally is calculated as

6.5 System Considerations for the MOST Physical Layer 139

the root-mean-square sum of the filtered TIE graph. The edge frequency for the Jit-
ter filter is set to the highest expected PLL performance, to include the whole fre-
quency range that might be transferred trough a MOST node. For the acquisition of
the waveform, a scope with a deep memory of at least 10 Msamples is needed to
measure also the low bandwidth jitter portion. For example, with a memory depth
of 10 Msamples and a sampling rate of 10 Gsamples/s the maximum record length
is 1 ms. This record length allows measurements down to the frequency of 1 kHz.
The transferred jitter is specified as a RMS value for SP1, SP2 and SP4.

Fig. 6.23: Procedure to measure the transferred jitter Jtr

Optical Power

An important parameter for characterizing MOST components is the optical power
of a MOST transmitter (SP2) or the power to be coupled into a receiver (SP3). Fig-
ure 6.24 shows an optical pulse diagram and the corresponding definition of the op-
tical power levels. The average optical power is thus defined by the parameter PAV
(average power). The parameters optical high level b1 and optical low level b0 de-
scribe the levels of the 1 and 0 states. The level b0 is not equivalent to “light off”.
Due to the extinction ratio re = 10 log (b1/b0) dB, the specification indicates, how-
ever, the minimum ratio between the two levels. For MOST150 it is specified to
measure the b0 and the b1 level at the shoulder of 5 or 6 UI Pulses within a meas-
urement region between 2.5 and 4 UI, as shown in Fig 6.24.

140 6: Physical Layer

Fig. 6.24: Definition of the optical levels b1, b0 and PAV

Measurement Tools

For measuring the electrical signal parameters at SP1 and SP4, an active probe with
a high bandwidth (>1,5 GHz), a minimum input capacity and a maximum input re-
sistance is required, in order to prevent any distortion of the original signal. The op-
tical specification points SP2 and SP3 shall be evaluated with a high speed OEC
with a bandwidth >750 MHz and a photo diode with a large active area is required,
in order to capture enough light of the 1 mm PMMA fiber. In addition, the OEC
shall have a signal-to-noise ratio (SNR) better than 8:1. For measurements in the
field, the average optical power PAV is usually measured by a simple power measur-
ing device. Various manufacturers offer calibrated portable measuring devices for
that purpose. It has to be observed that only the optical power at SP2 and SP3 is
measured which is emitted at a diameter of 1 mm and within a numerical aperture
of 0.5. Further information on this matter can be gathered from the MOST150 oPhy
Compliance Measurement Guideline [ComPhyL 150].

6.5.2 Optical and Electrical Requirements

The MOST Physical Layer Sub-Specification [MOST Phy150] defines the required
parameters for all specification interfaces SP1, SP2, SP3 and SP4, in order to ensure
a reliable transmission of data. The automotive area demands that all parameters are
observed, even under the most unfavorable environmental conditions. The envi-
ronmental conditions to be considered are always specific to a particular end user.
Some car makers got together and developed a recommendation titled Automotive
Application Recommendation for optical MOST Components [MOST AARTHM],
[MOST AARSMD] for harmonizing the environmental requirements. Typical re-
quirements are a temperature range of -40 °C to 95 °C, a humidity resistance of up
to 85 % at 95 °C and mechanical robustness during an operation period of ca.
11,250 hours and a life cycle of 15 years. The required tests (temperature cycles,

6.5 System Considerations for the MOST Physical Layer 141

humidity cycles, mechanical impacts, EMC/EMI) for the qualification of a MOST
product are exactly defined in the application recommendations.

Electrical Specification at SP1

The signal levels at SP1 are defined by the LVDS standard. The transmission is
based on differential signaling, to avoid electromagnetic interference. The signal
has to fulfill all required parameters like alignment jitter, transfer jitter and the am-
plitude values. In addition, a new circuitry is defined for MOST150 to achieve a
well-regulated startup and shutdown procedure.

Optical Specification at SP2

The peak wavelength of 650 nm corresponds to the attenuation minimum of PMMA
fibers in the red wavelength range. Due to the fact that the attenuation of PMMA fi-
bers rises below and above 650 nm, the admissible wavelength range is restricted to
between 630 nm and 685 nm. For the same reason, the width of the spectrum is re-
stricted to 30 nm (FWHM).

The optical spectrum for a Gaussian distribution is defined via the peak wavelength
and the width FWHM. This definition is not suited for asymmetrical spectra, as no
clear peak wavelength can be defined. Figure 6.25 compares the symmetrical wave-
length spectrum of an LED to an asymmetrical spectrum. Asymmetrical spectra are
evaluated by an alternative definition via the central wavelength λc2 and the spectral
width (RMS) σλ2. The central wavelength and the spectral width can be calculated
from a measured spectrum. The center wavelength is calculated from:

i
i

i
ii

c P

P
 2 (i=500 nm…800 nm, i1 nm) (Equation 6.6)

where Pi is the optical power at a specific wavelength λi. The spectral width is cal-
culated from the following equation:

i
i

i
cii

P

P 2
2

2

)(
 (i=500 nm…800 nm, i1 nm) (Equation 6.7)

For a sufficiently exact measurement, the spectrometer used must have a signal-to-
noise ratio of at least 200:1 and a resolution of less than 1 nm. In addition, the spec-
trum in the entire wavelength range from 500 nm to 800 nm is to be evaluated, as

142 6: Physical Layer

the determination of the center wavelength and the spectral width becomes other-
wise too inexact.

Fig. 6.25: Gaussian spectrum (con-
tinuous line) and asymmetrical spec-
trum (broken line) of light-emitting
diodes

The optical power at SP2 is specified between -8.5 dBm and -1.5 dBm. The lower
limit may not be less, so to ensure data recovering at the receiver. The upper limit is
defined in order to avoid overload or blinding the receiver. The parameter POFF2 of -
50 dBm defines the maximum admissible power level for the light off state. It is
necessary to observe this level in order to be able to reliably switch off a subsequent
receiver. Even if no more optical alternating signals are transmitted, some receiver
components react to a minimal amount of d.c. light and prevent the switch-off pro-
cedure (sleep-mode) of the MOST bus. The extinction ratio must be at least 10 dB
so that the responsivity of the receiver is not impaired.

The other timing parameters (transition, alignment, and transfer jitter) are slightly
relaxed compared to the specification at SP1, giving margin for slight distortions
during the electro-optical transformation. Additional definitions at SP2 are given by
the parameters positive overshoot, negative overshoot and high-level signal ripple.
These parameters limit the amount of overshoot in the optical signal. For a graphi-
cal summary of these parameters, refer to the figure in [MOST Phy150].

Optical Specification at SP3

The definition of the optical spectrum remains unchanged compared to SP2. The
dynamic range of the link is indicated by the parameter Popt3 ranging from -22 dBm
to -2 dBm.

For the optical data bus system with a data rate of around 150 Mbit/s, the bandwidth
limitation of the polymer optical fiber, discussed in section 6.2.1 Basic Principles
becomes considerable. The bandwidth limitation results in variations of the optical
signal in vertical (amplitude) and horizontal (pulse width) direction. The MOST
Physical Layer Working Group conduct some research to determine the polymer fi-
ber transfer function. The detailed analysis comes to the result that with a maximum

6.5 System Considerations for the MOST Physical Layer 143

link length of 15 m and a full launched fiber the -3 dB cut-off frequency is about 90
MHz [MOST AppTF]. The highest frequency of a MOST150 data pattern is 75
MHz. Therefore the system is close to the bandwidth limit but can fulfill the re-
quired signal integrity if the link length does not exceed 15 to 20 m. The worst case
input signal at SP3 can be calculated by the convolution of the worst case signal at
SP2 and the POF transfer function with a given link length and launch condition.

Electrical Specification at SP4

Similar to the specification point SP1, the electrical levels correspond to the LVDS
standard. The eye diagram of a measured electrical signal must not hit the keep out
area of the defined mask, indicating the allowed jitter and the LVDS voltage level.
These criteria allow evaluating the link quality, which describes the performance of
a single link without any system aspect. For a complete system characterization the
SP4 receiver tolerance has to be considered. The applied eye mask for defining the
receiver tolerance is much smaller than the link quality eye mask, taking the accu-
mulation of jitter at each node in the network into account.

Fig. 6.26: Power budget of an optical MOST system between SP2 and SP3

6.5.3 Power Budget

The minimum permitted transmit power at SP2 and the receiver responsivity at SP3
determine the available optical power budget. Figure 6.26 shows the power budget
between the two interfaces SP2 and SP3. According to the illustration, a power
margin of 13.5 dB is calculated. Due to the fact that the insertion attenuation of
MOST connectors at the interfaces SP2 and SP3 of the control devices is 2.5 dB
each, the margin available for the wire harness is reduced to 8.5 dB.

The attenuation of the entire optical connection between two control devices must
not exceed the wire harness reserve of 8.5 dB. Attenuations on the transmission link
result from fiber attenuation, inline connectors and possibly from bending and age-
ing losses.

144 6: Physical Layer

Fig. 6.27: (a): Spectral attenuation of a PMMA POF and spectral output power of a red LED
at varying temperatures
(b): Effective fiber attenuation depending on the center wavelength. The spectral width of
the transmit source is l = 30 nm.

As already mentioned in section 6.2.2, the fiber attenuation of a PMMA fiber is
0.14 dB/m at a wavelength of 650 nm. Both, the temperature dependent output
power and emission spectrum of LEDs, however, strongly influence the power
budget of the transmission system. Figure 6.27 on the left shows a detail of the at-
tenuation spectrum of a PMMA fiber between 600 nm and 700 nm and the emission
spectrum of a red LED at varying temperatures. The illustration clearly shows that a
higher attenuation than at the minimum at 650 nm is applied to a large part of the
LED. Apart from that, the optical power decreases with increasing temperature, the
center wavelength drifts to higher wavelengths with 0.16 nm/K and the spectral
width increases. Due to this wavelength drift a higher effective fiber attenuation αeff
must be assumed for the system consideration, according to the equation

 d

P

P
eff

)(

)()(
 (Equation 6.8)

Figure 6.27 shows on the right the effective fiber attenuation of a PMMA fiber cal-
culated from the above equation depending on the center wavelength, calculated for
an LED with a spectral width of 30 nm. The effective attenuation amounts up to
0.35 dB/m.

Note: If an additional increase in attenuation due to ageing is taken into account,
the resulting effective attenuation of a PMMA fiber is up to 0.4 dB/m. This value
must be used for power budget considerations.

At an effective fiber attenuation of 0.4 dB/m and insertion losses of the individual
inline fiber connectors of 2 dB at the most, different wire harness concepts and their

6.5 System Considerations for the MOST Physical Layer 145

feasibility, as well as operational reliability including system reserves for assem-
bling, bending, and ageing losses can be calculated.

6.5.4 Timing Requirements

In section 6.5.1 and 6.5.2, the timing requirements for the nodes of a MOST system
were described. Compliance with the specified values at SP1, SP2, SP3 and SP4
link quality (LQ) allows the proper operation of an individual point-to-point con-
nection. Table 6.1 shows the specified timing parameters at a bit rate of 147.456
Mbit/s (1UI = 3.39 ns). The highest percentage of phase variation and jitter is
caused by the OEC at the receiver interface between SP3 and SP4. The link-level
tests use a pattern generator as a signal source. The pattern generator has to provide
a test signal according to the MOST150 test pattern, which can be downloaded as a
supplement file to the Optical Physical Layer Sub-Specification. To prevent a modi-
fication of the test pattern, the Network Interface Controller has to be set in the re-
timed bypass mode, which deactivates the scrambling mechanism.

Parameters SP1 SP2 SP3 SP4 (LQ) SP4 (RT)

Alignment Jitter 0.15 UI 0.3 UI - 0.55 UI 0.6 UI
Transfer Jitter 50 psRMS 112 psRMS - 230 psRMS -

Table 6.1: Specific timing parameters at SP1, SP2, SP3 and SP4 link quality (LQ) and re-
ceiver tolerance (RT) at a bit rate of 147.456 Mbit/s

Additional to the link quality specification parameters, a limit for the SP4 Receiver
Tolerance (RT) is specified. The SP4 Receiver Tolerance describes the minimum
Alignment Jitter tolerance of a NIC and the maximum tolerable alignment jitter that
may occur in any place in the network. The SP4 Receiver Tolerance is measured
with a system-level test, which uses live data from a fully formed MOST150 ring.
Using the same eye diagram methodologies developed in section 6.5.1, a measure-
ment is taken at SP4 of any node in the ring. By taking the measurement in this
way, one can quantify the total jitter accumulation at every position of the ring. This
measurement is applicable for every node in the network at SP4.

The timing parameters of real components are, besides the variance due to produc-
tion, significantly influenced by the received light power at SP3 and the surround-
ing temperature of the opto-electronic transceiver. Figure 6.28 shows an example of
a typical gradient of the timing parameter alignment jitter, depending on the optical
power at SP3 at room temperature. In the example given, alignment jitter is quite
low in middle optical power range. Getting closer to the specification limit, the jitter
increases and the eye closes.

146 6: Physical Layer

Fig. 6.28: Typical gradient of the align-
ment jitter at SP4 depending on the light
power at SP3

In order to ensure that the entire system consisting of several nodes can operate
without errors, the sum of all jitter and delay effects must also be taken into consid-
eration. In terms of the MOST Specification, these effects are described as system
delay. The system delay can possibly accumulate to such an extent at the slave
nodes in the ring that the TimingMaster can no longer correctly synchronize to the
incoming signal. The range in which the TimingMaster can correctly process the in-
coming signal is called the Master Delay Tolerance. The Master Delay Tolerance is
a property of the MOST Network Interface Controller in TimingMaster mode and is
listed in its data specification. The maximum value is defined in the Physical Layer
Sub-Specification with 0.5/Fs. The Master Delay Tolerance of the MOST Network
Interface Controller used as TimingMaster can influence the maximum admissible
number of nodes in a MOST system. The MOST Physical Layer Sub-Specification
[MOST Phy150] defines a maximum node number of N = 20 which is sufficient in
the automotive area.

The total Master Delay Tolerance (TMDT) is calculated from the formula:

)(...

...)()()()(

1

2

1

1

1

m

n
TJMediumD

m

n
W

m

n
DTxDRxDMDT

ntt

ntntMastertMastertT

 (Equa-

tion 6.9)

The value m indicates the number of nodes in the MOST system, tD(n) the delay per
node (caused by the INIC, transmitter, receiver, and medium), tW(n) the wander
(phase drift) per node and link and tTJ(n) the transfer jitter per node. The exact ex-
tent of the individual delay values depends on the system and is influenced by the
length of the wiring, the characteristics of various transceivers and the working
temperature. To evaluate the maximum delay, it is thus necessary to exactly analyze
the system under realistic conditions.

6.6 Alternative Transmission Media 147

Figure 6.29 shows an example of a system with three nodes and the position of the
definition points of the individual jitter parts. According to the specification, each
point-to-point connection causes a maximum transferred jitter of 230 ps and a
maximum alignment jitter of 0.6 UI at SP4 of each node. After the signal of the
TimingMaster in the first slave has been transmitted via the PLL to the SP1 inter-
face, the transferred jitter is reduced according to the PLL filter characteristics
(<230 ps). The jitter at SP1 of the second slave is made up of the accumulated part
of the first and the second slave. Up to the interface SP4 of the TimingMaster, the
jitter of the last link finally contributes to the total jitter, system delay respectively.

Fig. 6.29: Position of the measuring points for the Master Delay Tolerance TMDT

To measure the Master Delay Tolerance, a scope is connected to SP1 and SP4 of
the master device in the ring, as indicated in Figure 6.29. The MOST150 data
stream contains a period of 10 UI at the start of each frame. This long period can be
used as a marker to measure the delay between any two points in the network. By
capturing at least one frame, the Master Delay Tolerance can be measured. The
measured value must not exceed the specified limit of 10 µs, if the sample rate is
48 kHz.

6.6 Alternative Transmission Media
After the introduction of the MOST system with PMMA fibers as transmission me-
dium, the Physical Layer has been continuously enhanced over the last few years.
The main focus of this task was on the development of alternative electrical and op-
tical transmission media for MOST systems with higher data rates

148 6: Physical Layer

At the present time, optical data buses on the basis of 1 mm plastic fibers and LEDs
in the red wavelength range are the most cost-efficient technology for point-to-point
connections in the vehicle interior. Due to higher demands on the networking in ve-
hicles, alternative optical and electrical transmission technologies have been further
developed in the last few years for future network generations. The corresponding
specifications are being worked on in the MOST working group aoPhy. The follow-
ing sections will introduce these technologies.

Optical Physical Bus Layer with Laser Diodes and PCS Fibers

The operational limits of the PMMA/LED-based connections are determined by the
limited system margin of 13 dB, the temperature range limited to 85 °C and the lim-
ited bandwidth of ca. 100 to 200 Mbit/s. The solution to these limitations is the use
of a 200 µm glass fiber with optical polymer cladding (Polymer Clad Silica, PCS),
which is distinguished by a low fiber attenuation and a temperature resistance of up
to 125 °C. Having a core diameter of 200 µm, the fibers are flexible enough to al-
low a minimum bending radius of less than 10 mm for a life cycle of 20 years in
automotive surroundings. In combination with vertically emitting laser diodes (ver-
tical cavity surface emitting laser, VCSEL) the system margin and the bandwidth
can be increased.

Fig. 6.30: (a): Schematic diagram of the cable structure of a PCS fiber and
(b): PCS fiber with ferrule

Figure 6.30 on the left shows the cable structure of a PCS fiber for automotive
applications. The fiber consists of a fused silica core with a diameter of 200 µm
which is surrounded by a 15 µm optical polymer cladding. Having a core refractive
index of 1.453 and a cladding refractive index of 1.405, the resulting aperture of the
PCS fiber is 0.37. As in the PMMA fiber, the optical fiber is surrounded by a black
buffer, in order to allow assembly of the fiber by means of laser welding. Figure
6.30 on the right shows a PCS fiber where the cladding has been removed and an
assembled PCS fiber. Due to the fact that PCS fibers have a small core diameter,

6.6 Alternative Transmission Media 149

there are higher demands on the tolerance at the fiber contacting points. It is,
however, possible to produce suitable ferrules using common injection molding
procedures. Conventional cleaving procedures, where the fiber is subjected to
tension and laterally scored, can be used for processing the fiber end face. This
results in a flat end face with high surface quality at the point of rupture.
Alternatively, the fiber end face can be processed by means of a CO2 laser.

Figure 6.31 shows the typical attenuation spectrum of a PCS fiber. The attenuation
in the wavelength range from 530 nm to 1100 nm is less than 20 dB/km and thus
smaller by about an order of magnitude than the minimum attenuation of POF at
140 dB/km at 650 nm.

Fig. 6.31: Typical attenuation
spectrum of a PCS fiber with
200 µm core diameter

Due to the attenuation minimum of PCS fibers at 850 nm, vertical emitters
(VCSEL) on a GaAs basis are suited as transmitter elements. They can be modu-
lated up to the GHz range (see fig. 6.32). In the data-com area VCSELs are wide-
spread for short-range connections and are used for Gigabit Ethernet, for example,
up to a transmission distance of more than 200 m via multi-mode optical fibers.
VCSELs combine the advantages of LEDs and edge-emitting laser diodes and are
distinguished by low production costs, testability at the wafer level and a simple
structural design, similar to the one of LEDs. The circularly symmetrical beam pro-
file, the small beam width and the low divergence permit a high coupling efficiency
in combination with PCS fibers. VCSELs have low threshold currents, a high effi-
ciency, and a high modulation bandwidth of far more than 1 Gbit/s and can be con-
trolled by simple driver circuits. The reliability of VCSEL components has been
proven in several studies. At temperatures of up to 125 °C, a lifetime of 10,000
hours can be reached.

150 6: Physical Layer

Fig. 6.32: Schematic diagram of a vertical
cavity surface emitting laser diode (left)
and typical characteristic curve of a VCSEL
at 850 nm (right)

When a PCS fiber-based connection is used, the power budget can be increased
from 13.5 dB to 18 dB compared to a PMMA fiber-based network. This is illus-
trated in table 6.2. By means of a temperature-compensated VCSEL, a minimum
output power of -9 dBm with a simultaneous maximum output power of -1.5 dBm
for the laser category 1 can be obtained. The power budget is thus increased by
1 dB compared to present PMMA connections. The sensitivity of receivers with an
active surface of ca. 200 µm is at least -27 dBm, which increases the power budget
by additional 4 dB. The fiber attenuation of a PCS fiber is insignificant for the fiber
lengths that are commonly used.

Parameters PMMA/LED System PCS/VCSEL System

Max. output power -1.5 dBm -1.5 dBm
Min. output power -8.5 dBm -9 dBm
Sensitivity of receivers -22 dB -27 dBm
Power budget 13.5 dB 18 dB

Fiber attenuation 0.4 dB/m 0.02 dB/m
Connector interface loss 2.5 dB 2.5 dB
Inline connector interface loss 2 dB 2 dB

Table 6.2: Comparison between the power budget of a POF-LED system and a PCS-VCSEL
system

Since the power budget and the temperature resistance in PCS-VCSEL systems is
higher than in POF-LED systems, the existing limitations when installing the cables
can be bypassed. At least two additional plug-in connectors can be inserted between
two control devices in order to simplify installation of the wire harness.

A physical layer specification for the data rate of 25 Mbit/s is already available for
the PCS-VCSEL technology [MOST BaPhy]. For this purpose, some manufacturers
have developed prototypes of FOTs with integrated VCSEL components and photo
diodes for 200 µm fibers. Figure 6.33 shows the prototype of a transmitter with

6.6 Alternative Transmission Media 151

integrated VCSEL and laser driver. The components are encapsulated in a plastic
housing to implement a simple and low-cost package. The figure also shows
different versions of MOST transceivers of the 2+0, 2+4 and 2+40 type.

Fig. 6.33: VCSEL transmitter and driver in injection-molded housing (source: Finisar Ad-
vanced Optical Components Division) and modified MOST transceiver with VCSEL transmit-
ter for PCS fibers (source: Yazaki Corporation)

At present, PCS-VCSEL systems are not yet being used in vehicles due to higher
mechanical tolerance demands on the components and resulting higher system
costs. This technology will only become commonly used when the demands on data
rates or the power budget increase to such an extent that the LED-POF technology
comes up against its physical limits.

Fig. 6.34: Schematic diagram of an electrical MOST connection

Electrical Physical Bus Layer at 50 Mbit/s

As an alternative solution to optical systems, electrical transmission technologies
for MOST at a data rate of 50 Mbit/s are presently being developed. The motivation
for these endeavors is the desire to use existing electrical wiring technologies and to
save costs as compared to optical connections. Due to the lower electro-magnetic
compatibility, however, electrical data lines must be shielded. Otherwise, complex
driver circuits are required to meet the respective EMC demands. Both measures, in

152 6: Physical Layer

turn, increase the system costs. The advantage of lower costs thus mainly depends
on the EMC requirements or the expense for EMC protection for “worst case” con-
ditions.

The physical bus layer for electrical transmission consists of a twisted-pair wire for
transmitting a differential signal in combination with suitable transmitters (or trans-
formers) forming the interface between transmission medium and MOST Network
Interface Controller. Following the specification of the optical physical bus layer,
the specification points of the electrical physical bus layer are referred to as SP1E,
SP2E, SP3E and SP4E (see fig. 6.34).

The electrical specification parameters are basically predetermined by the signal
amplitude and the common mode voltage at a given load resistance and load capaci-
tance. In addition, the electrical signals, as in the optical transmission technology,
must meet specified timing requirements (maximum pulse width distortion and
phase variations). The electrical signals can be evaluated using an eye diagram.
Figure 6.35 shows an example of an eye diagram of an electrical signal and the pat-
tern of a test mask. The electrical Physical Layer Specification [MOST ePhy] speci-
fies a particular test mask and the parameters level 1, level 2 and the points A to D
of the trapezoid for all interfaces SP1E, SP2E, SP3E, and SP4E.

Fig. 6.36: Test circuit board with transmitter (left, source: SMSC Europe) and comparison
between shielded and unshielded electrical transmission media (right)

Fig. 6.35: Eye diagram of an electrical
MOST signal with test mask

6.6 Alternative Transmission Media 153

Fig. 6.36 shows on the left an example of a test circuit board with a network con-
troller (NIC), a MOST transformer and a connection socket for transmitters
(TX+/TX-), receivers (RX+/RX-) and connections for the shielding. On the right,
different electrical transmission media are shown. Unshielded (unshielded twisted
pair, UTP) and shielded (shielded twisted pair, STP) wires can be used for connec-
tion. It depends on the desired line length, the EMC requirements and the transmis-
sion properties of the used transformers, which suitable medium is selected.

Electrical Physical Bus Layer, based on Coax Line Drivers

A new approach for the electrical physical layer is to transmit the data over coax
cables in combination with coax line drivers. The idea is to replace the opto-
electronic converter by a line driver and the use of standard connector and standard
coax cable that are well known and established in the automotive area. Fig. 6.37
shows an example of the cable and connector.

Fig. 6.38: Schematic of an electrical transmission line, indicating the compensation of the
cable attenuation by an equalizer (source: Eqcologic)

Fig. 6.37: Example of a coax cable
and coax connector

154 6: Physical Layer

The main innovations of the system are the possibility to transmit in both directions
and to provide the power supply with the same cable. This gives MOST the oppor-
tunity to expand in other domains like in assistance systems where cameras have to
be integrated with small connectors due to limited installation space. To overcome
the bandwidth limitation of coax cables, it is essential to use an equalizer at the re-
ceiver side (see fig. 6.38). With an equalizer, the attenuation in the high frequency
domain of the cable is compensated. It is useful to regulate the gain by an adaptive
equalizer to compensate variations of the cable attenuation due to different cable
quality and length. The physical layer working group is presently specifying this
technology and will release both, an adapted basic specification and a new Electri-
cal Physical Layer Sub-Specification. The system requirements concerning EMI
and immunity against different ground levels are also considered in this context.

155

7 Network and Fault Management
The MOST System comprises several master functionalities, each of which is only
allowed once in the system. They were already discussed in chapter 2. The follow-
ing chapter goes into detail regarding the NetworkMaster – responsible for the net-
work management. The NetworkMaster is the device which contains the function
block NetworkMaster. All other devices in the MOST network are referred to as
Slave devices or Slave components. The system is initialized by the Slave compo-
nents exchanging information with the NetworkMaster during the start-up.

7.1 System Initialization
After wake-up, the NetworkMaster first of all builds up the communicative relations
to the Slave components via a system scan. After successful system initialization,
the communicative relations between the individual Slave components are estab-
lished.

7.1.1 System Query

If there is a stable lock, the NetworkMaster starts querying all nodes present about
their function blocks. It addresses each node position address. The Network and the
TimingMaster reside in the same node. The TimingMaster is always the node zero
in the ring, i.e., it has the node position address 0x400 and the logical address
0x100.

The queried node informs the NetworkMaster about its stored logical node address
and the function blocks ready for communication:

0x01000x0401: NetBlock.01.FBlockIDs.Get ()

0x01010x0100: NetBlock.01.FBlockIDs.Status (FBlockIDList)

The NetworkMaster can read the information about the number of nodes in the sys-
tem from the maximum position register (MPR) of its NIC. From the answer, the
NetworkMaster can extract the following information about the queried node:

 Node position and logical address of the node (more details in section 5.7)

 Function blocks, which are supported by the node (FBlockIDList)

 InstanceID of the respective function block

156 7: Network and Fault Management

With the NetBlock (FBlockID 0x01), each MOST node has at least one FBlock;
usually, several additional application FBlocks are implemented. The NetBlock is,
however, not transmitted in the FBlockIDList.

7.1.2 Central Registry

The NetworkMaster stores the information obtained by querying the node in the
Central Registry. It is filled with the logical addresses and the corresponding func-
tion blocks of all nodes; not, however, with the node position address. The Central
Registry is thus a logical map of the system and persists to the end of the system
run. Figure 7.1 shows the query sequence for filling the Central Registry.

Amplifier

Network/Timing
Master

CD
Changer

FBlockIDList
0x400 0x100 NetworkMaster

0x401 0x101 CD Changer
0x402 0x102 Amplifier

CENTRAL REGISTRY

node pos. 0x400
log. 0x100

node pos. 0x402
log. 0x102

node pos. 0x401
log. 0x101

Node pos.
 Addr. Log. Addr.

0x100->0x401:NetBlock.01.FBlockIDs.Get()

0x101->0x100:NetBlock.01.FBlockIDs.Status(CD Changer)

Fig. 7.1: Illustration of the query sequence and filling of the Central Registry

As soon as valid System State OK is entered, the stored information is available for
all participants in the ring. The NetworkMaster can then compare with a previously
stored registry and detect possible changes of the current network configuration. A
stored registry can possibly be a stored Central Registry of the last system run or a
registry pre-specified at the car assembly end of line test.

Network Status

The System State is distributed throughout the system by the NetworkMaster on the
protocol level by means of the message
 NetworkMaster.01.Configuration.Status

7.1 System Initialization 157

It indicates the current status of the system at any time and is sent as a broadcast
message to all nodes in the MOST system by the NetworkMaster.

System State OK

The Central Registry is valid, the NetworkMaster sends the message Configura-
tion.Status(Ok). The reception of this status message means for all nodes that
the Central Registry can be queried. The Slave components can then establish their
communicative relations with each other.

System State NotOK

If the current Central Registry does not match a stored registry, or if there is a sys-
tem conflict, all communicative relations are aborted using the message
Configuration.Status(NotOK) by the NetworkMaster and a system scan is
initiated (see section 7.1.4).

The System State remains at NotOK until an OK message is sent off.

Configuration.Status (NewExt)

The notification of the function block signalizes the readiness of the underlying ap-
plication to communicate. In some cases applications require more start-up time to
avoid confusion with notification. This is mostly the case with complex applica-
tions.

A node that wants to register additional new function blocks after the Configura-
tion.Status(OK) was sent, must do so separately by way of the following mes-
sage:

0x1xx0x100 NetBlock.xx.FBlockIDs.Status (FBlockIDList)

The NetworkMaster compares the newly registered function blocks to the ones
stored in its Central Registry. If new function blocks were added, this is broadcast
throughout the system via the message Configuration.Status(NewExt,
FBlockIDList).

This message can only be sent in the OK System State. The System State remains in
OK.

The case is different if there is an additional node participating in the system. The
NetworkMaster then queries all nodes about their function blocks again. It can thus
identify the new node and ascertain the node address. This is the big advantage of
dynamic address allocation (see section 7.1.4). If a new node is added in the middle
of the ring, there is no system conflict if the new node has a free and unused logical
address.

158 7: Network and Fault Management

Configuration.Status (Invalid)

Apart from late registration of function blocks, a device can also deregister its ap-
plication or function block. There might also be an unexpected problem within the
device so that the entire node is no longer available in the system. For example, a
MOST device must close its electronic bypass for a certain period after an internal
reset.

If there is a change in the system to the effect that a node is no longer available (e.g.
due to a reset), the NetworkMaster starts querying all nodes in the system about
their function blocks. By comparing the result with the Central Registry, it can eas-
ily detect the dropped-out node. This is then broadcast throughout the system using
the message:
Configuration.Status (Invalid, FBlockIDList).

This message can only be sent in the OK System State. The System State remains in
OK.

After function blocks have dropped out, the communication partners of the function
block concerned must update their Notification Matrix (see section 7.2) accord-
ingly, i.e., they must cancel the dropped out function block. The same applies to the
Decentral Registry, which is discussed in detail in section 7.2.

Amplifier

Network/Timing
Master

CD
Changer

0x400 0x100

0x402 0x101
0x401 0x102

CENTRAL REGISTRY

node pos. 0x400
log. 0x100

node pos. 0x402
log. 0x102

Node pos. 0x401
log. 0x101

Log. Addr.
Node pos.
 Addr. FBlockIDList

NetworkMaster
CD Changer
Amplifier

Fig. 7.2: Using the logical address for communicative relations. The Central Registry has
not changed compared to fig. 7.1.

7.1 System Initialization 159

7.1.3 Dynamic Addressing

The Central Registry only stores the logical, not the node position addresses. Both
types of addresses are decoupled from each other. The nodes get information via the
Central Registry about the addresses of function blocks that are found, in order to
establish direct communicative partnerships with each other. As only the logical ad-
dress is used for the direct communication between the Slave nodes, there is no cor-
relation with the actual node positions in the ring. If a node is added or dropped be-
tween the nodes of two communication partners, the logical address remains un-
changed, whereas the node position address of all following nodes is changed. The
communicative relation thus remains unchanged.

If the NetworkMaster receives registrations from a Slave node of the address
0xFFFF during the system run (not only during the initialization of the system),
there is a system conflict. The NetworkMaster aborts all other actions and broad-
casts Configuration.Status(NotOK). This causes all Slave nodes to discard
their stored logical address and to recalculate it according to

RxTxLog = 0x100 + Pos

7.1.4 Examples of System Starts

The following configuration is selected for the examples:

 Node Posi-
tion Address

Logical
Address

Function Block FBlock-ID

Node 0 0x400 0x100 NetworkMaster 0x01
Node 1 0x401 0x101 AudioDiskPlayer 0x31
Node 2 0x402 0x102 AudioAmplifier 0x22

1. The Central Registry did not change after the latest system run. The AudioDisk
Player registers late.

0x01000x0401: NetBlock.01.FBlockIDs.Get ()

0x01010x0100: NetBlock.01.FBlockIDs.Status ()

0x01000x0402: NetBlock.02.FBlockIDs.Get ()

0x01020x0100: NetBlock.02.FBlockIDs.Status (0x22,0x00)

0x01000x03C8: NetworkMaster.01.Configuration.Status (OK)

0x01010x0100: NetBlock.01FBlockIDs.Status (0x31,0x00)

0x01000x03C8: NetworkMaster.01.Configuration.Status(NewExt,

 0x22,0x00)

2. The AudioAmplifier was separated from the power supply for a considerable pe-
riod of time. It lost its logical address.

160 7: Network and Fault Management

0x01000x0401: NetBlock.01.FBlockIDs.Get ()

0x01010x0100: NetBlock.01.FBlockIDs.Status (0x31,0x00)

0x01000x0402: NetBlock.02.FBlockIDs.Get ()

0xFFFF0x0100: NetBlock.02.FBlockIDs.Status (0x22,0x00)

0x01000x03C8: NetworkMaster.01.Configuration.Status (NotOK)

0x01000x0401: NetBlock.01.FBlockIDs.Get ()

0x01010x0100: NetBlock.01.FBlockIDs.Status (0x31,0x00)

0x01000x0402: NetBlock.02.FBlockIDs.Get ()

0x01020x0100: NetBlock.02.FBlockIDs.Status (0x22,0x00)

0x01000x03C8: NetworkMaster.01.Configuration.Status (OK)

7.2 Notification

Decentral Registry

If the NetworkMaster sends out a Configuration.Status(OK), establishment of
communication between the Slave devices is started off. This is usually effected by
obtaining the logical address for each interesting function block from the compo-
nents at the NetworkMaster.

0x01010x0100: NetworkMaster.01.CentralRegistry.Get

 (FBlockID, InstID)

0x01000x0101: NetworkMaster.01.CentralRegistry.Status

 (FBlockInfoList)

Amplifier

Network/Timing
Master

CD
Changer

0x400 0x100

0x401 0x101
0x402 0x102

CENTRAL

REGISTRY

node pos. 0x400
log. 0x100

node pos. 0x402
log. 0x102

node pos. 0x401
log. 0x101

FBlockIDList
0x102 Amplifier

DECENTRAL REGISTRY

Node pos.
 Addr. Log. Addr.

Log. Addr.

FBlockIDList
NetworkMaster
CD Changer
Amplifier

Fig. 7.3: Configuration of the Decentral Registry from information of the Central Registry

7.2 Notification 161

This information is stored in the Decentral Registry, as it is called, in the respective
slave. The Decentral Registry facilitates the finding of communication partners, as it
locally stores the result of each search. When accessing the same communication
partner again, the Central Registry does not need to be contacted again. It remem-
bers the communication partners. The Decentral Registry and the Central Registry
may use the same syntax. Only the content is reduced to the information necessary
for the communication of the partner device. Figure 7.3 shows the sequence for the
configuration of the Decentral Registry. With the help of the Decentral Registry the
device can then communicate directly with the communication partner.

Notification Mechanism

In many cases devices must be informed of property changes in function blocks be-
longing to other devices. If this had to take place by a poll procedure, there would
be a heavy load on the bus. In order to prevent this, the mechanism of notification
was created. In the case of a property change, an event is sent to the devices that are
entered in the Notification Matrix. The Notification Matrix is a table, which is im-
plemented in the Network Service Layer II (section 9.3.3).

0x01010x0100: FBlock.InstID.Notification.Set (Control,

 DeviceID, FktID1, FktID2,…)

 FktID1 FktID2 FktID3

DeviceID1 x x

DeviceID2 x x

DeviceID3 x x

free

free

Example

A display unit (DeviceID 0x100) shall always display the current track number of
an AudioDiskPlayer. For this purpose, it sets notification for the function Track-
Position (FktID 0x202) of the AudioDiskPlayer and is automatically informed of
the new position at each track change. The following list shows the required control
messages. For further details, refer to the MOST Specification [MOST 3.0].

0x01000x0101: AudioDiskPlayer.01.Notification.Set (0x1,

0x100, 0x202)

0x01010x0100: AudioDiskPlayer.01.TrackPosition.Status (01)

0x01010x0100: AudioDiskPlayer.01.TrackPosition.Status (02)

:

0x01010x0100: AudioDiskPlayer.01.TrackPosition.Status (05)

:

162 7: Network and Fault Management

7.3 Power-Down
The shutdown of a MOST system is basically divided into two phases. In a prepara-
tory phase, the system participants are notified of the shutdown. In the second
phase, the system is actually shut down and proceeds to sleep mode. The phases are
referred to as initiation and execution of the shutdown. As in the case of the start-
up, the PowerMaster takes on the control function for the power-down.

Initiation of the Shutdown

Initiation of a shutdown is usually effected by an external event, such as locking
the door of the vehicle. This trigger event is transmitted to the PowerMaster by way
of a MOST message. The PowerMaster then starts initiating the shutdown with the
following broadcast message:

0x01000x03C8: NetBlock.00.ShutDown.Start (Query)

The system participants can then prepare for the sleep mode. If a device requires
ongoing communication and is not yet ready to fall asleep, it informs the Power-
Master:

0x01010x0100: NetBlock.01.ShutDown.Result(Suspend)

The PowerMaster waits for a certain period of time tWaitSuspend and then repeats its
query.

Execution of the Shutdown

If the PowerMaster did not receive any objections from the devices within the time
tWaitSuspend, it executes the shutdown by way of the following message:

0x01000x03C8: NetBlock.00.ShutDown.Start (Execute)

After that, the PowerMaster switches off its modulated signal within the time t Shut-

downWait (where t ShutdownWait = 2 sec usually). All subsequent nodes also switch off
their modulated signal, as soon as they have not received a light from the RX input.

7.4 Fault Types
This section differentiates in two kinds of faults: Network faults and device faults.

7.4 Fault Types 163

7.4.1 Network Faults

Ring Break

Normally, a device in a MOST system is woken by the reception of a modulated
signal at its RX input. As a consequence, it transmits a signal on its TX output. If a
TimingMaster transmits a signal on its TX output, it usually receives a signal on its
RX input within a defined time if all TimingSlaves are connected in a ring topol-
ogy. However, it is possible that the ring cannot be locked because of an inaccu-
rately connected component, a defect component or a broken cable. In this case, a
start-up for normal operation is not possible anymore.

Sudden Signal Off

If a device loses the signal at its RX input abruptly (i.e., without a previously initi-
ated shutdown procedure), it automatically switches to TimingMaster mode. After-
wards, it sets the Shutdown Flag in the administrative area of the transmitted MOST
frames in order to inform the other nodes about the coming shutdown. After trans-
mitting this signal within the time interval tSSO_ShutDown, it turns off the transmission
and stores the cause of the fault. Because the other nodes have detected the Shut-
down Flag, they do not store a fault event before also shutting down. Hence, a Sud-
den Signal Off leads to a shutdown of the whole MOST network.

Unlock and Critical Unlock

The loss of synchronization between the system clock of the TimingMaster and a
TimingSlave device is referred to as unlock. An unlock can have many reasons,
such as a faulty RX or TX component or insufficient signal intensity for detecting
the system clock. A differentiation is made between short and critical unlocks. A
short unlock is defined by the loss of synchronization for less than tUnlock (usually
less than 100 ms, typically 70 ms). A short unlock is compensated by the Timing-
Master regenerating the signal.

There is a critical unlock if the loss of synchronization takes longer than tUnlock. Ac-
cording to the behavior described in the paragraph “Sudden Signal Off”, the af-
fected device automatically switches to TimingMaster mode, transmits MOST
frames with an appropriate Shutdown Flag, stores the fault reason, and finally shuts
down.

Coding Errors

Coding errors have their reason in a violation of the coding scheme, e.g., due to
high signal attenuation based on a deformed cable. Because the nodes cannot
decode the received data, there is either delayed communication with many

164 7: Network and Fault Management

retransmissions, or even data loss. A massive occurrence of Coding errors can lead
to an Unlock, a Critical Unlock or a Sudden Signal Off.

7.4.2 Device Faults caused by Temperature and Voltage Viola-
tions

This section considers faults that occur if MOST devices are shut down to protect
them against malfunctions or permanent damage caused by temperature and voltage
violations.

Of course, in a system further device faults can occur. However, faults caused by
temperature and voltage violations are of particular importance for a MOST net-
work because the sudden shut down of a MOST device leads to a Sudden Signal
Off event. MOST provides special mechanisms that allow differentiating in Over-
Temperature, Undervoltage and Overvoltage faults and special handling of them.

Over-Temperature

High demands are made on the vehicular devices as far as the temperature range is
concerned. Due to physical circumstances, the required operational temperature
cannot always be observed. Each participant in the ring therefore has the possibility
to initiate a temperature-related shutdown to protect all components. If a device ex-
ceeds its specified temperature Shutdown, it broadcasts the message Net-

Block.ShutDown.Result (Temperature Shutdown). If the critical tempera-
ture Critical is reached, the device initiates an immediate shutdown by simply
switching the modulated signal off. Because a PowerMaster has previously received
the temperature shutdown request, it waits a certain time for cooling down and af-
terwards it wakes up the system again.

In addition, a further kind of the temperature shutdown can be used: if the tempera-
ture AppOff is reached, it is optional to shut down only a part of the application (for
example an overheated drive). The remaining functionality can still be used. The
corresponding FBlock must be unregistered from the Central Registry.

Undervoltage

Undervoltage in the vehicle power system does not usually affect all devices at the
same time and to the same extent. There are thus two different undervoltage thresh-
olds:

 Critical Voltage UCritical: This undervoltage level is defined such that network
communication is still ensured, but not the complete function of an application.
The Network Service remains in the Normal Operation mode. Data is not sent
over streaming connections anymore. It means, a source must route zeros and a

7.4 Fault Types 165

sink must secure its output signals. The Mute property remains unchanged.
When the normal voltage has been reached, the data can be sent again.

 Low Voltage ULow: This undervoltage level is defined such that communication
of the network interfaces can no longer be ensured. If ULow is reached, the de-
vice switches off the modulated signal and switches to DevicePowerOff mode.
The device stays in DevicePowerOff mode, even if the supply voltage recovers.
It is awakened either by “modulated signal on” at its input or by the demand for
communication from its own application. It changes to mode DeviceNor-
malOperation via the standard initialization process.

Overvoltage or Super voltage

If the voltage exceeds super voltage (USuper), the device has to move in a safe opera-
tion state, which must be defined for each device individually. A typical value for
USuper is 16V.

166

167

8 Network Diagnostics
In this chapter, the handling of diagnostics in a MOST system is described. It con-
siders mechanisms for identifying network faults and for localizing their origins in
the network. These mechanisms are important especially in the automotive envi-
ronment because they reduce costs during system production and maintenance. Fi-
nally, the chapter considers faults that occur in MOST devices. Using a special
communication protocol (Diagnostics Adaptation Protocol, DAP) a diagnostics test
tool is able to read out the fault memories of MOST devices.

8.1 Network Fault Detection
MOST is able to handle several network fault types.

8.1.1 Ring Break Diagnosis

As a result of the ring break diagnosis (RBD), every device stores its node position
in relation to a ring break. This is possible if the device behind the ring break be-
comes the TimingMaster. It transmits a signal that contains the node position. Each
TimingSlave increments the received node position value. If no ring break is de-
tected, the original TimingMaster begins normal operation.

At first, an external trigger is applied to the device for starting the RBD. The trigger
event is system specific. For instance, it is possible that a system test on the Electri-
cal Control Line (see also section 8.1.4) executes the RBD.

Figure 8.1 shows exemplarily the RBD procedure.

The original TimingMaster of the example network is Node 0. Node 1, Node 2, and
Node 3 originally act as TimingSlaves. There is a ring break between Node 1 and
Node 2. At the beginning, each TimingSlave waits for activity on its RX input. A
node switches from TimingSlave mode to TimingMaster mode if it has not detected
any activity during the time interval tDiag_Signal. Therefore, Node 2 and Node 3 act as
TimingMaster after tDiag_Signal. Afterwards, Node 3 receives a signal from Node 2.
Therefore, Node 3 switches immediately back to the TimingSlave mode. After the
time interval T1 the original TimingMaster, Node 0, evaluates its RX input. Be-
cause it detects a signal but no stable lock, it recognizes that there is a second Tim-
ingMaster in front of it. Therefore, it switches from TimingMaster mode to Tim-
ingSlave mode. This procedure leads to an open chain beginning with a Timing-
Master (Node 2) and continuing with all other nodes as TimingSlaves (Node 3,
Node 0, and Node 1). The TimingMaster Node 2 transmits a signal containing the

168 8: Network Diagnostics

node position 0. Node 3 receives this signal and increments the node position. It
stores node position 1, and transmits a signal containing this new node position
value. The node position handling is continued by the following TimingSlaves.

Node
position

time

M
Receiving no signal
Sending own signal

S
Receiving signal
Sending signal

S
Receiving no signal
Sending no signal

S
Receiving no signal
Sending no signal

M
Receiving signal,
but no stable lock
Sending own signal

M
Receiving no signal
Sending own signal

S
Receiving signal
Sending signal

M
Receiving signal,
but no stable lock
Sending own signal

M
Receiving signal,
but no stable lock
Sending own signal

M
Receiving no signal
Sending own signal

S
Receiving signal
Sending signal

S
Receiving signal
Sending signal

S
Receiving signal
Sending signal

S
Receiving signal
Sending signal

M
Receiving no signal
Sending own signal

S
Receiving signal
Sending signal

tDiag_Signal T10

0

3

2Node
0

1

Node
1

Node
2

Node
3

Activation trigger

Fig. 8.1: Localization of the ring break

Finally, it is possible that the RBD result is delivered to a dedicated device. This
last step is optional and depends on the system solution.

8.1.2 Sudden Signal Off/Critical Unlock Detection

This function is new in the MOST Specification Rev. 3.0. If a node causes a Sudden
Signal Off (SSO) or a Critical Unlock (CU) event in NetInterface Normal Operation
mode, the succeeding node cannot receive a valid signal anymore. As a conse-
quence, this succeeding node switches to TimingMaster mode, sets the Shutdown
Flag in the administrative area of the transmitted MOST frames, stores the fault
cause and finally shuts down as already described in section 7.1.

The original TimingMaster cannot detect the Shutdown Flag. Therefore, it also de-
tects an SSO or a CU fault and stores it. This must be considered in an appropriate
fault evaluation.

8.1 Network Fault Detection 169

An evaluating device can use the MOST property NetBlock.ShutDownReason to
collect the locally stored fault information. When it has gathered the information
from all nodes, it broadcasts NetBlock.ShutDownReason.Set(0x00). After-
wards, all nodes delete the stored shutdown reason.

An evaluating device must apply an evaluation algorithm in order to detect the ori-
gin of the fault because it is possible that more than one node reports a fault:

 If a TimingSlave reports an SSO, an SSO fault is definitely in front of the Tim-
ingSlave. Because of fault propagation, it is possible that other nodes report
CUs. The evaluation algorithm should ignore them.

 If the TimingMaster reports an SSO and no TimingSlave reports an SSO or
CU, the SSO fault is definitely in front of the TimingMaster.

 In principle, there could be more than one CU report because of fault propaga-
tion in the MOST network. If no additional SSO is reported, the initial CU is in
front of the first TimingSlave that has reported the CU.

 If at least one TimingSlave reports an SSO or CU, the situation in front of the
TimingMaster is unclear. Therefore, the evaluation algorithm should ignore the
report of the TimingMaster.

8.1.3 Localizing the Origin of Coding Errors

The Network Service of each MOST node is able to count coding errors. They are
usually not counted during start-up or shutdown of the network but while the sys-
tem is normally operating. Furthermore, a node does not count coding errors if
unlocks, CUs, or SSOs occur. A node counts at maximum one coding error within a
system specific time interval.

A dedicated node can use the MOST property Diagnosis.CodingError to read
the coding error counter of each node. It detects the origin of a coding error fault di-
rectly in front of the node with the lowest node position that reports a number of
coding errors that is greater than a system specific threshold. The evaluating node
should ignore the coding error reports of succeeding nodes to compensate for fault
propagation.

8.1.4 Electrical Control Line

Some car manufacturers have decided to introduce the ECL (Electrical Control
Line) in addition to the MOST network in order to be able to detect network faults
even if the faulty MOST network prevents any communication. This new optional
feature is based on MOST Specification Rev. 3.0 and described in a separate

170 8: Network Diagnostics

document [ECL]. The ECL connects the MOST devices by additional cabling.
These connected devices are able to exchange information in an electrical, serial
and digital way via the ECL.

voltage

supply
voltage

C: Initiator triggers
start of system test

ground time

A: Initiator triggers
system test start impulse

H: Participant
declares
its activity

B: Device
start-up time
(e.g., 4000 ms)

D: Initiator triggers
RBD

E: Ring break diagnosis on
MOST network

F: Initiator triggers start
of response sequence

G: Each
participant
waits for its
time slot

I: Participant declares its
 RBD result

0 0 0 0 0 0

Fig. 8.2: Sequence of a system test

The idea is that a dedicated device uses the ECL in order to initiate the execution of
a so-called system test. A system test can include ring break diagnosis, SSO/CU
fault origin detection, or coding error counting. After finishing a system test, each
participating device sends its test result back to the initiator via the ECL.

Figure 8.2 depicts exemplarily the whole sequence of a system test.

In step A, the initiator device transmits a system test start impulse to all participat-
ing devices by pulling the voltage of the ECL down to ground for 200 ms. During
step B, there is no activity on the ECL. All participating devices have time to start
up. In step C, the initiator synchronizes all participating devices by transmitting an
impulse that identifies the start of the system test. To this end, it pulls the voltage
down to ground for 250 ms. At step D, the initiator triggers a system test by sending
an appropriate parameter sequence. Let the value “0” be defined by pulling voltage
to ground for 50 ms, and let value “1” be defined by leaving the ECL at supply
voltage for 50 ms, then the parameter sequence

 “0-0-0-0-0-0”defines an RBD test. If a participant detects a stable lock, it sends
“0” in its result time slot at step I; else, it sends “1”.

 “0-1-0-0-0-0” defines a coding errors test. If the detected number of coding er-
rors exceeds a system specific threshold, the participant sends “0” at step I;
else, it sends “1”.

 “1-0-0-0-0-0” defines an alive test. As shown in figure 8.2, there is a time slot
at step H for each participant to declare its general activity. For each system
test, an active participant sends “0” in this time slot. In case of an alive test, the
participant sends no further result at step I. An alive test can be applied for
checking the general availability of the devices.

8.2 Device Fault Diagnosis 171

 “1-1-0-0-0-0” defines an SSO/CU test. If a participant does not detect an SSO
or CU during the test, it sends “0” at step I; else, it sends “1”.

While executing the system test, all devices leave the ECL at supply voltage (see
step E). At step F, the initiator triggers the start of the response sequence by pulling
the voltage down to ground for 100 ms. This activity synchronizes all participating
devices. Afterwards, each participant must wait for its time slot (step G). Each de-
vice has been statically assigned its own time slot. This assignment is independent
of the MOST ring position. As already mentioned, a participant responds at step H
and step I.

8.2 Device Fault Diagnosis
This section introduces the Diagnostic Adaptation Protocol (DAP). It adapts a
communication protocol for vehicular diagnosis to the actual communication proto-
cols of MOST. This function is new in the MOST Specification Rev. 3.0; its use is
optional and is described in a separate document [DPA].

The basic concept for vehicle diagnosis is this: Diagnostic services reside in devices
in vehicles. A diagnostic test tool acts as client by requesting these services. This
way, a diagnostic test tool in a workshop can read, e.g., the trouble code of each de-
vice. Every fault occurrence in a device leads to a new trouble code entry in its fault
memory. A trouble code entails an appropriate instruction for an action by the
workshop staff.

Fig. 8.3: Protocol Stacks

For realizing the client/server communication, many protocols can be applied. For
instance, Unified Diagnostic Services (UDS) [ISO 14229] is often used for the pur-
pose of vehicular diagnosis.

MHP

MOST
Packet Data

Channel
(MOST High)

UDS

TCP UDP

IP IP

MOST MOST
Packet Data Packet Data

Channel Channel
(Ethernet (Ethernet

DAP

over MOST) over MOST)

Protocol stacks used in case
of physical addressing

Protocol stacks used in case
of functional addressing

… UDS UDS… …

DAP DAP DAP

AMS AMS

MOST MOST
Control Control
Channel Channel

UDS UDS… …

DAP

CMS CMS

172 8: Network Diagnostics

Figure 8.3 shows the communication protocol stacks that realize a diagnostic mes-
sage exchange on MOST using DAP.

Physical addressing means that the client sends requests to exactly one server. It is
possible that after service execution the server sends back a final response. For in-
stance, a response can contain the requested diagnostic trouble code of a device.
Furthermore, the server may send back response pending messages while executing
a diagnostic service. Physically addressed requests and their corresponding re-
sponses can be transported via the MOST Packet Data Channel using MHP or TCP,
or via the MOST Control Channel using AMS.

Functional addressing means that the client sends requests to many distributed serv-
ers. Multicast or broadcast mechanisms are the obvious means of transporting these
requests. A server has the possibility to send back response pending messages or a
final response message. Functionally addressed requests can be transported via the
MOST Packet Data Channel using UDP, or via the MOST Control Channel using
AMS. The usage of either blocking or unblocking broadcast as specified in the
MOST Specification [MOST 3.0] is possible.

Byte Or-
der

Data Field Len
(Byte)

Value

1 Version 1 Version of DAP Header: 0x01
2 – 5 Payload

Length
4 n

6 Type of Ser-
vice

1 System Integrator specific: 0x00
UDS: 0x01
KWP2000: 0x02
Reserved for future use: 0x03 – 0xBF
System Integrator specific: 0xC0 – 0xFF

 7 - 8 System Inte-
grator Part

2 System Integrator specific: 0x0000 – 0xFFFE
Default: 0xFFFF

9 – 10 Source Ad-
dress

2 e.g., Diagnostic test tool address
Not used: 0xFFFF

11 –
(10+n)

Payload n

Table 8.1: Structure of a DAP packet

8.2 Device Fault Diagnosis 173

The first data field identifies the version of the DAP header, which currently is
0x01.

Afterwards there is the data field “Payload Length”. For stream-oriented TCP, this
field can be used for reassembling a diagnostic message from the byte stream. Fur-
thermore, if the UDS message size is greater than the maximum MHP packet size,
this field is needed for segmentation and reassembly, too.

The next data field “Type of Service” selects the application protocol. The payload
of a received DAP packet can be assigned to UDS, or to another application proto-
col (e.g., KWP2000).

The data field “System Integrator Part” is set to 0xFFFF by default. It can be used
by the System Integrator, e.g., in order to work with sequence numbers if needed.

The data field “Source Address” identifies the diagnostic test tool that has sent a re-
quest. A server device has to copy the data of this field from a diagnostic request to
the corresponding diagnostic response. Thus, the transport of a diagnostic response
to the original diagnostic test tool is possible even when there is more than one di-
agnostic test tool and if the response must be transported via more than one net-
work.

Finally, the data field “Payload” contains the diagnostic message that is processed
by UDS, or by another application protocol (e.g., KWP2000).

174

175

9 Network Service

9.1 Overview
The Network Service represents the standard protocol stack for MOST. The com-
monly used term MOST NetServices is a trade name of SMSC Corporation, where
the MOST NetServices have to be licensed. The MOST Specification uses the term
Network Service, however, as a term which is independent of a product.

As shown in figure 9.1, the Network Service is based on the Network Interface
Controller (NIC) or the Intelligent Network Interface Controller (INIC) and pro-
vides a programming interface for the application which basically consists of the
function blocks. It comprises modules for transferring packet data in the Packet
Data Channel and modules for controlling the network via the Control Channel, i.e.,
it contains mechanisms and routines for operating and managing the network and it
ensures dynamic behavior of the network. The Network Service is implemented on
the External Host Controller (EHC). Control of the Streaming Data Channels is also
part of the Network Service; the transmission of streaming data, however, is not.

Network Interface Controller
Network Services

Low Level

NIC
or

INIC

Fig. 9.1: Basic structure of the MOST NetServices

176 9: Network Service

9.2 MOST NetServices
The MOST NetServices are a standard implementation of the Network Service pro-
vided by SMSC. They are tuned to the Network Interface Controllers (NIC and
INIC).

The MOST NetServices are divided into the Basic Layer (Layer I) and the Applica-
tion Socket (Layer II) and can contain additional modules, such as the MOST High
Protocol (see section 5.8).

Application

Session

Network

Data Link

Physical

Presentation

Transport

Network Interface
Controller

Intelligent
Network Interface

Controller

NetServices
Layer I 1.x
Basic Level

OSI Layer

NIC INIC

Fig. 9.2: Model of the
MOST NetServices

The MOST NetServices are written in ANSI-C and can be used directly for porting
on the different processor platforms (EHC). SMSC offers 4 license types:

 Evaluation license

 System license

 Product license

 Tool license

9.3 Modules of the MOST NetServices 177

9.2.1 Models of MOST NetServices

The NIC and the INIC have their own versions of the MOST NetServices Layer I
(version 1.x for NIC; versions 2.x and 3.x for INIC), since the INIC covers the basic
functions of Layer I itself and the MOST NetServices only have to provide an inter-
face between Layer I and II. The MOST NetServices Layer II 1.x and 2.x/3.x only
differ in the modules, whose functionality is covered by the INIC.

9.2.2 Dependencies on MOST Specification Baseline

The MOST NetServices versions 1.x and 2.x have been designed according to
MOST Specification Rev2.x. Version 1.x is available for MOST25 only, while ver-
sion 2.x is suitable for MOST25 and MOST50.

Version 3.x has been designed according to MOST Specification Rev. 3.x and is
available for MOST50 and MOST150.

9.3 Modules of the MOST NetServices

9.3.1 Layer I Version 1.x

The MOST NetServices Layer I version 1.x have been designed for the NIC. The
I²C bus, the SPI or a parallel interface are available as interfaces. The software in-
terface of the NIC consists of a set of registers, which can be read and written by
the microcontroller. The set of registers is referred to as a register wall.

In the following, the modules of Layer I are introduced.

Figure 9.3 gives an overview of the modules of Layer I 1.x.

MOST NetServices Kernel (MNS)

MOST NetServices Kernel (MNS) is the central entry point for all services of
Layer I. It initializes all trigger and call-back functions.

MOST Supervisor (MSV)

The MOST Supervisor (MSV) provides a finite state machine for the network man-
agement. The following functions are covered:

 NIC initialization

 Determination, whether the device is TimingMaster or TimingSlave

 Configuration of the Source Port

178 9: Network Service

 Network start-up and shutdown

 Power Management

 Error diagnosis and error message generation

 Self test

Different Source Port configurations are supported.

Network Interface Controller

Level I API

Register Wall

Fig. 9.3: MOST NetSer-
vices Layer I version 1.x

Control Message Service (CMS)

The Control Message Service (CMS) sends and receives the control messages
which are transmitted on the Control Channel. The service comprises the following
functions:

 Initialization

 Control Message reception service

 Control Message sending service

 Message buffering

 Error handling and error message

Asynchronous Data Transmission Service (ADS)

The Asynchronous Data Service (ADS) is responsible for sending and receiving
packet data on the Packet Data Channel. The service comprises the following func-
tions:

 Initialization

 Buffered sending of packet data

9.3 Modules of the MOST NetServices 179

 Buffered receiving of packet data

 Error handling and error message

Application Message Service (AMS)

The Application Message Service (AMS) is based on the Control Message Service
and provides a transmission protocol for segmentation of longer application mes-
sages which are transmitted on the Control Channel. It segments the messages into
17-byte blocks in the sender and reassembles the message from these blocks in the
receiver. The service provides the following functions:

 Initialization

 Sending application messages

 Receiving application messages

 Buffering messages

 Error handling and error message

Synchronous Connection Service (SCS)

The Synchronous Connection Service (SCS) controls the Routing Engine (RE) in-
tegrated into the NIC. It provides the necessary functions for allocating and releas-
ing the Streaming Data Channels and for configurating the streaming data source
and sink. The following are the functions in detail:

 Channel Allocation

 Allocation and Routing

 De-Allocation

 De-Allocation and Routing-Disconnect

 Source-Connect

 Source-Disconnect

 Sink-Connect

 Sink-Disconnect

 Detect-Channel by label

MOST Transceiver Control Service (MCS)

The Transceiver Control Service (MCS) enables the application-specific initializa-
tion of the NIC. By means of this service, hardware-relevant parameters can be set.
The following functions are available:

 Setting of the address registers in the NIC

 Access to important NIC registers (via the Register Access API)

180 9: Network Service

 Setting of the RMCK frequency

 TimingMaster functions (selection of the frequency source, setting of the
Boundary Descriptor)

Further information can be found in the MOST Specification [MOST 3.0], in the
Basic Services (Layer I) Programmer´s Library documentation [MNS L1 1.x] and
in the MOST NetServices Layer 1 Example [MNS L1 Exa].

9.3.2 Layer I Versions 2.x and 3.x

The MOST NetServices versions 2.x and 3.x of Layer I are based on the INIC,
which integrates the kernel functionality of Layer I (administration of the network
status, transceiver check, driver for message reception and dispatch, control of the
Routing Engine). The MOST NetServices thus only have to provide buffers for data
handling and the API known from version 1.x. The modules of the NetServices are
also referred to as Wrappers. Access to the INIC is no longer effected via a register
wall, but via an integrated FBlock based on the messages. This different type of ac-
cess is, however, abstracted by the wrapper modules. The Layer I API remains
mostly unchanged.

Level I API

Intelligent Network Interface Controller

MOST NetService MiniKernel

Fig. 9.4: MOST NetServices Layer I version 2.x

9.3 Modules of the MOST NetServices 181

The interface for MOST Control Messages, as well as for administrative communi-
cation between the NetServices and INIC is the Control Port, which is physically
addressed via I²C, or the MediaLB Port.

A further interface is used to provide access to the Packet Data Channel. This inter-
face can be physically addressed via I²C, MediaLB, or in version 3.x also via SPI.

Figure 9.4 shows the structure of the MOST NetServices version 2.x.

Figure 9.5 illustrates the structure of version 3.x. Auxiliary to the new SPI interface,
the Control Message Service (wCMS) was eliminated and the MOST Debug Mes-
sage Module (MDM) was newly introduced.

MOST NetServices Kernel (MNS)

MOST NetServices Kernel (MNS) is, as in version 1.x, the central entry point for
all services of Layer I. It initializes all trigger and callback functions.

Virtual MOST Supervisor (vMSV)

The Virtual MOST Supervisor (vMSV) provides the user with a mapping of the ac-
tual supervisor implemented in the INIC. The functionality is similar to version 1.x.
In comparison to version 2.x, version 3.x provides enhanced network diagnostics
functions.

Level I API

Intelligent Network Interface Controller

MOST NetService MiniKernel

Fig. 9.5: MOST NetServices Layer I version 3.x

182 9: Network Service

Wrapper Modules

The Wrapper Modules Control Message Service Wrapper (wCMS), Application
Message Service Wrapper (wAMS), MOST Processor Control Service Wrapper
(wMCS) and Asynchronous Data Service Wrapper (wADS) basically map the API
of version 1.x onto the functions of the INIC. Only the API of the Socket Connec-
tion Manager Wrapper (wSCM) deviates considerably from the SCS-API because
the administration of the Streaming Channels now runs directly via sockets and no
longer via the direct programming of the Routing Engine.

The Control Message Service Wrapper (wCMS) applies for version 2.x only. In
version 3.x it is substituted by the Application Message Service Wrapper (wAMS).

In comparison to version 2.x, the Socket Connection Manager Wrapper (wSCM) of
version 3.x also provides interfaces and configurations to access the Isochronous
Streaming Data Channel and new interfaces (e.g. TSI - Transport Stream Interface
for video applications).

Data Handling to the INIC

The interface between the INIC and the MOST NetServices uses a Port Message
Protocol. The modules Message Interface Service (MIS), Message Buffer Manage-
ment (MBM) and Port Message Service (PMS) control this protocol, buffer the
messages and supervise the different FIFOs in the INIC.

Further information can be found in the MOST NetServices Layer I –Wrapper for
INIC – User Manual/Specification [MNS L1 2.x or MNS L1 3.x].

MOST Debug Message Module (MDM)

MOST Debug Messages are messages that are reported on the MOST Control
Channel, suitable to signal any device or system related debug information. Such
messages are not received by any other device, but they can be recorded by System
Analysis tools. The MOST Debug Message Module (MDM) controls the protocol
and provides transmission services for such events. It is available in version 3.x
only.

9.3 Modules of the MOST NetServices 183

Network Interface Controller

Level II API

Fig. 9.6: MOST NetServices Layer II

9.3.3 Layer II Versions 1.x, 2.x and 3.x

The MOST NetServices Layer II builds on MOST NetServices Layer I. They provide
the API for the application-specific function blocks. The system function blocks,
such as the NetBlock, are, however, part of the MOST NetServices. Since the im-
plementation of the function block EnhancedTestability (ET) is application-
specific; the MOST NetServices only contain a “skeleton”.

The modules which differ in version 1.x and 2.x will be referred to in the corre-
sponding sections. Figure 9.6 shows the structure of Layer II.

MOST NetServices Kernel Layer II (MNS2)

As in Layer I, MOST NetServices Kernel (MNS2) is the central entry point for all
services of Layer II. It initializes all trigger and callback functions.

MOST Supervisor Layer II (MSV2)

MOST Supervisor Layer II (MSV2) also provides a finite state machine for manag-
ing the network state on the application level (e.g., communication permitted/not
permitted). The following functions are implemented:

 Address initialization

 Configuration on the application level after the Init Ready event

 In the NetworkSlave: Initialization of the Decentral Registry

 In the NetworkMaster: Network Change Event (NCE) supervision

184 9: Network Service

FBlockID Pointer on InstID; stored in
RAM

Pointer on Function
Table; stored in ROM

NetBlock 0 &Func_NetBlock
FBlock 1 &NetBlock.pFBlockIDs.InstID[0] &Func_FBlock1
FBlock 2 &NetBlock.pFBlockIDs.InstID[1] &Func_FBlock2
…
FBlock n &NetBlock.pFBlockIDs.InstID[n-1] &Func_FBlockn
FBlock Shadow 1 &InstIDShadow[0] &Func_FBlockShadow1
FBlock Shadow 2 &InstIDShadow[1] &Func_FBlockShadow2
…
FBlock Shadow m &InstIDShadow[m-1] &Func_FBlockShadowm

Table 9.1: Table of the available FBlocks and FBlock Shadows
n – number of FBlocks
m – number of FBlock Shadows (source: [MNS L2])

Command Interpreter (CMD)

The Command Interpreter Module is used for table-controlled decoding of received
control messages and for automatically calling the handler functions of the FBlocks
defined by the user.

The decoding table contains all implemented FBlocks and FBlock Shadows. It basi-
cally has the structure shown in table 9.1 and can easily be extended.

The table of the available FBlocks and the function tables can be stored in ROM.
As the instance ID can be changed during runtime, the table containing these IDs
must be stored in RAM (second column). During initialization, it is filled with de-
fault values. The third column contains the entry address of the related function.

Notification Service (NTFS)

The Notification Service (NTFS) is used for automatically sending status messages
to other devices, when the properties of an implemented FBlock change. This
mechanism was already introduced in section 4.2.2.

Table 9.2 shows the Notification Matrix of an FBlock. The matrix must be available
for each FBlock supporting the Notification Service.

 FBlock x

Property 0 Property 1 Property 2 Property (n-1)

Flagfield 0 Flagfield 1 Flagfield 2 … Flagfield (n-1)
Entry 0.1 Entry 1.1 Entry 2.1 … Entry (n-1).1

9.3 Modules of the MOST NetServices 185

 FBlock x

Property 0 Property 1 Property 2 Property (n-1)

Entry 0.2 Entry 1.2 Entry 2.2 … Entry (n-1).2
Entry 0.3 Entry 1.3 Entry 2.3 … Entry (n-1).3
Entry 0.4 Entry 1.4 Entry 2.4 … Entry (n-1).4

… … … …
Entry 0.m Entry 1.m Entry 2.m … Entry (n-1).m

Table 9.2: Notification Matrix of the FBlock x (source: [MNS L2])
n – number of properties of the FBlock which support the Notification Service
m – max. number of devices able to subscribe to the property

The term Entry in the table is an index in the Device Table which stores the logical
or group addresses of the devices that have subscribed to properties.

Address Handler (AH)

The Address Handler (AH) is based on a state machine. It transforms symbolic ad-
dresses into memory locations and manages the Decentral Registry in the Slave.
Similar to other modules of Layer II, it closely cooperates with the Application
Message Service (AMS).

The Controller does not necessarily have to know which device implements an
FBlock. It suffices if the FBlockID and the InstID are known. The wildcard 0xFFFF
is entered into the target address field of the control message. If the Address Han-
dler (AH) receives a message with this wildcard, it first searches the FBlockID with
the related InstID in the Decentral Registry in the standard configuration, as is
shown in figure 9.7. If it finds the FBlock, it replaces the target address field with
the real target address. If the search fails, it inquires, by means of the NetworkMas-
ter Shadow Module, about the FBlock at the Central Registry located in the Net-
workMaster. A further mode, where the MOST NetServices can inquire about the
desired instance directly at each device in the ring is not defined in the MOST
Specification and thus is neither used, nor supported by version 3.x.

First Searching Process
(local Decentral Registry)

Second Searching Process
(Central Registry, but not local)

Search failed

Search failed

Report Error

Target Address == 0xFFFF

Send a message using the
Application Message Service Target Address != 0xFFFF

Complete
Transmission

Search
successful

Search
successful

Fig. 9.7: Search procedure of the
Address Handler (source: [MNS
L2])

186 9: Network Service

Figure 9.8 shows an example of address handling. Track 10 in the CD changer
(CDC) is to be selected via the HMI. The CD changer application is represented on
the device with the FBlock CD (Instance-ID: 1). To change the track, the HMI
sends the control message CD.1.Track.Set(10). The HMI application gives the
command 0xFFFF.CD.1.Track.Set(10) to the Address Handler, which re-
places the wildcard 0xFFFF with the target address of the CD changer, according to
the procedure explained above. The MOST Network Interface Controller automati-
cally adds the source address and sends the message to the CD changer. The MOST
Network Interface Controller of the CD changer sends the message on to the MOST
NetServices. The CMD module calls the function for changing the property Track in
the FBlock CD.

Figure 9.8 shows the general syntax of the control message on its way from the
sender to the receiver.

NetworkMaster Shadow Module

The NetworkMaster Shadow Module provides a copy of the properties of the
FBlock NetworkMaster. It reacts to status and result messages and is usually im-
plemented on all devices, except the NetworkMaster. The basic functions are:

1. Managing the property NetworkMaster.Configuration during the initializ-
ing procedure.

2. Managing the property NetworkMaster.CentralRegistry during the address
search procedure of the Address Handler.

Application

Application

FBlock CD
InstID: 1

AH

NetServices NetServices

MOST Network
Interface

 Controller

MOST Network
Interface

 Controller

NMWS CMD

AMS AMS

Device 1 Device 2

????.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID1.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID1.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID2.FBlockID.InstID.FktID.OPType(Parameters)

DeviceID1.DeviceID2.FBlockID.InstID.FktID.OPType(Parameters)

FBlockID.InstID.FktID.OPType(Parameters)

FFFF.CD.1.Track.Set(10)

HMI (Controller) CDC (Slave)

CDC.CD.1.Track.Set(10)

HMI.CDC.CD.1.Track.Set(10)

HMI.CD.1.Track.Set(10)

HMI.CD.1.Track.Status(10)

CD.1.Track.Set(10)

Fig. 9.8: Example of address handling (according to [MOST 2.5] and [MOST 3.0])

9.4 Integration of the MOST NetServices onto the Target Platform 187

NetBlock (NB)

The NetBlock (NB) is a system FBlock, which must be implemented on all devices.
It is thus part of the MOST NetServices Layer II. It was already introduced in sec-
tion 4.3.4.

Due to the fact that a minimum NetBlock (NBMIN) is already integrated in the
INIC, only the NetBlock EHC (NBEHC) of the NetBlock in Layer II version 2.x or
3.x is implemented (see section 10.4.2).

FBlock EnhancedTestability (ET)

The FBlock EnhancedTestability (ET) is a system FBlock as well and is also de-
scribed in section 4.3.4.

9.4 Integration of the MOST NetServices onto the Tar-
get Platform

The MOST NetServices were written in ANSI-C without using any standard librar-
ies and can thus very easily be ported onto the target platform. The configuration
and adaptation for the hardware and software platform used is effected via compiler
switches in the header files adjust*.h. This enables a good scaling onto the proces-
sor architecture. The MOST NetServices can be implemented on an 8-bit microcon-
troller with only a few kbytes RAM in a Main Loop Architecture, or also on a 32-
bit microcontroller with adequate multitasking software systems, such as QNX,
WinCE, or Linux.

The Low Level Driver (LLD) shown in Figures 9.3 and 9.4 must be implemented
by the user. The LLD is used for abstraction of the hardware with regard to the
MOST NetServices. The two System-On-Chip Controllers OS8805 and OS88558
are an exception. In this case, the MOST NIC and the Host Controller are integrated
on one chip. The MOST NetServices only need to be configured by the user.

9.4.1 Callback Functions

The largest part of the MOST NetServices provides callback functions for status and
error messages. These functions are made available to the programmer and are
called by the MOST NetServices if a specific event or an error has occurred.

The callback functions are characterized in the MOST NetServices documentation
by the key word [Callback].

[Callback]

declaration of function;

188 9: Network Service

The MOST NetServices offer different types of callback functions for the various
versions.

MOST NetServices Layer I 1.x

The MOST NetServices Layer I 1.x specify callback functions of type A and B:

 Even though the type A functions must be defined by the programmer, the
function body can remain empty if the event which calls the function is not
relevant for the application.

 Type B functions, however, must always be implemented completely, since
they are responsible for system-relevant events, such as PowerOn.

MOST NetServices Layer I 2.x and 3.x

In the case of the MOST NetServices Layer I 2.x and 3.x, the callback functions for
unused events do not have to be declared. The MOST NetServices ensure a defined
behavior. It is differentiated between module specific standard callback and general
standard callback functions:

 The module specific standard callback functions are called for a specific event
by only one module.

 The general standard callback functions, however, can be called by several
modules. They usually indicate the result of interactions with the network inter-
face.

MOST NetServices Layer II 1.x, 2.x and 3.x

Like the MOST NetServices Layer I, Layer II also defines type A and type B func-
tions. Additionally, version 1.x and 2.x define type C functions. Type C functions
must be explicitly activated by the programmer in a header file (adjust*.h).

9.4.2 Main Loop Architecture

On small processors without a multitasking system software, all applications and
services – except for Interrupt Service Routines – are usually called cyclically from
a loop in the main function of the software. The programmer must ensure that for
all applications and services the maximum response time until the next call of their
central entry function is observed and that the maximum execution time until the
next return to the Main Loop is not exceeded.

For MOST NetServices 1.x, the cyclical call of the services must be within 15 ms.
Otherwise, central functions of the MSV, such as checking the lock status and simi-
lar operations, can no longer be assured to meet the MOST Specification. The
maximum return time is typically less than 1 ms, unless the MOST NetServices call

9.4 Integration of the MOST NetServices onto the Target Platform 189

callback functions of the applications on their part. In that case the application pro-
grammer is responsible for ensuring a return into the MOST NetServices, and thus
into the Main Loop, within the required time.

For the MOST NetServices 2.x and 3.x, the problems are easier to handle because all
time-critical functions are taken over by the INIC itself and the MOST NetServices
running on the host basically only form the interface with the application software.
The maximum response time also has to be observed in this case, particularly be-
cause the INIC supervises the communication with the host by means of a Watch-
dog Timer which is typically configured to half a second. If the INIC does not re-
ceive a response from the host within this time, it assumes an error and disconnects
the host from the network. This results in all applications (FBlocks) provided by the
device in the network being unregistered.

In addition to the main entry functions of the MOST NetServices in the Main Loop,
other functions have to be called which provide the MOST NetServices with infor-
mation as to the timing. They are usually triggered by a timer-controlled Interrupt
Service Routine (MOSTTimerInt). In version 1.x, call frequencies of 1, 10 and 25
ms can be selected. The MOST NetServices 2.x and 3.x have an advanced timer im-
plementation that supports more flexible call frequencies. which uses the timing in-
formation provided by the INIC.

9.4.3 Multitasking Architectures

The items mentioned above can also be applied to multitasking architectures. The
Main Loop is, however, replaced by a Task Loop. Usually, the MOST NetServices
run in a loop which, apart from the entry functions mentioned above, only calls
functions necessary for communication with other tasks or drivers. Functions for
serving other services and applications are typically integrated in additional tasks.

For the MOST NetServices task, the priority must be selected such that the mini-
mum call frequency of the MOST NetServices 1.x can be guaranteed. Higher priori-
ties will generally only be reserved for tasks with a real-time functionality (such as
audio/video signal processing, timer) or for network drivers with high timing re-
quirements (such as CAN network driver stack). The actual application should
normally run in tasks with a lower priority.

Due to the fact that the MOST NetServices are written in ANSI-C, they are not
thread-safe. This means that the API functions may only be called from one context.
This means that the handler functions of the CMD module must be called and the
data must be accessed in the context of the MOST NetServices tasks and not in the
context of the respective application. The programmer must solve this problem by
using suitable synchronization mechanisms of the system software, such as sema-
phores. For this purpose, the MOST NetServices 2.x and 3.x offer macros in the

190 9: Network Service

configuration files which can be assigned to platform-specific Mutex mechanisms
(Mutual Exclusion).

For larger systems with several applications, one could imagine using, instead of
the central command interpreter, an architecture which passes the messages re-
ceived from the AMS and the MOST High Protocol through task borders. One
could also imagine executing the evaluation of the messages (also a function of the
CMD module) in the context of the respective application task. Such architectures
are also available by third-party providers.

9.4.4 System Management Module

Modules such as the NetworkMaster, PowerMaster and ConnectionMaster are not
part of the MOST NetServices. They can be licensed as reference implementations
from SMSC in the same manner as the MOST NetServices. In contrast to the MOST
NetServices, however, implementations of the device manufacturers are also com-
monly used here.

191

10 MOST Interface Controller

10.1 MOST Network Interface Controller and MOST De-
vice

Within a MOST device, the MOST Interface Controller possesses the role of a two-
way bridge between the MOST network and the interior of the device. Figure 10.1
shows an example for the structure of a typical single-processor style MOST de-
vice. The application hardware provides the basis for the characteristic features of
the MOST device. In this case, a Digital-to-Analog Converter (DAC) followed by
an amplifier stage implies the MOST device to be an amplifier.

Control Data,
Packet Data

MOST Device

MOST Network

Application

Hardware

Control

Stream Data

MOST Network Interface Controller
NIC or INIC

Optical or Electrical
Receiver

Optical or Electrical
Transmitter

MOST NetServices Layer II

MOST NetServices Layer I

NetBlock…
Enhanced
Testability

External Host Controller

FBlock 1

Low Level Driver

AMPDAC

Application

Power
Management

Status Monitoring

Wakeup Logic

Electrical

Control Line
(ECL)

Fig. 10.1: Structure of a MOST Device

An External Host Controller (EHC) processes all software tasks, including control-
ling of the application hardware and running MOST related routines.

Towards the MOST network, there is a sending path and a receiving path. In the
latter, a receiver translates the signals coming from the MOST network into a form
that can be processed by the MOST Interface Controller. In the sending path, the
output of the MOST Interface Controller is converted. This is achieved by an

192 10: MOST Interface Controller

external circuitry that generates a signal compliant to the underlying physical layer
specification, depending on the chosen physical layer. Signal transmission then
happens either in the optical domain (optical physical layer), or in the electrical
domain (electrical physical layer).

In order to allow the MOST device to be woken by activity on the network, the re-
ceiver is connected to the wake-up area.

The MOST Interface Controller provides the required standardized interfaces for
connecting to the application as well as the MOST network. This allows to send and
receive streaming, control, packet and isochronous data via the MOST network in
an efficient way. On the MOST side, the MOST Interface Controller receives the bit
stream from the physical layer, refreshes this signal, modifies the data if required
and emits the signal through the sending path. The refreshing is done to compensate
for signal degradation on the physical layer, in order to re-establish signal integrity
for achieving best transmission results.

An important part of the signal handling on the MOST side is synchronization. The
MOST Interface Controller either creates the system wide clock (when being con-
figured as the sole TimingMaster of the system), or synchronizes to the incoming
bit stream (common for the majority of MOST devices). Thus, all MOST devices in
a MOST network are synchronized. This allows for an efficient high quality signal
transmission running at a minimum of overhead.

Device wake-up, power management and status monitoring make sure that the
MOST device complies with the MOST specification in terms of start-up, power
consumption in sleep mode and handling of exceptional situations in power supply.

10.2 MOST Network Interface Controller Families
There are two types of MOST Interface Controllers: the Intelligent Network Inter-
face Controller (INIC) and the Network Interface Controller (NIC). While the NICs
represent the first implementations of a Network Interface Controller, their role in
development of new MOST systems and devices meanwhile has been assumed by
the INICs for several reasons. One of the most important motivations for this trend
is the increase of robustness and simplification on system level that is associated
with the usage of the INICs.

10.2.1 INIC

INICs act as simple MOST devices with regard to the MOST network and its man-
agement. They can act autarchically, i.e., independent of the EHC, in order to speed
up system start and stabilize the MOST system at the earliest possible point in time.

10.2 MOST Network Interface Controller Families 193

This is a great advantage, particularly if the application on the EHC has a long boot
time, or if an error occurs in the application during normal operation.

For the INIC, the function of the entire network has the highest priority. It enables
the network to start up in a controlled manner and it protects the network from un-
desired side effects in the case of errors in the application software (reset or “hang-
up”). The name of the related operational mode – Protected Mode – refers to this
fact. This status is adopted accordingly after a hardware reset of the INIC and dur-
ing the Power-Up.

The INIC is responsible for the basic performance of the MOST device in which it
is utilized. The EHC and the application running on it boot up independent of the
INIC start-up and log on to the INIC upon completion of their initialization.

There is a common API available for controlling the INIC. Communication be-
tween the EHC and the INIC is based upon the Port Message Protocol. The specific
functions of the INIC are modeled as a function block, in accordance with the gen-
eral approach to MOST devices. The routing of streaming data can easily be con-
trolled via sockets and connections. The application itself does not need to use the
INIC-API directly, but is based on the MOST API (MOST NetServices). The
MOST NetServices control the INIC via the INIC-API using the Port Message Pro-
tocol. According to the MOST philosophy, control of the INIC is organized by
means of a function block (FBlock) called FBlock INIC.

INICs have a fast serial and synchronous interface for streaming, control and packet
data, which is referred to as MediaLB. This interface can be used, for example, to
connect several audio components on a printed circuit board, providing them, e.g.,
with streaming data. The INIC drives the basic clocking of the MediaLB synchro-
nized to the MOST network. This interface is implemented in all INICs.

Additional, standardized interfaces allow connecting application hardware and the
INIC, e.g., through I²S.

The properties described in this section make the INIC a first choice component as
far as the implementation of new MOST devices and MOST based multimedia sys-
tems are concerned.

10.2.2 NIC

Network Interface Controllers (NICs) were the first generation of communication
ICs for MOST. They have meanwhile been supplemented by the INICs, which en-
able a more robust system design and a faster product realization. Within the MOST
devices, NICs cover the data link layer functionality. They are controlled via a Reg-
ister Wall (register structure) by means of read/write access to individual storage
positions.

194 10: MOST Interface Controller

In cooperation with a NIC, the EHC is fully responsible for the basic behavior of
the MOST device in which it is implemented. During implementation, it must be
taken care of that boot times of the application are kept short enough to ensure
compliance with the MOST specifications. If there are errors in the application do-
main, they can, in the case of NIC-based devices, have an effect on the entire sys-
tem. This was taken into consideration when developing the INIC. As a matter of
principle, the INIC encapsulates such application errors locally.

The routing of streaming data is controlled via the registers of the MOST Routing
Table (MRT). A typical NIC is the OS8104A (MOST25).

OS81050 INIC25

INIC50

INIC150OS81120
Cost Down

ROM- based

OS81092
Cost Down

OS81082

OS81110

OS81060
Cost Down

Flash- based

MOST25

MOST50

MOST150

Fig. 10.2: INIC Family Overview and Roadmap

10.3 The INIC Family

10.3.1 Members

For each of the three MOST speed grades - MOST25, MOST50 and MOST150 -
two INICs are available (see fig. 10.2).

There are flash memory based versions, and ROM based versions that are cost re-
duced variants of the flash memory based versions. In the flash memory based ver-
sions, both, power-up configuration (Configuration String) and the entire firmware
of the INIC can be re-written. The ROM based versions keep their firmware in
ROM and configuration information in OTP memory. The two-part structure of the
OTP memory area of OS81092 allows writing the Configuration String twice.

10.4 Interfaces to the INIC 195

MOST150 constitutes an exception to the description above, since only the flash
based version OS81110 is currently available. The cost reduced version OS81120 is
at the planning stage.

10.3.2 Overview of Features

Table 10.1 outlines the general features available in the members of the INIC fam-
ily. Note that not all interfaces listed in Table 10.1 are available at the same time.
Availability depends on configuration, since some of the interfaces share pins to
keep pin count low.

Feature Data types and
Interfaces

INIC25
OS81050

INIC25
OS81060

INIC50
OS81082

INIC50
OS81092

INIC150
OS81110

Control, Synchronous,
legacy async. packets

X X X X X
Supported

MOST
Data Types Isochronous, Ethernet X

I²C, I²S, MediaLB
3-pin

X X X X X

MediaLB 5-pin (leg-
acy)

X X X X
Interfaces
(See text)

MediaLB 6-pin, TSI,
SPI

 X

Power
Supply

3.3V /
2.5V

3.3V /
1.8V

3.3V /
2.5V

3.3V /
1.8V

3.3V /
1.8V

Package
ETQFP
44 QFP

44
QFN 40

ETQFP
64

QFN 48 QFN 48

Table 10.1: Features of the INIC Family

10.4 Interfaces to the INIC

10.4.1 Available Interfaces

Regardless of the MOST network speed grade, all members of the INIC family
have a similar general structure. The INIC processor - shown in the center of Figure
10.3 - transmits the data from and to the MOST network and takes care of the rout-
ing of the data from and to the peripheral interfaces.

196 10: MOST Interface Controller

MOST Network Port

Stream Control MediaLB SPI
OS81110 only

TSI
OS81110 only

INIC Processor

NetServices Minikernel

FBlock INIC FBlock NBMin

INIC API JTAG
Port /

Debug Port

Clock
Manager

Power
Monitor &
Control

INIC
Memory

Fig. 10.3: INIC Block Diagram

The clock manager is responsible for providing the clock to the entire chip, the ap-
plication hardware and – once the INIC is configured in TimingMaster mode – also
for the entire network. It ensures overall synchronization.

The Power Monitor & Control module establishes the connection to an external
Power Management circuit. The INIC can thus react to changes in the power supply
in accordance with the MOST Specification.

By means of the JTAG / Debug Port, the INIC can be included in boundary scan
testing. The same interface supports debug level access to the INIC. Connected to
an INIC Explorer, internal data like power-up configuration and property values,
stream data routing information and interface configurations can be retrieved. The
possibility to write the Configuration String on flash based and ROM based INICs
is very useful too. It makes sense to implement at least the footprint for the
JTAG/Debug Port related connector (not populating it in mass production) on the
printed circuit board (PCB).

The INIC Memory block shown in Figure 10.3 actually stands for different kinds of
memory. It keeps continuously changing data, as well as start-up configuration data
(Configuration String) and special data that needs to be kept between the system's
life cycles during sleep phases.

External devices like analog-to-digital converters (ADCs), or digital-to-analog-
converters (DACs), or DSPs, or similar, interface to the Streaming Port. The
Streaming Port can source or sink streaming data in various industry-standard
formats.

10.4 Interfaces to the INIC 197

All INICs have a MediaLB interface for streaming, control, packet and isochronous
data. This interface can be used to connect different audio or video components on a
printed circuit board, using the INIC as a bridge, to the MOST domain. Since the
clocking on MediaLB is synchronized to MOST, the synchronous network ap-
proach of MOST is maintained even at PCB level. The kinds of data available on
MediaLB and the available MediaLB interface types (MediaLB 3-pin, MediaLB 5-
pin, MediaLB 6-pin) depend on the used INIC and its configuration.

Industry devices like satellite tuner devices, receivers, displays, or video decoders,
typically handle Transport Stream Interface (TSI) data streams. OS81110, the INIC
for MOST150, has a special interface to establish a connection with such devices
for transporting TSI streams over MOST, the TSI port.

Many microcontrollers and peripheral devices make use of the serial peripheral in-
terface (SPI). The SPI port of the OS81110 is implemented as the typical four pin
interface. It uses an additional interrupt pin for flow control and can transport either
asynchronous packet data, or QoS IP packets (isochronous).

INIC150

Ethernet/
Packet

over

SPI

Audio
over

I2S
Generic
Clock IO

Video
over

Serial TSI

Control/
Packet

over

I2C

3-
p

in

INIC25 and INIC50

6-
p

in

Audio, Video
Packet, Control

over

MediaLB

Fig. 10.4: INIC Connectivity Overview Diagram

The I²C based Control Port allows direct communication between the EHC and the
INIC. It transports data based on a message based protocol. Through the Control
Port, the EHC can access FBlock INIC and can send and receive legacy packet data
and MOST control messages (MCM).

Last but not least, all INICs establish the connection to the MOST network at the
MOST speed grade they are designed for. The MOST Network Port is specifically
designed to accomplish this task and therefore represents the interface to the par-
ticular MOST network. It recovers the MOST network clock, decodes incoming
data, encodes data in the outgoing direction and refreshes the signals towards its
output to achieve the best possible transmission quality.

198 10: MOST Interface Controller

10.4.2 Interfaces from Software Perspective

Overall Structure

All internal functions of the INIC are accessible through the so-called INIC API,
using the Port Message Protocol. The specific internal functions of the INIC are
modeled as a function block (FBlock INIC), in accordance with the general ap-
proach to MOST devices. Function block NetBlockMin (NBMIN) allows the INIC
to act autarchic towards the Network on absence of a running application software.
The MOST NetServices MiniKernel contains crucial MOST NetServices function-
ality that relieves the EHC of real-time style supervision tasks. It also contributes to
the capability of the INIC to act independent of the EHC. The application itself does
not use the INIC-API directly, but is based on the MOST API (MOST NetServices).
The MOST NetServices control the INIC via the INIC-API and Port Message Pro-
tocol.

MOST Network

S
o

ck
et

C

o
nn

ec
tio

n

M
a

na
g

er
(S

C
M

)

M
O

S
T

S

u
pe

rv
is

or
(M

S
V

)

MOST NetServices MiniKernel

INIC Message
Interface

C
o

nt
ro

l M
es

sa
g

e

S
er

vi
ce

(C
M

S
)

IN
IC

S

e
g

m
e

nt
at

io
n

S

er
vi

ce
(I

S
S

)

A
sy

n
ch

ro
no

u
s

D

at
a

 S
er

vi
ce

(A
D

S
)

M
O

S
T

 P
ro

ce
ss

or

C
on

tr
ol

 S
er

vi
ce

(M
C

S
)

ICM
Rx & Tx FIFOs

MCM
Rx & Tx FIFOs

MDP
Rx & Tx FIFOs

INIC API (Port Message Protocol)

FBlock INIC

G
e

ne
ra

l I
N

IC

F
u

nc
tio

n
s

A
P

I

C
o

or
di

n
at

io
n

F

u
nc

tio
n

s
A

P
I

M
O

S
T

S

u
pe

rv
is

or
A

P
I

S
oc

ke
t

C
o

nn
ec

tio
n

M

a
n

a
ge

r
A

P
I

IN

IC

C
om

m
un

ic
at

io
n

F
un

ct
io

ns

A
P

IFBlock NetBlock
NBMIN

I2C MediaLB

Fig. 10.5: INIC Software Stack Overview

INIC Message Interface

For communication towards the EHC, the internal structure of the INIC is organized
in a threefold way. The INIC Message Interface consists of three sets of buffers that
correspond to three different kinds of messages.

10.4 Interfaces to the INIC 199

MOST Control Messages (MCM) are identical to MOST Control Messages that
travel over the MOST network for the purpose of control level communication.

MOST Data Packets (MDP) and MOST Ethernet Packets (MEP) both refer to pack-
etized data. While MDP belongs to the legacy packet data that is available on
MOST networks since the implementation of MOST25, MEP contain packet data
for Ethernet style data transfer.

INIC Control Messages (ICM) have the same structure as MCM, but are directed
only towards FBlock INIC. The EHC uses ICM to control and configure the INIC
during runtime, while the INIC replies accordingly, e.g., with status reports.

Function block NBMIN and FBlock INIC

As explained in the introduction to this chapter, INICs can act as simple MOST de-
vices with regard to the MOST network and its management. Since every MOST
device must stringently contain the functionality of the function block (FBlock)
NetBlock, the minimum version of a NetBlock, the NetBlockMin (NBMIN) is inte-
grated into the INIC, too. Together with the NetBlock EHC (NBEHC) of the appli-
cation it forms the normal NetBlock (see fig. 10.6).

NBMIN has a proxy like role, when the EHC, the MOST NetServices and the ap-
plication are present. If the INIC needs to act independent of the EHC, it takes full
responsibility and makes the MOST device a device without function blocks.

The FBlock INIC is the lean interface to control INIC hardware functionalities and
the MOST NetServices MiniKernel. It allows access, e.g., to the Notification func-
tion of the INIC, to information such as version info and to the control mechanisms
for streaming data.

MOST NetServices MiniKernel

The routines of the MOST NetServices MiniKernel handle, e.g., MOST control
Messages and data packets. They configure the INIC on start-up and control, e.g.,
the routing of stream data. The MOST Supervisor has an important role in the
MOST NetServices MiniKernel. It handles dynamic network events, network su-
pervision, power management and errors. In general it controls the behavior of the
INIC in the MOST network context and therefore takes care of, e.g., start-up and
shutdown, configuration of the INIC as TimingMaster or TimingSlave.

200 10: MOST Interface Controller

INIC

EHC

Interface Controller Core

FBlock INIC
NetBlock
NBMIN

MOST
NetServices

FBlocks

Application

NetBlock
NBEHC

Fig. 10.6: NetBlock NBMIN and NetBlock NBEHC

10.4.3 Ports, Sockets and Connections

From the perspective of the INIC, the periphery and the MOST network are con-
nected via ports. Their start-up configuration is partially achieved via hardware
pins, but mainly by access to the properties and methods of the FBlock INIC via the
INIC-API. While the Network Port – the gate to the MOST world – can transport
all MOST data types available, other ports are specialized to one or more data
types. Depending on the configuration, the hardware of the ports is able to move
several data streams in different directions.

INIC

MOST Network Port

Stream Control MediaLB SPI
OS81110 only

TSI
OS81110 only

Fig. 10.7: Ports of the INIC

Ports need to be opened. Some ports are opened automatically, based on the con-
figuration of the INIC. Other ports are opened by accessing the OpenPort function
of the INIC API.

10.4 Interfaces to the INIC 201

MOST Network

INIC

MOST Network Port

MOST Network ControlPacket

Control
In

Control
Out

Packet
In

Packet
Out

Stream

Streaming Port Control Port

Control
Out

Control
In

Packet
Out

Packet
In

 ...

Stream
Out

SX0

SH=00

Fig. 10.8: Sockets at the MOST Network Port (MOST25). SH – Socket-Handle

Which data type is to be accessed directly and which direction is desired (IN or
OUT) is defined by means of sockets.

Note: Data directions are always described from the perspective of the INIC. If data
move into the component, this corresponds to the direction IN, if they flow out of
the component, this corresponds to the direction OUT.

MOST Network

INIC

MOST Network Port

ControlPacket

Control
In

Control
Out

Packet
In

Packet
Out

Stream

Streaming Port Control Port

Control
Out

Control
In

Packet
Out

Packet
In

 ...

Stream
Out

SX0

Stream
Out

Stream
In

Stream
In

SX1 SR0 SR1

0x00, 0x01,
0x02, 0x03

Stream
In

Stream
In

0x08, 0x09,
0x0A, 0x0B

Stream
Out

Stream
Out

0x28, 0x29,
0x2A, 0x2B

0x04, 0x05,
0x06, 0x07

CH=00 CH=01 CH=02 CH=03

SH=00 SH=01 SH=02 SH=03

SH=04 SH=05 SH=06 SH=07

Fig. 10.9: Ports, Sockets and Connections

If a socket is generated, the INIC returns a confirmation message and an
identification (Socket Handle [SH]). Establishing a connection then enables the data
flow. The function for establishing the connection requires the Socket Handle of the

202 10: MOST Interface Controller

IN-Socket and the one of the OUT-Socket only. Establishing the connection results
in a Connection Handle, which is required for connection management (also for
removing the connection).

Note: It is only possible to connect sockets of type IN and OUT that have the same
type of data and the same parameter settings.

10.4.4 Port Message Protocol

PMHL FIFO Data Header FIFO Data Body

PML PM Header Body (PMHB) PM Body (PMB)

PML FPH

OPTypeFktID TelID TelLen Data[0, 1:n]MCM FIFO Data Read/Write:

OPTypeFktID TelID TelLen Data[0, 1:n]ICM FIFO Data Read/Write:

PML PM Header (PMH) PM Body (PMB)

Port Message (PM)

PMHL

Length Data[0:(m-1)]MDP FIFO Data Read/Write:

DestAddr Data[0:(k-1)]MEP FIFO Data Read/Write: SrcAddr VLAN Type FCS

Handle FIFO StatusPML PMHL FPH

Handle FIFO CommandPML PMHL FPH

Optional

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Fig. 10.10: Port Message Protocol Structure

Message exchange between INIC and the EHC is based upon the Port Message Pro-
tocol. Figure 10.10 depicts the elements of the Port Message Protocol, some of
which are optional. A Port Message (PM) (see “Line 1” in fig. 10.10) consists of
several parts.

The Port Message Length (PML) (see “Line 2” in fig. 10.10) is a 16-bit value,
which counts the bytes of the PM Header (PMH) and the PM Body.

The PMH (see “Line 3” in fig. 10.10) consists of the eight-bit PM Header Length
(PMHL) value and the PM Header Body (PMHB). PMHL counts the bytes of
PMHB. PMHB either contains FIFO commands (see “Line 4” in fig. 10.10), FIFO
status information (see “Line 5” in fig. 10.10), or information on the subsequent
data (see “Line 6” and below in fig. 10.10).

The FIFO Protocol Header has an important function in differentiating between the
different message types that are available:

 FIFO Command messages
Used to resynchronize INIC’s interface or retry failed messages

10.5 Protection, Encapsulation and the EHC 203

 FIFO Status messages
Used for handshaking and to indicate that INIC’s initialization is complete

 MOST Control Messages (MCM)

 MOST Data Packets (MDP)

 MOST Ethernet Packets (MEP) OS81110 only

 INIC Control Messages (ICM)

If the PM Body is available in a particular PM, it contains the message data itself,
according to the specific structures.

10.5 Protection, Encapsulation and the EHC

10.5.1 Interaction between INIC and the EHC

In order to protect the network from undesired side effects, the cooperation between
INIC and EHC is controlled via a state machine, the External Host Controller Inter-
face State Machine (EHCI-State).

The EHCI State Machine can reach three states (see fig. 10.11):

 EHCI-Protected

 EHCI-Semi-Protected

 EHCI-Attached

EHCI-Protected

The INIC takes on the EHCI-Protected basic state after a reset. It effectively pre-
vents a starting or incorrectly running application from accidentally having access
to the MOST network. The application should finally reach the normal operating
mode, state EHCI-Attached, via the EHCI-Semi-Protected state.

In state EHCI-Protected it is not possible for the EHC to send messages to other
nodes in the MOST network. The EHC cannot receive messages from the MOST
bus either. The safety concept of the INIC provides for the application being
watched by the INIC. For this purpose, the INIC has a so-called Watchdog mecha-
nism. The INIC-API allows the configuration of the Watchdog and the change of
state of the EHCI State Machine while in the EHCI-Protected state.

A handshake procedure makes sure that both, INIC and EHC, are informed about
the readiness of the respective partner. If they are ready, the application running on
the EHC configures the Watchdog mechanism (if required) and starts changing to
the next state.

204 10: MOST Interface Controller

INIC.EHCIState.Set (Protected)
or any Watchdog timeout

INIC.EHCIState.Set (Protected)
or any Watchdog timeout

EHCI
Protected

INIC.EHCIState.Set (Attached)

INIC.EHCIState.Set
(SemiProtected)

Reset

Any Rx Control Message or
INIC.Watchdog.Start ()

in time and all Tx Status Messages

Any Rx Control Message or
INIC.Watchdog.Start ()

in time and all Tx Status Messages

EHCI
SemiProtec

ted

EHCI
Attached

Fig. 10.11: The states of the EHCI State Machine

EHCI-Semi-Protected

The state EHCI-Semi-Protected also prevents communication with the MOST net-
work. It allows, however, full access to the FBlock INIC. The underlying concept
takes into consideration that the full initialization of the hardware of a MOST de-
vice also requires the start-up of such applicative parts of the connection, which
possibly require, e.g., a continuous clocking.

In this state, the EHC can therefore configure and open ports, such as the Streaming
Port. When opening the ports, the respective hardware interfaces start operating,
thus also providing the clocks for external synchronizing purposes.

If all hardware initializations are finished, the change to state EHCI-Attached can
be performed.

EHCI-Attached

In the state EHCI-Attached, the EHC has full, bi-directional access to all data types
of the MOST network. The application is also fully available for the network and
the applicative function blocks (FBlocks) must be registered at the NetworkMaster.

Consequences of EHCI State and NetBlock

In the state EHCI-Protected and the state EHCI-Semi-Protected NBMIN takes on
the role of the main contact with regard to administrative queries from the network.
Due to the fact that certain information is only available when the application is
ready for operation, certain queries are acknowledged either with an empty list or
with an error message.

10.6 Configuration through Configuration String 205

The NBMIN also answers corresponding administrative queries in the state EHCI-
Attached. Application-related queries to the EHC and its NetBlock (NBEHC), how-
ever, are then passed on to the application.

10.5.2 The Watchdog Functionality

In general, watchdog circuits are used to supervise applications with regard to mal-
functions. For that purpose, a signal is implemented in the application, which, in
normal operation, appears cyclically. This signal is applied to the watchdog circuit.
If the signal fails to appear, this can be interpreted as an indication of a malfunction.
For eliminating a malfunction, discrete watchdog circuits often trigger a hardware
reset and consequently a re-initialization of the complete application.

In the case of the watchdog mechanism implemented in the INIC, messages which
are exchanged between INIC and application, take on the role of the signal. Super-
vision is implemented individually for the sending and receiving direction. The time
interval, which is set by the application during initialization and used during run-
time, is valid for both directions.

When data is received from the EHC, the INIC continuously supervises whether the
application regularly sends valid messages within the set time interval. Usually, the
application communicating to the MOST network during normal operation ensures
the necessary signaling. Should communication with the network not be necessary,
the application will continue to trigger the watchdog.

In the sending direction, supervision only takes place if the INIC has sent a message
to the application. In this case, the INIC supervises that the acknowledgement of re-
ception for the sent message arrives within the defined time interval.

If the INIC detects a violation of the time interval, it protects the network from ef-
fects resulting from the obvious malfunction of the application by the EHCI State
Machine carrying out a change to the EHCI-Protected state. In addition, the INIC
has a dedicated reset output for the application. When this option is activated, by a
respective configuration by the application, the INIC then triggers a hardware reset,
e.g., of the EHC.

10.6 Configuration through Configuration String
Since the completion of the EHC start-up usually takes some time, there is a Con-
figuration String inside the INIC, which contains a sequence of values that allow
controlling the initialization of hardware and firmware of the INIC at the earliest
possible moment during MOST device start-up.

206 10: MOST Interface Controller

Fig. 10.12: Exemplary INIC Configuration String of OS81110

The Configuration String can be modified either through the ECH, or through INIC
Explorer. On ROM based circuits, the Configuration String can be written twice.
Flash based INICs allow modifying the Configuration String as required.

10.7 Control Port
The Control Port is based on the I²C-Bus, i.e., on serial data transmission by means
of a clock line, a data line and an interrupt line. With regard to the I²C, the INIC be-
haves as I²C-Slave supporting Clock Stretching.

INIC

MOST Network Port

Stream Control MediaLB SPI
OS81110 only

TSI
OS81110 only

IN
T

S
C

L

S
D

A

Fig. 10.13: INIC Control Port

10.8 Streaming Port 207

The INIC signals the availability of data by means of an Interrupt Pin (INT). The
Control Port transports control and/or packet data between INIC and EHC. In addi-
tion, it can be used to write firmware and configuration data to the INIC. The I²C
address used for the Control Port is specified in the Configuration String.

10.8 Streaming Port
The Streaming port connects INIC to multimedia sources and/or sinks using serial
point-to-point connections. It is synchronized to the MOST network and provides
up to 4 serial data pins, which are configurable with respect to direction, data rate
and data format. The Streaming port is configured through INIC API.

It supports several different data formats and provides 2 clock pins to synchronize
external hardware to the MOST clock. Maximum clock speed is 512 Fs (for
OS81110 only).

INIC

MOST Network Port

Stream Control MediaLB SPI
OS81110 only

TSI
OS81110 only

SCK

FSY

S
X

0
S

X
1

S
R

0
S

R
1

Data
(example)

cl
oc

k

Fig. 10.14: INIC Streaming Port

All data signals of the Streaming Port share one clock pin (SCK) and one synchro-
nization pin (FSY; for differentiating between Left/Right). If FSY and SCK are
configured as output, they drive the serial data transmission on the Streaming Port.
In this case, the externally connected peripheral components have to synchronize to
FSY and SCK. It is possible to configure FSY and SCK as inputs. When doing so,
the synchronization of these signals must take place via the RMCK (Recovered
Master Clock) output of the INIC.

Those connections at the INIC that transport Streaming Data serially towards the
periphery (out of the INIC) are called SX0 and SX1. From the perspective of the
application, they are the sources of the Streaming Data. Accordingly, there are the
data sinks SR0 and SR1, which transport data from the periphery into the INIC.

208 10: MOST Interface Controller

10.9 SPI Port
The SPI port of the OS81110 is implemented as shown in figure 10.15. It can oper-
ate at a clock rate of up to 25 MHz (SCLKn = 512*Fs @ 48kHz) as SPI slave.

The INIC receives information about the direction of a data transfer from the SPI
bus master through SDIN.

INIC

MOST Network Port

Stream Control MediaLB SPI
OS81110 only

TSI
OS81110 only

S
D

IN

C
S

S
C

LK
S

D
O

U
T

Fig. 10.15: INIC SPI Port

10.10 Transport Stream Interface (TSI)
The OS81110 has a serial 4-pin TSI interface capable of operating at bit rates up to
50 Mbps (1024*Fs). It supports TSI Master mode (transmission) or TSI Slave mode
(reception).

INIC

MOST Network Port

Stream Control MediaLB SPI
OS81110 only

TSI
OS81110 only

T
C

L
K

T
D

A
T

T
S

Y
N

T
V

A
L

Fig. 10.16: INIC TSI Port

The TSI port packet structure uses a packet size of 188 Bytes. OS81110 has up to
two 2 TSI ports that can run simultaneously.

10.11 MediaLB Port
The Media Local Bus (MediaLB) was developed to be able to transmit all types of
multimedia data and additionally transmit data for controlling applications (see the

10.11 MediaLB Port 209

most current MediaLB specification) [MediaLB]. These properties make it different
from the generally used and highly specialized serial interfaces. It is a transmission
medium which is synchronous to the MOST bus. It is used on printed circuit boards
to connect different integrated components in a way that saves board space and
keeps pin-count low.

MediaLB Physical Interface
MediaLB

Signal Names

3-pin
(single-ended)

5-pin
(single-ended)

6-pin
(differential)

MLBCP MediaLB Clock
(MLBC)

MLBCLK MLBCLK
MLBCN

MLBSI MLBSP MediaLB Signal
(MLBS)

MLBSIG
MLBSO MLBSN
MLBDI MLBDP MediaLB Data

(MLBD)
MLBDAT

MLBDO MLBDN

Table 10.2: Nomenclature of MediaLB Signals

MediaLB can be implemented with 3 pins, 5 pins, or 6 pins. The 5-pin MediaLB
was specified to enable such components to be equipped with MediaLB, which
have unidirectional pin circuits only. This results, however, in more space being re-
quired, additional logic circuits being used and the maximum speed being lower. In
practice, the 3-pin model is thus mostly used, followed by the 6-pin MediaLB. Me-
diaLB uses the following signals. For detailed naming information see Table 10.2:

 MLBCLK (MediaLB Clock, uni-directional)

 MLBSIG (MediaLB Signal, bi-directional)

 MLBDAT (MediaLB Data, bi-directional)

MLBC provides the timing for the entire MediaLB system. It is created by the Me-
diaLB Controller and supports multiple clock rates. MLBC is synchronous to the
MOST network and an input for all MediaLB devices. This principle is valid for all
MediaLB implementations. Figure 10.17 shows the wiring for a 3-pin MediaLB
implementation. For MediaLB 6-pin, there are modes which internally multiply the
frequency of the MLBC signal by means of a PLL, so that the data transfer actually
is based on an internally “recovered” clock that runs at higher speed. So there is a
difference between the external and the actually used clock.

210 10: MOST Interface Controller

Table 10.3: Number of channels depending on the clock rate on MLBC

M
O

S
T

 N
et

w
o

rk

MLBSIG

MLBCLK

MLBDAT

MediaLB
Device 3

MLBSIG

MLBCLK

MLBDAT

MediaLB
Controller

RX

TX

MLBSIG

MLBCLK

MLBDAT

MediaLB
Device 1

MLBSIG

MLBCLK

MLBDAT

MediaLB
Device 2

Fig. 10.17: Connection diagram of a 3-pin MediaLB implementation

In a MediaLB Bus, there is a MediaLB Controller, which is responsible for generat-
ing the clock. The MediaLB devices operate their MediaLB interface according to
this predetermined clock.

Depending on the clock rate, there are different transport capacities available on the
MediaLB (see Table 10.3). Four subsequent bytes (4 bytes = quadlet) are combined
to form a physical channel. The first Physical Channel (PC0) of a MediaLB Frame
is reserved for the System Channel, as it is called.

MediaLB Actual
MLBCLK

3-pin 5-pin 6-pin

Quadlets
per Frame

Physical
Channels

Physical
Channels
available

 for the

application

256*Fs X X 8 PC0 - PC7 7
512*Fs X X 16 PC0 - PC15 15

1,024*Fs X 32 PC0 - PC31 31
2,048*Fs X 58 PC0 - PC57 57
3,072*Fs X 87 PC0 - PC86 86
4096*Fs X 117 PC0 - PC116 116
6144*Fs X 161 PC0 - PC160 160
8192*Fs X 215 PC0 - PC214 214

10.11 MediaLB Port 211

One or more Physical Channels can be combined to form a Logical Channel having
a specified, unambiguous ChannelAddress. Logical channels operate unidirectional
and transport only one type of data, which is selectable.

M
O

S
T

 N
e

tw
o

rk

MLBCN
MLBCP

MediaLB Controller

MLBSN
MLBSP

MLBDN
MLBDP

N
et

w
o

rk
 P

o
rt

MLBC

MLBS

MLBD

3.3 V

MLBD

MLBS

MLBC
MLBCN
MLBCP

MediaLB Device 3

MLBSN
MLBSP

MLBDN
MLBDP

MLBCN
MLBCP

MediaLB Device 1

MLBSN
MLBSP

MLBDN
MLBDP

MLBCN
MLBCP

MediaLB Device 2

MLBSN
MLBSP

MLBDN
MLBDP

Fig. 10.18: Connection diagram of a 6-pin MediaLB implementation

MediaLB uses a time-multiplexed bi-directional signal line for ChannelAddresses,
Commands and RxStatus signaling. This line is called MLBS. Opposite to the
MLBC, it can be read and driven by all MediaLB devices. ChannelAddresses indi-
cate which device can transmit data when and which devices can receive data on a
particular logical channel.

The MLBD signal is the time-multiplexed bi-directional data line, which also can
be driven or read by all devices. At a given time, only one device is allowed to drive
this line. It is possible that more than one device is listening to MLBD.

Due to the fact that the MediaLB runs synchronously to the MOST network, the
MediaLB is also organized in frames.

212 10: MOST Interface Controller

The control of the bus access is achieved on the level of the logical channels via the
channel addresses. The MediaLB controller arbitrates data transfer amongst all Me-
diaLB devices. The actual access is then carried out at a distance of one quadlet. It
is used, e.g., by a MediaLB Device for sending out streaming data.

The separation into frames is done by means of a specific identification, the
FRAMESYNC pattern. This pattern is also generated by the MediaLB Controller
and signals that after one quadlet, the next frame with its system channel will start
(see fig. 10.20).

Tx Device
Data 0

Tx Device
Data 1

Tx Device
Data 2

Tx Device
Data 3

MLBSIG

MLBDAT

(1 quadlet = 1 physical Channel) (1 quadlet = 1 physical Channel)

Controller
ChannelAddress

Tx Device
Command

Rx Device
RxStatus

Controller grants the
Transmitting Device (Tx Device)
access to the logical channel
associated with the ChannelAddress.

Transmitting device (Tx Device)
transmits its Command and the

associated data.

Receiving Device (Rx Device)
accepts or rejects the data
using the RxStatus field.

Controller
ChannelAddress

PC n-1 PCnPC n-2

4-bytes Delay

Fig. 10.19: Block Data transmission on the MediaLB

Byte

0

Byte

1

Byte

2

Byte

3

Byte

4

Byte

5

Byte

6

Byte

7

MLBSIG

MLBDAT

PC0 PC1

24 25 26 27 28 29 30 31

PC6 PC7

4-byte Delay
(1 quadlet = 1 physical Channel)

Controller
FRAMESYNC

Controller
Data

Sys
Cmd

System
Channel

etc.

Byte Byte Byte Byte Byte Byte Byte Byte

Fig. 10.20: MediaLB frame and the FRAMESYNC pattern (at 256*Fs)

The extended clocking options for MediaLB 6-pin and the design of the signal lines
significantly increases data throughput on MediaLB. Further information can be
found in the MediaLB Specification.

10.12 Power Management
The INIC supports external power management circuits by means of two separate
input pins. Depending on the state of these pins, the INIC reacts according to the
MOST Specification.

10.13 Intelligent Muting 213

PS1 PS0 Status

0 0 UNormal
0 1 Switch-To-Power (STP)
1 0 UCritical
1 1 ULow

Table 10.4: Input Pins for external Power Management

10.13 Intelligent Muting
Streaming connections in a MOST network are established between the devices as
needed and usually stay alive as required. Nevertheless, there are imponderabilities
that might lead to disturbances in the network and to unwanted audible or visible ef-
fects. The built-in intelligent muting of the INIC allows to automatically mute sink
socket connections to prevent the application from receiving corrupted streaming
data. Intelligent muting is triggered by either an unlock, or on occurrence of a Net-
work Change Event (NCE, related to an MPR change - for instance when one node
has left the ring).

Automatic muting is available for synchronous data, and DiscreteFrame Isochro-
nous Streaming data (IsocDiscFrameData) on both, the Streaming Port and the Me-
diaLB Port.

10.14 Network Interface Controller (NIC)

10.14.1 Available Interfaces

In contrast to INICs, Network Interface Controllers (NICs) are controlled by direct
read/write access to individual memory locations. The roles of the existing inter-
faces therefore have a different definition than in the case of INICs. The application
running on the EHC is responsible for the behavior of the entire device, e.g., for
start-up and error management.

This resulted in a few obstacles for the MOST systems of the first generation, which
were taken into account when developing the INIC. One of these obstacles was the
delayed start-up of the application of some devices. Due to the bypass being closed
for too long, there was a risk of delayed system starts or of instabilities because of
missing data recovery. Errors in applications could trigger errors in the recording of
storage positions in the NIC. This in turn had effects on the entire MOST network.

214 10: MOST Interface Controller

These weaknesses were addressed by encapsulating these mechanisms within the
INIC. At the same time, the Media Local Bus (MediaLB) replaced the available 8-
bit interface of the NIC, which resulted in less space requirements and less imple-
mentation expenses. This is why new developments are realized with the INIC.

Fig. 10.21: Block diagram of an
OS8104A

This section takes the NIC component OS8104A as an example. It has meanwhile
replaced the NIC of the first generation (OS8104) when updating existing designs.

The basic configuration of the OS8104A is done during the hardware initialization,
via the Configuration Interface (CI).

The Control Port (CP) allows write/read access to the internal memory of the NIC.
It thus enables fine tuning configuration of the component, but also communication
via Control Messages and packet data transfer up to 48 bytes packet length. Also
routing, i.e., processing of the streaming data, is controlled via CP. It can be oper-
ated in serial or in parallel.

It is the main task of the Source Port (SP) to transport streaming data. As the hard-
ware of the SP is generally able to handle very high data rates, there are further
modes for the SP in parallel operation:

 Parallel-Asynchronous mode

 Parallel-Synchronous mode

 Physical (Parallel-Combined) mode

10.14 Network Interface Controller (NIC) 215

10.14.2 Serial Operation

CP

In serial operation, the CP can transmit data either in the I²C format (as I²C-Slave
with Clock Stretching) or in the SPI format.

SP

Similar to the INIC, the data signals of the Source Port share a Clock Pin (SCK) and
a Synchronization Pin (FSY, for distinguishing left/right). If FSY and SCK are con-
figured as outputs, they drive the serial data transmission on the Streaming Port. In
this case, the externally connected peripheral components must synchronize to FSY
and SCK. If this is not possible, FSY and SCK can be configured as inputs.

10.14.3 Parallel Operation of CP and SP

Note: If FSY and SCK are configured as inputs, the synchronization of the applica-
tion must take place via the RMCK (Recovered Master Clock) output of the NIC.

CP

In parallel operation, data is written to or read from the memory of the NIC in a
byte-wise manner. The parallel operation requires additional control signals, which
are described below.

SP

The parallel operation significantly increases the data throughput of the SP. Per-
formance is so high that a single component per MOST Frame can simultaneously
read the complete 60 bytes streaming data from the MOST network and write back
60 new bytes. In the Physical Mode, 64 bytes per frame can flow from the applica-
tion to the MOST network and back. In this case, additional control information for
the interface operation is included.

10.14.4 Possible Configurations (Serial/Parallel)

It is possible to operate the NIC in a completely serial or completely parallel man-
ner. There is also a combination of serial and parallel operation, in which the Con-
trol Port is operated in the serial mode and the Source Port already in the parallel
mode.

216 10: MOST Interface Controller

serial SP / serial
CP

I2C / SPI

S/PDIF,
I2S,...

S/PDIF,
I2S,...

parallel SP / serial
CP

I2C / SPI

parallel SP / parallel
CP

88

CP

SP

CP

SP

CP

SP

Fig. 10.22: Possible basic configurations for CP and SP

Note: If parallel operation is selected, the serial Source Port pins (SX0 to SX3, and
SR0 to SR3) are no longer available. They are converted to an 8-bit wide data bus.

10.14.5 The Basic Configuration of a NIC

The basic configurations for parallel or serial operation are done during the hard-
ware initialization. The Configuration Interface, as it is called (a group of connec-
tion pins), provides this in cooperation with the Reset Pin of the NIC. It consists of
the following pins:

 PAR_CP (Control Port parallel)

 PAR_SRC (Source Port parallel)

 ASYNC (parallel asynchronous mode of the SP)

 LEG (OS8104 compatibility mode)

 SCL (Clock of the serial CP interfaces)

These pins are read with the rising edge of the Reset Pin. The NIC then carries out
the relevant internal configuration. It signals the end of the configuration and thus
readiness for operation by means of triggering off the first interrupt (Power-On In-
terrupt).

Note: Before the first access to the CP, the application must, by all means, wait for
the Power-On Interrupt.

After that, none of the pins – except the SCL – must change their mode. SCL is a
Clock Pin which is used in the serial CP Interface. Depending on the selected bus,
this pin is either at logic “1” (I²C) or at logic “0” (SPI) in idle mode. It is assumed
that in the case of the Reset there are no data transmissions into the CP, i.e., there is
an idle phase, in order to enable proper detection.

10.14 Network Interface Controller (NIC) 217

10.14.6 Interfaces for Control Data in NICs

Control data is always fed into the component via the CP and read from there, inde-
pendent of the CP being operated in parallel or serial. The Control Messaging is
based on internal buffers of the NIC, i.e., a group of correlated registers.

10.14.7 Interfaces for Streaming Data in NICs

The SP provides for a multitude of streaming formats and data rates in both, the se-
rial and the parallel mode. Control of the flow of Streaming Data is ensured via the
MOST Routing Table (MRT). This table controls the Routing Engine, which carries
out the actual data transport.

In the serial mode, eight serial Interface Pins are available at the maximum. De-
pending on format and speed, they can all operate simultaneously. There are four
pins in each direction (in/out) to which A/D converters, codecs or DSPs can be con-
nected.

The highest throughput of Streaming Data is obtained via the Parallel Synchronous
Mode of the SP. The Physical Mode is based on the same Interface Mode. It has the
same throughput with regard to the Streaming Data.

10.14.8 Interfaces for Packet Data in NICs

Packet data can be sent and received via the internal memory of the NIC. There,
data is accessible either via the CP, or the SP in the Parallel Asynchronous Mode.
The maximum payload is 48 bytes in this case.

If longer packet lengths and thus higher data throughputs are required, the Physical
Mode (Parallel Combined Mode) can be used. This interface requires an appropri-
ately dimensioned connection to the application.

218

219

11 Tools

11.1 Overview
The development process of MOST systems uses the well-known V-Model. The
left side of the V-Model, as illustrated in figure 11.1, is composed of three phases.
In the market, there are same simulation and analysis tools that represent these
phases.

simulated
Node

real
Node

real
Node

real
Node

real
Node

Phase 1

Phase 2

Phase 3

simulated
Node

simulated
Node

Design and
Analysis Tools

Design and
Analysis Tools

Design and
Analysis Tools

simulated
Node

simulated
Node

simulated
Bus

simulated
Bus

physical
Bus

physical
Bus

Real partial system

Real system

Virtual partial system

Virtual system

Fig. 11.1: The develop-
ment process from net-
work simulation to the
real total system (accord-
ing to [vector])

In phase 1, the simulation of the complete system with respect to the requirements
takes place. Here, the functional and communicated behaviors of the MOST nodes
will be verified. In this phase, the function blocks are defined by a MOST editor
and the dynamical behavior is described by an MSC editor (refer to section 11.2).

During phase 2, the MOST ECUs are developed and integrated step by step into the
network. There are real and virtual ECUs in this phase, which is called Remaining
Bus Simulation as well. Rapid prototyping tools drive push on this process (refer to
section 11.4). Software libraries for the Network Service (refer to chapter 9), which
are promoted by several software houses, support the software development. INIC
Remote Viewer and MediaLB Analyzer provide the hardware development (refer to
section 11.5).

220 11: Tools

In phase 3, all real ECUs are available. The complete system can be tested and veri-
fied now.

Node 1

Node test

Network test

Node test

F
un

ct
io

n
te

st

F
u

n
ct

io
n

te
st

P
ro

to
co

l
te

st

P
ro

to
co

l
te

st

C
o

m
pl

ia
n

ce
te

st

C
om

p
lia

n
ce

te
st

Fig. 11.2: Overview over the
test levels of a MOST system

Tests of the single MOST ECUs and the complete network take place in phases 2
and 3. Figure 11.2 illustrates the necessary test levels. At first, function and compli-
ance tests are executed of a single ECU. The function tests warrant the accurate im-
plementation of the user application, and the compliance and protocol tests check
the correct communication behavior in regard to the MOST Specification. Follow-
ing, the complete MOST network is tested in the lab, then on the test board and fi-
nally in a car. Chapter 12 introduces the compliance tests and chapter 13 the MOST
tests.

11.2 Specification Tools

11.2.1 MSC Editor

The Message Sequence Chart Editor (MSC editor) is the graphical tool that is used
to edit Message Sequence Charts (MSCs). More advanced tools are visual model-
ling tool for analysis, specification, documentation and testing of communications
services and protocols. There are open source and commercial MSC editors.

MSCs are described in appendix A.

11.2.2 MOST Editor

Some OEMs maintain a database that contains the complete communications pa-
rameters of all bus systems of a car, including the MOST function blocks. They use
proprietary editing tools in this case. However, the MOST Cooperation has devel-
oped its own MOST Editor, which is described in this section.

11.2 Specification Tools 221

The MOST Editor can be used for creation and data management of function cata-
logs, also provided by the MOST Cooperation, in XML format. The function cata-
log contains the function blocks with all their defined methods and properties. The
individual description of the MOST device is based on this catalog. Those methods
and properties of the function block that are not to be implemented are deleted and
the value range of the existing parameters is adapted.

The actual user interface is divided into two parts (see fig. 11.3). The left side con-
tains the function tree. It shows the individual function blocks with their functions.
The right side contains a detailed view of the functions.

Fig. 11.3: MOST Editor

The function tree can be extended or amended using the context menu that can be
activated by clicking the respective entry with the right mouse button. After select-
ing a function, its properties are shown in the left window.

The description of a function must have the following entries:

 ID

 Function class

 Section

 Textual description in HTML format

 Available OPTypes (e.g., Get, Set)

 Version information

222 11: Tools

Figure 11.3 shows the dialog for defining the operation types of a function. In the
example given, the function TimePosition of the function block AudioDiskPlayer
has the OPTypes Get, Set, SetGet, Increment, Decrement, Status and Error. In the
next step the parameters for each OPType are defined.

All parameters are stored in the XML function catalog containing the following en-
tries [Cat 02]:

 XML version

 Function catalog header

 Header of the current function block

 List of the functions with their parameters

 Definitions of the function classes

The following listing shows the basic structure of the function catalog:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE FunctionCatalog (View Source for full doctype...)>

<FunctionCatalog>

 <CatalogVersion>

 </CatalogVersion>

 <!-- FBlock: AmFmTuner -->

 <FBlock>

 <Function>

 ….

 </Function>

 <Function>

 ….

 </Function>

 </FBlock>

 <Definition>

 …

 </Definition>

</FunctionCatalog>

11.3 Simulation and Analysis Tools 223

11.3 Simulation and Analysis Tools
Simulation and analysis tools are a set of tools for the development, testing and
analysis of MOST networks using a consistent Graphical User Interface (GUI). At
the beginning of the development process, they are used to create simulation models
that emulate the behavior of the MOST nodes. During the development, these mod-
els serve as a foundation for analysis, testing and integration. The tools should sup-
port the following functions:

 Online analysis of MOST network data enables data analysis in real time. Off-
line analysis, on the other hand, evaluates recorded data. Specific events can be
highlighted or scoped based on the adjustments of the filter and trigger settings.
A time stamp synchronization of Viewer, Graph and Watch functions supports
the evaluation of data in chronological alignment.

 A stress tool generates load on the Control and Packet Data Channel and ap-
plies modulated signal & lock sequences with precise timing.

 A tool for the access to the hardware and network states such as light &
lock, system lock and configuration status. Together with the stress tool, it
gives a statistic overview of the quality of transmission.

 A Viewer for the Control Channel enables the analysis of CMS and AMS
protocols on a high level. It shows MOST events on the MOST ring.

 An FBlock Viewer gives an overview of the application states that are com-
municated over the bus. It shows all or selected properties values transmitted
over the bus. It needs the XML function catalog for the disassembling of the
values.

 A Viewer for the Packet Data Channel should show the MOST High Proto-
col, MAMAC and MDP, depending on which of those are implemented. In
MOST150 systems, it should visualize the Ethernet channel. A transmitter
function sends packet data to other network nodes.

 The tools should enable the access to the Streaming Channel. All synchro-
nous and isochronous channels may be transmitted with 44.1 kHz or 48 kHz to
the PC or in the reverse direction from the PC onto the ring.

 If the tool analyzes MOST slave nodes, it has to emulate TimingMaster, Net-
workMaster and PowerMaster

 The Central Registry stores all FBlocks that are available in the MOST system
with node position address and logical address as well as the instance ID. A
viewer can show the FBlocks with the parameters and enable a comfortable ac-
cess to the system.

224 11: Tools

11.4 Rapid Prototyping Tools
Rapid Prototyping Tools drive the development of MOST ECUs. You can choose
between the following types:

 Network Services Library; It supports the software development and was con-
sidered in chapter 9.

 Plug-in for Simulation and Analysis Tools

 Hardware platform Rapid Prototyping and Evaluation

 PC Tool Kit

 System components

11.4.1 Plug-in for Simulation and Analysis Tools

These tools must provide a quick way to create control panels for MOST devices.
The panels serve to display bus signals in user-defined windows with graphic con-
trols. Often, various controls are available such as text boxes, sliders, and pointer
instruments. The panel design may include static elements (text or frames), macros
as well as background graphics. Scripting languages enable the automatic execution
of simulation, test and analysis functions.

11.4.2 Hardware platform for Rapid Prototyping and Evaluation

The hardware platform consists of the physical layer (oPhy or ePhy), an INIC for
MOST25, 50 or 150 and offers interfaces to the External Host Controller (EHC)
and to the audio/video in- and outputs. Figure 11.4 shows the fundamental architec-
ture of the platform. A Microcontroller or FPGA on board separates the Streaming
and Packet Data Channel as well as the Control Channel. It transfers the Packet
Data Channel and the Control Channel to a PC via USB and the Streaming Data to
a codec. On the PC, the Network Service and an EHC application are running. A
MediaLB header could provide an interface for the MediaLB analyzer.

11.4 Rapid Prototyping Tools 225

MediaLB

MediaLB
Header

U
S

B
C

o
nt

ro
lle

r

N
e

tw
or

k
S

er
vi

ce

E
H

C
S

e
rv

ic
e

C
O

D
E

C

I2C

I2C
Line out

USB

PC

Line in
I2S

P
hy

In
te

rf
a

ce

IN
IC

M
ic

ro
-

co
n

tr
ol

le
r/

F

P
G

A

Fig. 11.4: Architecture of a platform for rapid prototyping and evaluation

11.4.3 PC Tool Kit

PC tool kits often contain two components: a MOST Interface as well as a bundle of
multimedia applications and MOST control functions. Figure 11.5 shows the archi-
tecture. The MOST Interface provides a high-speed connection between a PC and
the MOST network. It allows access to the Packet and the Streaming Data Channel
as well as the Control Channel and consists of the physical layer (ePhy or oPhy), an
INIC and the firmware. The interface to the PC could be PCI, USB or PXI.

The tool kits allow software development for devices and own tools without any
additional hardware.

Phy Interface

Bus Driver

INIC

Fig. 11.5: Architecture of PC tool kits

226 11: Tools

11.4.4 System components

For an effective system development, repeaters, hubs, gateways, and converters can
be used.

The repeater is a device that can act as a network extender or provide monitor-out
functionality without interfering with the network’s structure. A hub recovers the
signals and distributes data streams in a star-like architecture. A gateways provides
interconnection from MOST to other networks such as CAN.

A converter converts network signals between different physical layers, e.g., be-
tween MOST50 electrical physical layer (ePhy) and the optical physical layer
(oPhy). It is used to validate electromagnetic compatibility (EMC) and operational
electrostatic discharge (ESD) behaviors of a MOST50 ePhy Device Under Test
(DUT).

11.5 Hardware Development Tools
Each MOST ECU has got an INIC (older versions have a NIC) that can be analyzed
with two specialized tools. Those are the INIC Remote Viewer and the MediaLB
Analyzer.

11.5.1 INIC Remote Viewer

INIC Remote Viewer provides a detached gateway which is used to remotely ana-
lyze INIC-based MOST network node information. The viewer can provide the fol-
lowing functions:

 Monitors properties and states of FBlock NetBlock and FBlock INIC, usually
only accessible through the Debug Header

 Reads the INIC Configuration String

 Visualization of:

o INIC parameters

o NetBlock parameters

o INIC states and state changes

o Ports, sockets and connections

o Configuration string entries

11.5 Hardware Development Tools 227

11.5.2 MediaLB Analyzer

The MediaLB Analyzer allows observation and visualization of MediaLB data and
provides following functions:

 Disassembly of INIC Port Messages

 Filter and trigger definitions

 MediaLB lock and speed detection

 Speed modes for MediaLB 3-Pin and 6-Pin

 MediaLB frame and physical channel counter

 MediaLB link layer protocol check

228

229

12 Compliance Tests

12.1 Objectives of Compliance Tests
As already explained in chapter 11, the integration of network systems and modules
is particularly challenging due to their complexity. An effective measure for meet-
ing the challenge is to introduce a certification test process (Compliance Process) so
that the devices and modules are tested before they are integrated into the system.
This considerably increases the quality and reduces the complexity of integration.

It is the primary aim of the MOST Certification Test Process (Compliance Process)
to test the modules and devices with regard to their conformity with the specifica-
tion [ISO 9646] [ETS 300 406], i.e., whether the requirements of the specification
were met. The aspect of quality is closely related to the aim of reaching a high level
of interoperability.

The Compliance Tests cover a legal aspect within the MOST Cooperation. The
tested device is only allowed to participate in the MOST IP (Intellectual Property)
pool and to use the MOST® trademark (see fig. 12.1) after the compliance tests are
passed.

MOST Cooperation IP Pool
Royalty Free Cross Licensing

between Members

Membership
License to Use
Necessary IP

in MOST Specs

Royalty Free
MOST License

(if compliant
to MOST Specs)

Implementer of
MOST Product

Fig. 12.1: MOST IP and Com-
pliance Process

In accordance with the layer model, the Certification Test Process covers the fol-
lowing areas (Compliance Levels) (see fig.12.2):

 Module tests on the Physical Layer (e.g. FOT, Pigtail)
(Full Physical Compliance)

230 12: Compliance Tests

 Device test on the Physical Layer
(Limited Physical Compliance)

 Device test on higher communication levels
(Core Compliance)

 Device test on the Application Layer
(Profile Compliance)

Fig. 12.2: Compliance Levels

12.2 Organization of the Compliance-Process

12.2.1 Authorities for the Compliance Process

Several authorities were installed to work together on the Certification Test Process
within the MOST Cooperation (see fig. 12.3). The MOST Compliance Supervisory
Board (MCSB) is responsible for controlling and supervising the entire process. It
authorizes the MOST Compliance Administrator (MCA) to supervise the Test
Process. He accepts the test reports from the MOST Compliance Test Houses,
checks them and finally grants the certificate.

12.2 Organization of the Compliance-Process 231

Fig. 12.3: Organization of the Compliance Process (source: [ComReq])

The performance of the Compliance Test is effected by MOST Compliance Test
Houses (MCTHs) approved by the MOST Cooperation. They are accredited accord-
ing to the ISO 17025 General Requirements for the Competence of Testing and
Calibration Laboratories by the German Accreditation Body for Engineering
(DAkkS- Deutsche Akkreditierungsstelle GmbH) in Berlin /Frankfurt, Germany.

The test specifications, errata, as well as the technical consulting are effected by the
MOST Compliance Technical Group (MCTG) – a board of experts in which the test
houses are represented.

12.2.2 Workflow of the Compliance Process

The workflow of the certification test is carried out in three steps:

Step 1
The manufacturer selects a MOST Compliance Test House (MCTH) and develops
the test plan together with the test house. For that purpose, the manufacturer has to
make all documents required for the test available to the MCTH.

Step 2
The MCTH carries out all necessary tests and writes the test report as well as manu-
facturer’s declaration, the Declaration of Compliance (DoC), which is to be added
to the Compliance File.

232 12: Compliance Tests

Step 3
The MOST Compliance Administrator (MCA) checks the Compliance File and lists
the product, upon application by the manufacturer, as a MOST Compliant certified
product in the MOST Compliance Product List (MCPL). Thus the manufacturer is
granted the MOST license.

Figure 12.4 gives a survey of the workflow of the Compliance Process.

Fig. 12.4: Workflow of the Compliance Process (source: [ComReq])

12.3 Physical Layer Compliance Tests
With regard to the Physical Layer Compliance, the measurement principles and the
measurement methods were defined first, as well as the tolerances on which the
tests were to be based. Within the scope of MOST Compliance, there are test points
SP1 to SP4 (see fig. 12.5 and chapter 6).

In the second step of the Compliance Process the procedures to be carried out (test
cases) were defined. They indicate voltage and temperature ranges for which the
following measurements at test points SP1 to SP4 are to be carried out in particular:

 Bit rate

 Logical levels

 Rise times

 Pulse width variation and distortion

12.3 Physical Layer Compliance Tests 233

Fig. 12.5: Example of a test setup for the Physical Layer Compliance (EOC – Electri-
cal/Optical-Converter; OEC – Optical/Electrical-Converter) (Source: [ComPhyLP 1.0])

 Data-dependent and uncorrelated jitter

 Input resistance and capacity

 Wave length determination

 Optical output power

 Extinction

 Positive and negative overshoot behavior

 Signal ripple

Temperature

Device under Test

NIC
or

INIC

SP2

EOC

SP3

OECAttenuation

Optical
Power Meter

Oscilloscope

High-speed
OEC

MOST
Test-Signal
Generator

IN

OUT

Fig. 12.6: Test setup for the Limited Physical Layer Compliance Test

234 12: Compliance Tests

The Limited Physical Layer Compliance Test aims at testing complete devices and
can be considered as a Blackbox test, since only test points SP2 and SP3 can be
tested. Figure 12.6 shows the setup for the Limited Physical Layer Compliance
Test. For MOST150, the Physical Layer Stress Test Tool is applied.

Tester

Spy

DUT
Power
Supply

(adjustable)
A

el. Wake-up

MOST

MOST

Tester
1

Spy

DUT
Power
Supply

(adjustable)
A

I

el. Wake-up

MOST

MOST

Test r
2

MOST

MOST

M
O

S
T

M
O

e

S
T

Switch

a a

bb

(a)

(b)

Fig. 12.7: Test setup with one (a) and two (b) testers for Core Compliance Tests

12.4 Core Compliance Tests
Based on an analysis of the MOST Specification, the requirements (specification
points) for the Core Compliance Tests were determined and the test cases were
written. These test cases verify the following behaviors:

 Wake-up behavior

- Wake-up – TimingMaster

- Wake-up – woken up TimingSlave

- Wake-up – waking TimingSlave

 Normal behavior (Normal Operation)

 Power Management

 Error Management

 Ring Break Diagnosis

12.4 Core Compliance Tests 235

 System Configuration

- Initialization (NetworkMaster)

- System Configuration (NetworkMaster)

- System Configuration (NetworkSlave)

 Node addressing

 Control-Messages (Ack/Nack-Test)

 Notification matrix

 Segmentation of messages

Figure 12.7 gives an overview of the necessary test setups. The upper part of the
figure (a) shows the simple setup with one tester, the lower part (b) shows the setup
with two testers, by means of which the behavior in the ring can be simulated:

DUT in
SleepMode

generate
wake-up event

DUT ok DUT not ok

start t_wakeup
(max)

t_test :=
t_wakeup

(receiving MOST
signal) or (timeout

t_wakeup)?

t_test := t_wakeup

t_test <
t_wakeup_max?

yes

no

yes

no

Fig. 12.8: Test case
Signal On Test

236 12: Compliance Tests

It is often necessary to support the workflow of the tests with function block En-
hancedTestability (ET), which acts as a “filter” between the application and the
MOST Network Interface Controller and can be triggered by various events. It fea-
tures the following characteristics:

 It is located between the application and the NetInterface, it is mandatory for
each device or each MOST node and must not have any effect on the overall
device behavior. This applies in particular if the device is not under test condi-
tions.

 It generates or suppresses signals.

 The FBlock is only available in the NetOn state and does not store any values
about a power failure.

 Typical functions of the FBlock ET are, for example, AutoWakeup, NetInter-
faceState, SendMessage, EchoMessage or Reset.

Figure 12.8 shows an example of the workflow of the test case Signal On Test.

12.5 Profile Compliance Tests
Profile Compliance Tests cover, as seen in figure 12.2, the individual applications
(profiles), such as the ConnectionMaster. Figure 12.9 shows the setup of the Profile
Compliance Tests. They make use of the general structure of the profiles (function
blocks). Since the FBlocks are derived from the generic FBlock template Gener-
alFBlock, the parts of the FBlocks that are to be tested generically are also de-
scribed in a high level MOST Profile Compliance Test Specification.

MOST Profile

Compliance Test
Specification

ConnectionMaster
MOST Profile

....
Compliance Test

Specification

MOST Profile
....

Compliance Test
Specification

MOST Profile
Compliance Test

Specification

Fig. 12.9: Structure of the Profile Compliance

Distinctive features and the dynamic behavior, in particular, are tested in the pro-
file-specific test specifications derived from the FBlocks.

12.6 Interoperability Tests 237

Figure 12.10 shows the example of a Message Sequence Chart (MSC) used to de-
scribe a test case (“SyncConnectionTable_Get”) for the Profile Compliance Test.
The test cases specified in this manner serve as a basis for the MOST Compliance
Test Houses (MCTH) and for the test tools described in section 12.7. The tests de-
fined there, based on the abstract test specifications, must still be implemented.

12.6 Interoperability Tests
Interoperability Tests are defined as functional tests with respect to other functional
MOST products. Interoperable MOST products in the field are meant to increase
the user’s trust in the MOST system. This is why the MOST Compliance Process
calls for Interoperability Tests.

238 12: Compliance Tests

Profile_ConnectionMaster_Compliance_Test_Specification

msc Test_CM_SyncConnectionTable_Get

Initiator_Tester Source_Tester Sink_Tester ConnectionMaster

Result := DUT ok Result := DUT ok Result := DUT ok

alt

IF CM supports SourceConnect mechanism

Test_CM_SC_Connect

IF CM does not support SourceConnect mechanism

Test_CM_Allocate

SyncConnectionTable.Get
t_1

[t_Property]

exc
t_1

Result := DUT not ok (1)

SyncConnectionTable.Status
(ConnectionList=_)

exc

ConnectionList does not contain
connection from "Source_Tester"

to "Sink_Tester"

Result := DUT not ok (2)

alt

IF CM supports SourceConnect mechanism

Test_CM_SC_DisConnect

IF CM does not support SourceConnect mechanism

Test_CM_DeAllocate

SyncConnectionTable.Gett_1
[t_Property]

exc
t_1

Result := DUT not ok (3)

SyncConnectionTable.Status
(ConnectionList=_)

exc
ConnectionList contains

connection from "Source_Tester"
to "Sink_Tester"

Result := DUT not ok (4)

Fig. 12.10: Example of a Profile Compliance Test Case (SyncConnectionTable-Get)

In order to make sure that Interoperability Tests are reproducible and can be carried
out consistently by all manufacturers, a set of products has been defined for con-
ducting Interoperability Tests. These products are referred to as Golden MOST Im-
plementations (GMI) and are registered in a corresponding list. The devices to be
used for a test depend on the functional usability of the products.

239

13 Testing MOST based Infotainment
Systems

13.1 Challenges in Testing MOST Systems
The integration of modern and powerful infotainment systems, which today are
largely based on MOST, results in considerable challenges for the OEM which, in
turn, influence the way in which the systems are tested. Typically, different suppli-
ers deliver their respective MOST components to the OEM, where they are assem-
bled into a complete system.

While developing the components, the suppliers employ various, in-house devel-
opment processes, technologies and standards. The OEM then has the task of inte-
grating the components and ensuring that they interact correctly within the context
of the overall vehicle system. Some important system functions can only be
achieved through the cooperation of a number of components. An example for such
a function is accepting an incoming hands-free phone call while a music CD is be-
ing played: as soon as the phone call reaches the car, the music CD is paused and
the audio amplifier reallocates the audio channels to enable a hands-free phone call
by means of microphone and loudspeakers of the sound system.

Due to the complexity of the systems involved, integration often has to start before
the components and the software are fully developed. In addition, the integrator has
only limited interfaces available by means of which tests can be controlled and su-
pervised – typically only the external interfaces of a component, such as MOST,
CAN, etc. If errors occur during later integration phases it is usually difficult to as-
sign these errors to a specific component so that a respective change order can be
placed with the appropriate supplier. This chapter describes the test process from
the OEMs’ point of view. The following section gives an overview of the test ac-
tivities of the OEMs in the context of the V-Model. Section 13.3 describes a generic
test process used for all integration phases. The integration phases are explained in
the following sections. They are categorized into:

 component test,

 integration test and

 system test.

Section 13.7 gives a survey of test tools.

240 13: Testing MOST based Infotainment Systems

13.2 Overview of the OEM Test Activities

Requirements
Analysis

System Design

Definition of
System Architecture

Component Design

Detailed
Component Design

Risk
Analysis

Test Planning

Specification of
Integration Tests

Specification of
Component Acceptance

Tests

Implementation

System Delivery

Integration

System
Acceptance Test

System Test

Integration Test

Detailed Component
Tests

Component
Acceptance Tests

Component Tests Legend:

Design and Integration Phase

Test Phase

OEM

Supplier

Specification of
System Tests

Fig. 13.1: The V-Model (source: Daimler AG)

Figure 13.1 shows an interpretation of the V-Model that describes the allocation of
development activities between OEMs and suppliers. The requirements on the over-
all system are defined first. This results in a system design, which identifies, among
other things, the various components of the system. The requirements on the indi-
vidual components are distributed to the suppliers in the form of a component re-
quirements specification. The detailed design, implementation and test of each
component are then carried out at the supplier. The delivered components are sub-
sequently accepted by the OEM by means of component acceptance tests and then
integrated step-by-step into the overall system. Integration tests check the correct
interaction of the components. The basis for the integration tests is the interopera-
bility specification, which is defined during the specification phase. During each
test phase, the following quality characteristics are checked:

 Compliance with the functional specification

 Robustness and fault tolerance

 Performance and stability

The planning and specification of the tests can begin as soon as the requirements
have been defined.

The introduction of the MOST Compliance Process (see chapter 12) has influenced
the development process at the OEMs in the following manner: The MOST
behavior of a component is currently specified in terms of a reference to the MOST

13.3 The Test Process 241

standard and the specification of additional OEM-specific functionality. The
increasing harmonization between the OEMs will result in a reduction of the OEM-
specific functionality as more and more elements of the requirements specification
are replaced by references to the standard or OEM defiend Test Specifications, like
the Automotive Application Recommendation. The OEM can then significantly
reduce the amount of in-house testing and expect fewer problems during the
integration of the MOST system. As a result, the OEM can focus on confirming the
OEM-specified functionality.

13.3 The Test Process
In each test phase (component test, integration test, system test) a number of activi-
ties are systematically performed.

13.3.1 Risk analysis

Risk analysis is used to identify potential risks and problems related to the MOST
system under development and, if necessary, risk-minimizing measures in the archi-
tecture are defined. In addition, the risk analysis influences the planning and priori-
tization of the quality assurance activities during the development process. As part
of which, the test plan defines the focus of the test activities. The test plan consists
of the identification of the objects to be tested, test goals, methodology for reaching
the goals, resource planning and supplier management. In the course of the follow-
ing test activities, the test plan is successively refined into executable test specifica-
tions.

13.3.2 Test design

During test design, tests that were defined during the test planning phase are sys-
tematically refined into a number of test cases. The test design phase aims at defin-
ing a number of abstract test cases. The test cases specify the tests in such a manner
that they can be understood by an application expert who is not familiar with the de-
tails of the implementation. If possible, the test cases should be reusable for numer-
ous releases of the test object and possibly also for a number of different test objects
which share common properties. By describing the tests in an abstract manner (e.g.,
at the same level of detail as the requirements specification), they can be reused
more easily. A systematic approach should be applied when selecting test cases to
ensure that the test goals are adequately covered (e.g., the classification tree method
[Lehmann 2000]).

242 13: Testing MOST based Infotainment Systems

13.3.3 Test implementation

During test implementation executable test cases are implemented on the basis of
the abstract test cases. Specific values for the test input data and the expected results
are, if not already defined, selected at this point of time. If the test cases are to be
carried out manually, the test case describes a sequence of actions to be performed
by the tester in natural language according to a predetermined format. The sequence
unequivocally defines the steps to be followed during the test. If the tests are to be
carried out automatically (see section 13.7), the test cases must be programmed or
generated automatically. In this context, the systems required for executing the tests
must also be prepared.

The starting point of the test execution depends on the release of the object to be
tested. For that reason it is useful to complete as many of the test preparation activi-
ties (planning, design and implementation) as possible, before the test object is re-
leased for the test. As soon as the test object becomes available, the tests can then
be carried out without further delay.

13.3.4 Test evaluation

During test evaluation the results of the tests are evaluated and an assessment is
made as to whether the goals defined in the test plan have been achieved. In the
case of failed test cases or of deficiencies in the tests themselves, some or all phases
of the test process may have to be repeated. The results of the test evaluation are
documented as a part of the summarizing test report and issues in the test object
discovered by the tests are entered into an error tracking system.

13.3.5 Test management

Test management is responsible for the correct application of the test process and
for ensuring that the aims associated with the process are achieved. Test manage-
ment also has to accomplish a number of other tasks. It provides a contact person
for in-house (test team) and external issues (acquirer, project management, suppli-
ers, quality assurance), it organizes and moderates reviews of test artifacts, super-
vises the cooperation with suppliers and is heavily involved with test planning and
system acceptance activities.

13.4 Component Tests
Although component tests are already carried out by the suppliers, the OEM also
performs a component acceptance test of his own. This is to ensure to the highest

13.4 Component Tests 243

possible extent that the device meets the requirements of the component specifica-
tion before system integration. The focus of the component test varies depending on
the development status of the device.

Fig. 13.2: MOST Physical Layer architecture (source: [ComPhyLP 150])

The test of the optical modules is an important aspect of this test phase. The
FOT/Pigtail modules, referred to as EOC (Electrical/Optical-Converter) and OEC
(Optical/Electrical-Converter) in figure 13.2, are tested within the MOST Compli-
ance Process (see chapter 12) for conformity with the specification. The test is par-
ticularly carried out between the specification points SP1 and SP2, as well as be-
tween SP3 and SP4 (see chapter 6) [MOST 2003]. The OEM tests the correct inte-
gration of the module within the device. It is important to verify that the input sig-
nals of the FOT lie within the specified range. Typically occurring problems that
have to be tested for are, for example, an incorrect peripheral circuit of the FOT, re-
flections if the PCB-connections between NIC and FOT are too long, or attenua-
tions due to excessive bending of the Pigtail fiber in the device.

Further tests concern EMC interference caused by other modules (such as GSM
modules) and interference of other modules in the vehicle caused by the
FOT/Pigtail module itself (due to the plastic opening of the MOST connector in the
device housing). In order to be able to carry out measurements of the output signal,
a signal is usually generated by the NIC in normal operation and measured at SP2.
In a random test it is expected that there is enough buffering between the measured
signal and the predetermined tolerance limit to compensate for quality variations in
large-scale production, and for ageing and temperature drift. Latter is documented
within the physical Layer compliance Test.

The OEC is additionally tested at the input of the control device. A MOST con-
forming optical input signal is applied to SP3 and passes through the entire speci-
fied optical power range (-2 dBm to -23 dBm). A signal lock must be available
across the entire range of the optical input power, in order to identify possible er-
rors, such as increased pulse width distortion (PWD) when the amplification of the
optical receiver in the intermediate ranges is switched. In order to check the timing

244 13: Testing MOST based Infotainment Systems

parameters at SP4, worst case input signals are applied to SP3 by means of a test
device and are measured by means of an oscilloscope.

A particular challenge in testing the MOST Physical Layer is in the test setup. Ac-
tive probes with a very small input capacity are required, as well as a wideband os-
cilloscope. It must also be ensured during the tests that no undesired side-effects are
recorded, such as line reflections due to the measuring setup. In addition, the ring
architecture of a MOST System is a challenge because devices have to be measured
within a closed ring.

An essential part of the component test is the testing of the MOST Network Man-
agement functionality. The tests distinguish between the component-under-test be-
ing the NetworkMaster or a NetworkSlave. The start-up of the device, the querying
of device information and FBlocks as well as the shutdown are tested. It is impor-
tant for further tests that the device shuts down correctly as this is the prerequisite
for carrying out several automated tests successively where each test assumes that
the device is in a specific state.

Additionally, functions such as ring break diagnosis, automatic repeated transmis-
sion (low, mid and high-level) and temperature management are tested. For the
temperature management, the tests are carried out in a climate chamber, where ex-
act and repeatable variations in temperature can be tested.

For component testing, especially for core compliance testing, the temperature is
simulated by the FBlock ET. This method is easier and shorter than setting up the
device in a climate chamber.

An important characteristic of a MOST device that is to be integrated in the overall
vehicle context is its resistance to power supply variations. The static undervoltage
test checks the behavior at specific constant voltage thresholds (e.g., whether a shut-
down is carried out or whether the function is restricted). For dynamic undervoltage
tests, the voltage is varied and the device is tested to see in which range the varia-
tions can be compensated.

The component acceptance tests are often made available to the suppliers so that
they can reproduce the errors found during the acceptance tests. For that purpose
the suppliers do not only need the test scripts, but also all the relevant tools, data-
bases and documentation required to perform the tests.

Particular challenges in the testing of the network management layer are the auto-
mation of the power supply by means of controllable power supplies and the
chronological accuracy of the simulations and measurements.

Due to the functional complexity of modern infotainment systems, it is increasingly
important to ensure interoperability and functionality of the control devices as early

13.5 Integration Tests 245

as possible. It frequently happens, however, that not all control devices are simulta-
neously available for implementing a cross-system function. This is why the inter-
operability in a component test is often first tested on the basis of remaining bus
simulators and test systems. The aim is to provide a system environment sufficient
to enable the effectual testing of the MOST functionality of the device. Examples of
functions of such a test environment are the provision of a MOST NetworkMaster
and FBlock Controller to address the function blocks which are to be implemented
into the device.

13.5 Integration Tests
The focus of the integration tests is to ensure the correct interoperability between
the different MOST components. This integration step is often carried out under
laboratory conditions on customized test boards offering easy access to all inter-
faces required; this enables the quick set-up and integration, and the flexible use of
test and monitoring tools.

Network management functions, such as resource and connection management, di-
agnosis and software download can often only be tested in the integration test
phase, as the functions depend on several devices that cannot be simulated without
significant effort. A generic FBlock test is also carried out in this phase. This auto-
mated test queries each FBlock in the device to check whether all specified func-
tions are implemented and behave according to the MOST Core Compliance Test
Specification [Core]. For example, it is tested whether the correct error codes are
sent back in the case that an incorrect OPType is addressed or the parameter limits
are exceeded.

The dynamic behavior and the interoperability of the different function blocks are
specified on the basis of Message Sequence Charts [Z.120 99] (see appendix A).
The manual design, implementation, execution and assessment of tests of one Mes-
sage Sequence Chart alone can take several days. The use of a formalized specifica-
tion language, such as MSC, enables the automatic generation of tests which can
reduce this effort considerably and allows a more elaborate test than before. To de-
rive executable tests from the MSCs is, however, not as easy as it might appear at
first sight and requires the following process steps.

Defining the test interface: The specification describes the cooperation of all
FBlocks in the system. Depending on the integration phase, certain FBlocks or
FBlock Controllers will not be available in the system for a specific test. In order to
be able to execute a test fully automatically, at least one device in the system must
be simulated. In integration tests, the user pressing the key, for example, is often
simulated. In component tests, at least those devices communicating directly with

246 13: Testing MOST based Infotainment Systems

the components to be tested have to be simulated. The test interface defines which
components are to be tested and which components are to be simulated.

Modeling the test behavior: After the above described test interfaces have been
identified in all MSCs to be tested, the resulting specifications are combined into
one complete model. Alternative paths that are distributed over several MSCs are
combined and references to other MSCs are resolved. The relationships between the
individual MSCs required to build this complete model are often specified by addi-
tional High Level Message Sequence Charts, from which the individual test se-
quences can then be deduced.

Generation of test data: The messages in the MSC specifications often contain pa-
rameters which can change during runtime. A typical example is the parameter tele-
phone number in a message describing the status of a telephone call. It is important
when simulating such messages in a test environment to use concrete values. The
selection of these values can have a great influence on the test. If, for example, the
telephone number already exists in the address book, the name of the caller should
be indicated. A systematic approach is required, not only to identify the relevant test
sequences but also to identify with which parameter values the sequences should be
executed.

Further challenges with regard to the integration testing of MOST systems are,
among others, the test of non-specified system behavior (usually error cases) and
the test of the many different possible system configurations (e.g., based on combi-
nations of optional extras, country variants, etc.).

Concretization of tests: In order to execute the test cases, they have to be provided
with much system-specific information not contained in the specification for rea-
sons of abstraction (e.g., the node position address of the individual devices in the
ring). A concretization step is thus necessary to generate executable test scripts
from the test descriptions.

13.6 System Tests
During the system test, the MOST components are integrated and tested in the con-
text of the final vehicle system. The focus of the system test is to test the interop-
erability of all MOST components and other vehicle systems (such as electrical sys-
tem, CAN buses, etc.) and the stability of the individual components under “real
life” conditions. It is a particular challenge to systematically cover as many situa-
tions as possible that cannot be tested under laboratory conditions. For example, un-
favorable combinations of different operating conditions, which do not often occur
in the field but could still lead to critical malfunctions. In this case, it is important
that the causes of the error can be repeated later under controlled conditions. In this
context, data logging tools are often used (see section 13.7), which can record and

13.7 Test Tools 247

analyze the entire bus communication. Usually, a large amount of data is generated
by such tools and must be limited by using filters and trigger conditions while tak-
ing care that the relevant data still remain intact. Another problem in carrying out
system tests is the chronological synchronization of the different bus systems so
that the reaction of the MOST bus to messages from other buses (e.g., the serial
connection to the GSM phone) can be reproduced. In order to identify causes of er-
rors it may be necessary to also influence the MOST physical layer in the vehicle
(e.g., to reduce signal power in a particular section of the MOST ring).

13.7 Test Tools
Test environments and test tools are necessary for different test activities to ensure a
systematic, efficient and repeatable test. Standard, off-the-shelf test tools only sup-
port parts of the entire test process. For this reason, a tool suite is required, consist-
ing of a combination of commercial and proprietary tools and adapted to the indi-
vidual requirements of the OEM-specific processes. When using test environments
and test tools, it must be ensured that they are technically mature and that their use
does not lead to error reports which are not related to the actual test object. This
section gives a survey of the test tools relevant for the test of MOST systems.

Test Management Tools such as TestDirector [Mercury] support test planning and
test traceability. Requirements can be imported and referenced during the definition
of test cases. In this way, test results can be directly assigned to the relevant re-
quirements. Test management tools often also include defect management function-
ality. These functions support the management of defects that were found during the
tests and the tracking of the elimination of these defects. Test management tools
also provide functions for summarizing the results of the test process (number of
tests carried out, number of defects not yet eliminated, etc.) in the form of charts or
reports so that they can be used in reporting the quality of the system to project
management.

Tools for the automation of test execution activities can be roughly divided into two
groups: Tools that are responsible for monitoring and recording the MOST behavior
on the MOST bus (Tracing Tools) and tools that send specific stimuli to the test ob-
ject on the basis of predefined scripts and compare the reaction to the expected
MOST signals. Both types are often used together to obtain as complete a picture as
possible of the behavior under test.

Important characteristics of MOST Tracing Tools are, amongst other things, the
chronological exactness of the traces, the ability to decode recorded messages by
means of the XML-based function catalog specification (in real time), the automatic
composition of segmented messages, the monitoring of Packet Data and Control
Channel, the definition of complex trigger and filter conditions, as well as the

248 13: Testing MOST based Infotainment Systems

access to the Streaming and Packet Data Channel. Some tracing tools can
additionally be used as data loggers for installation in the vehicle even without a
connection to the PC or laptop. Such tools are particularly well suited for system
tests, as they can easily be built into the car and can continuously log the MOST
Bus. Tracing Tools for MOST systems have been developed by SMSC [SMSC],
Vector [Vector] and Optitas [Optitas].

Test script-based Test Automation Tools for MOST are offered by GADV
[GADV], Ruetz Technologies [Ruetz], and Vector Informatik [Vector]. The tools
do not only offer a MOST interface, but also the support of several vehicle-specific
bus systems at the same time. Important characteristics of such tools are, among
other things, the clear evaluation of the test results, the chronological exactness of
the system when the results are measured, and the ability to dynamically react to in-
coming messages.

The Testing and Test Control Notation (TTCN) is a standardized test technology.
The latest version TTCN-3 [ETSI 2003] was standardized by ETSI (ES 201 873 Se-
ries) and ITU-T (Z.140 Series). TTCN-3 is a very flexible, abstract and expressive
test specification language, which also has a graphical presentation format strongly
based on MSC-2000. This allows the description of integration tests at the same
level of abstraction and in a similarly readable form as the specification. Therefore,
TTCN-3 can be a suitable means for specifying standardized tests in the future – in
line with its origins in the standardization of Compliance Tests for telecommunica-
tion protocols. TTCN-3 also standardizes, besides the test language, the operational
semantics of the language so that a uniform behavior of the test scripts in different
tools can be guaranteed. This would allow the exchange of MOST tests between
OEMs and suppliers without the use of a specific test tool having to be specified.
Some OEMs [Burton 2004] and MOST Test Tool manufacturers [Ruetz] have al-
ready examined TTCN-3 for its ability to meet the challenges with regard to the
testing of MOST systems.

249

14 Introduction of MOST150 in Series
Production

14.1 Application of MOST150
Various vehicle projects have used MOST25 technology; it is characterized by a
high quality index and a strict focus on the requirements of automotive infotainment
systems. Over the years, expert knowledge was acquired along the process chain
(development, quality assurance, production, and customer service) and the proc-
esses were established. With requirements towards car-based infotainment systems
becoming more challenging, for example, video transmission and Ethernet connec-
tivity, MOST25 maxes out, in particular in terms of available bandwidth (see fig.
14.1). Consequently, the path was cleared for the third generation of network tech-
nology: MOST150.

Fig. 14.1: Bus load increase in Audi systems

As the logical continuation of existing MOST25 transmission technology, it offers
the following distinct advantages:

 Six-fold bandwidth increase compared to MOST25 (see fig. 14.1)

 Native Ethernet channel for transmission of IP data.
This allows flexible introduction of IP applications.

 Isochronous streaming
Can be used to transmit video streams (MPEG transport streams, VideoOver-
MOST)

250 14: Introduction of MOST150 in Series Production

 Reuse of MOST25 applications
MOST25 applications, which are in use in current infotainment systems, can be
adopted almost without modifications

MOST150 multi-channel network

MOST150 enables the parallel use of all the mentioned services (packet data trans-
fer and time-synchronous streaming) within one bus system. Depending on the sys-
tem design, the individual services can be dynamically assigned with different re-
sources during run-time.

14.2 MOST150 technology evaluation

14.2.1 Requirements and evaluation structure

The precondition for the introduction of MOST150 is a level of maturity compara-
ble to MOST25, that is, the proof of suitability for series production. Every OEM
will thoroughly test new technology before deploying it. If the subject is - as is the
case with MOST150 - the result of an evolution of an existing system, attention is
paid to the continuing use of present qualifications, systems, and processes. The
main focus, however, remains on improvements and new functions. Only when the
critical requirements are met and the quality of software, hardware, tools, and test-
ing systems clear the path to series production, a switch in technology is feasible.

Figure 14.2 presents the layers that are affected by the migration from a MOST25
environment to MOST150. The changes range from the physical layer to the appli-
cation layer. This creates a challenge in terms of structuring the evaluation project
so that a verification of all relevant elements becomes possible.

In the case of MOST150, the evaluation can be structured to include the following
work packages:

 Physical Layer
This includes the verification of all relevant hardware components (POF, FOT,
Pigtail, INIC) and the corresponding electrical parameters.

 Network Services/INIC firmware
These form the software interface to the MOST bus and have significant influ-
ence on performance and reliability.

 Network management/power management
These functions, which are elementary to every network, are required for ad-
ministration, wake-up and sleep behavior.

14.2 MOST150 technology evaluation 251

Fig. 14.2: Layers that are affected by the migration

 MOST diagnosis
Verification of MOST diagnosis covers ring break diagnosis (RBD), Electrical
Control Line (ECL) which was first standardized with MOST150, and the new
diagnosis function “Sudden Signal Off / Critical Unlock” (SSO/CU) enables
detection of the originators of sporadic ring breaks and Critical Unlocks.

Fig. 14.3: Definition of use cases for the evaluation

 Use Cases
MOST150 will be deployed in different configurations and electronic control units.
To cover all MOST150 applications that are relevant to OEMs, use cases are
generated through abstract modeling. Based on actual application scenarios (e.g.,
transmitting a title list from a media player to the head unit), the departments for

252 14: Introduction of MOST150 in Series Production

networking and infotainment define combinations of INIC interfaces, network
protocols, and the corresponding data patterns (see fig. 14.3). The collection of use
cases makes it possible to verify all INIC interfaces (MediaLB 3-pin, MediaLB 6-
pin, I2C, SPI, I2S, and TSI), MOST protocols (CMS/AMS, MHP and MEP), and
MOST channels (Control Channel, Packet Data Channel, Streaming Channel).

 Tools
These are indispensible for series development of MOST150 components. Ac-
tive tools and listen-only tools, as well as the integration into the test automa-
tion have to be verified.

As the preliminary consideration shows, a variety of requirements for the evaluation
of technology regarding maturity for series production has to be taken into account.
Subsequently, the example of practical implementation in the Volkswagen group
highlights one possible way of evaluation.

14.2.2 MOST150 reference platform

The multitude of requirements towards the technology evaluation demanded the es-
tablishment of two verification projects. The hardware of the first project, the so-
called reference platform, consisted of a MOST ring with seven participants
(evaluation boards), which included TimingMaster, NetworkMaster, and Power-
Master. The focus of this system was the verification under laboratory conditions of
all work packages that had been identified. The design of each evaluation board al-
lowed, for example, switching MOST hardware through the use of easily exchange-
able pluggable circuit boards (“daughter boards”) with INIC and FOT. Initially, the
emphasis was on tests of the wake-up/sleep behavior, reliability, and bus diagnosis
(RBD, SSO/CU). Furthermore, the system provided access to all INIC interfaces so
that the 72 previously defined use cases were completely executed on this platform.
Hereby, all relevant application scenarios for Audi and the Volkswagen group could
be verified. The third pillar was formed by thorough performance measurements of
all MOST channels and transmission protocols.

Due to its layout, the MOST150 reference platform is not suitable for vehicle de-
ployment.

14.2.3 MOST150_InCar

The second system was used for prototypic MOST150 integration in the vehicle. Of
particular interest in this scenario was the influence of the car environment on
MOST150 communication.

14.2 MOST150 technology evaluation 253

Tests were conducted in the following areas:

 overvoltage, undervoltage - variation of supply voltage by the on-board electri-
cal system simulator.

 temperature stress - passing through different temperature profiles in the cli-
mate chamber.

 wake-up/sleep behavior - automated waking of the vehicle’s buses in varying
time intervals.

 test drives - verification of communication in a customer environment (check of
received patters for absence of errors)

Apart from these tests, MOST150_InCar included a reference implementation,
which served the confirmation of interoperability of different ECL transceivers and
the verification of ring break diagnosis.

14.2.4 Results of the technology evaluation

After performing and completing the evaluation, the following results - presented in
the same order as the evaluation structure - were obtained:

 Physical Layer
Verification of all relevant hardware for MOST communication was successful.
Parts availability for series development of components, which was investi-
gated in parallel, was confirmed, as well.

Fig. 14.4: Control Channel optimization steps

 Network Services/INIC firmware
Different Network Services and INIC firmware versions were verified in terms
of performance, function, and reliability. Detected inconsistencies were re-
solved, which led to significant performance improvements in critical areas.

254 14: Introduction of MOST150 in Series Production

Figure 14.4 exemplarily shows the throughput on the Control Channel. Here,
the implementation and trial of different optimization measures were per-
formed; eventually through the implementation of the so-called Network Ser-
vices “Optimization III”, the previous internally defined reference value was
even exceeded.

 Network management/power management
To verify this functional area, several ten thousand wake-up/sleep cycles were
invoked. Behavior was tested under conditions of network stress, voltage stress,
and temperature stress. On this broad statistical basis, a positive verification of
this area could be achieved.

 MOST diagnosis
Besides verifying ring break diagnosis, evaluation of the new features SSO/CU
and ECL communication rendered positive results. Hence, apart from the diag-
nosis of static interruptions, which was already defined for MOST25, now de-
tection of short breaks and communication in the case of an error is uniformly
specified and available across OEMs.

 Use Cases
The core of the technology evaluation is the testing of the relevant use cases.
These tests were conducted using different patterns (variation of packet size
and timing), where each pattern was applied for at least 6 hours. Based on more
than 4,800 hours of test execution, the successful evaluation of the application
scenarios was performed. As a byproduct, by means of these tests, the process
chain from supplier over implementer to tester and developer was checked for
weaknesses and optimized. Thus, countermeasures for detected errors could be
provided faster through the corresponding communication paths, integrated,
and subsequently re-tested. Such processes are of great importance for mini-
mal-risk development.

 Tools
The measurements that were undertaken in the scope of the verification projects
used tools that due to the novelty of MOST150 had to be newly developed. In a
number of cases this led to the problem that malfunctions had to be assigned to
the technology itself on the one hand or the implementation in the tools or the
measuring software on the other hand. A close collaboration with the manufac-
turers was required so that remedy could be provided for the errors that oc-
curred in that domain.

14.3 Conclusion
The use of two platforms (MOST150 reference platform and MOST150_InCar) al-
lowed to verify all elements that were affected by the migration from MOST25 to
MOST150, both under laboratory conditions and in road tests.

14.4 Outlook 255

All deviations of the base technology that were detected in the course of the evalua-
tion could be corrected. Expectations regarding data rates, reliability, functions, as
well as availability and quality of parts, were met. Based on the findings resulting
from this evaluation, the transition of MOST150 into series production was made.
There still remains potential for optimization regarding performance and processor
load, especially for applications that utilize the MOST High Protocol. These op-
timizations can be introduced into series projects by later updates of MOST Coop-
eration specifications and supplier software.

The gathering of expert knowledge that is connected to the evaluation project is a
huge benefit for further series development. Quality is boosted through the adapta-
tion of the Network Services integration process, which was extended as follows:

After the release of new Network Services or INIC firmware versions, preliminary
integration is performed, followed by regression testing on the MOST150 reference
platform. Only when the tests have executed successfully, integration into the info-
tainment devices takes place.

This guarantees interoperability of different versions and specific configurations on
MOST system level.

14.4 Outlook
MOST150 provides—through bandwidth reserve and functions for connecting con-
sumer electronic devices—a future proof infrastructure for infotainment network-
ing.

Due to the technological advantages, MOST technology could in the future become
established in additional vehicle applications. A potential area is the field of driver
assistance systems. The requirements of image processing and sensor data process-
ing towards networking are showing parallels to the requirements in the infotain-
ment domain:

 The complexity of image processing systems and infotainment system is com-
parable.

 The transported data types (packet data and streaming data) exhibit great simi-
larity.

 Audio data and video data have to be transmitted time-synchronous and with
minimal delay.

Further concept analyses can bring clarity to which extent MOST can meet the re-
quirements towards topology and reliability of transmission.

256

257

15 MOST150 Migration

15.1 Introduction
This chapter presents two possibilities for migration from MOST25 to MOST150.
One of the proposed solutions for the migration is an evolution concept, where all
MOST25 devices are upgraded to MOST 150, using a special hardware interface.
The second proposed solution is the development of a specific bridge architecture
between MOST 25 and MOST 150. The MOST Cooperation favors the evolution
approach.

15.2 MOST150 Evolution Approach
When migrating from MOST25 to a MOST150 infotainment system directly, this
approach is called the MOST150 Evolution Concept [Schr 01] [Schr 02]. The basic
of that concept is the idea to upgrade all devices to MOST150 off the shelf by
adopting the hardware and the system software of the respective ECUs. The advan-
tage with regard to the wiring harness costs is that no changes are necessary to the
established wiring harness of a MOST25 system, compared to the
MOST25/MOST150 Bridge Concept.

Fig. 15.1: Illustration of the MOST150 Evolution concept

258 15: MOST150 Migration

15.2.1 Hardware Evolution

The aim of the Evolution Concept is to point out that it is possible to migrate an
ECU “directly” without the need for a redesign of the complete ECU’s hardware.
However, the precondition is that the respective MOST25 device, to be adapted to
MOST150, uses an INIC architecture. If so, the principle is similar to exchanging
the network card of a common PC as presented in figure 15.1.

The basic workflow when applying the concept is to remove the network interface
card, and plug in and update the drivers for the new one. To speak in automotive
‘MOST language’ that means to replace the MOST25 components, INIC and FOT,
by the new MOST150 components, compile the ECU software with the MOST150
Network Services and finally flash that firmware on the device.

However, unlike the consumer electronics world – using PCI network interface
cards for example – there is no compatibility between the MOST25 and MOST150
components with regard to the physical connector pinning. Hence, in order to real-
ise the MOST150 Evolution Concept, a kind of MOST150 network interface card,
called MOST150 PhyBoard, is required:

Fig 15.2: MOST150 PhyBoard (source BMW AG)

The PhyBoard includes the MOST150 FOT as well as the MOST150 INIC and all
necessary peripheral components, such as resistors, capacitors, crystal and so on.
The ports of the new MOST150 INIC (OS81110) are wired to 4 FFC (Flat Flexible
Cable) connectors. The pin assignment of these connectors was chosen by the au-
thor in a way that corresponds to the pinning of the MOST25 INIC (OS81050). On
this account, the PhyBoard can be connected one-to-one to the footprint of the
MOST25 INIC on the circuit board by the use of FFCs (Flexible Flat Cables).
Hence, the adaptation of an existing ECU is achieved as presented in figure 15.3.

15.2 MOST150 Evolution Approach 259

Fig. 15.3: MOST150 Evolution Concept workflow (source BMW AG)

The ECU to be adapted is opened and the MOST25 INIC, as well as the MOST25
FOT, are de-soldered from the PCB. Afterwards, the FFCs are soldered onto the
footprint of the INIC. Power for the PhyBoard is taken from the original PCB by
soldering cables to the footprint of the FOT. Next, the MOST150 PhyBoard can be
mounted on the ECU’s PCB quite simply by the use of spacing rollers. Afterwards,
FFCs and the power cable are plugged in. In doing so, one gets a fully MOST150
enabled ECU prototype hardware. The only thing to be done next is to upgrade the
software with the new Network Services and flash the adapted ECU.

Figure 15.4 illustrates this concept. Several ECUs have been adapted to MOST150.

15.2.2 System Software Evolution

The FBlocks for NetworkMaster, NetBlock, ConnectionMaster, as well as relevant
functions from the GeneralFBlock template only have to be updated. The applica-
tions themselves stay untouched. However, a minimum MOST 150 feature set has
to be implemented. Following, a few examples of mandatory features are provided:

 The system has to support the new frame structure.

 Functions from the FBlock bundle 3.0 replace functions in the current system.
The FBlock bundle 3.0 contains the GeneralFBlock, NetBlock, NetworkMaster,
and the ConnectionMaster.

260 15: MOST150 Migration

 The max. AMS telegram payload size was increased from 12 to 45 bytes. Con-
sequently, the TelLen field becomes 12 Bits large, and now has the same size
as the TelLen field in the MOST High Protocol.

 The sample frequency no longer is in a range between 30 kHz and 50 kHz but
either 44.1 kHz or 48 kHz. 48 kHz is recommended.

 “Mandatory” and “Extensions” ranges of functions are now combined in the
“Application” range.

 NetworkSlaves now respond with an unchanged list if the InstID cannot be
changed.

MOST150HMI
NAVI 1

AMP 1

Rear
Unit 1

TV

1 MOST150 adapted prototypes based on real MOST25 ECUs

Display

Display

Display

Control Unit

Control Unit

Fig. 15.4: Principal MOST150 Evolution Concept set-up

 Configuration.Status now uses Control=NewExt, which also provides the De-
viceID.

 Function classes were modified (Container, restrictions on the use of streams,
stream signals…).

 If the Central Registry is “full”, that is, no new FBlocks can be registered, the
NetworkMaster replies with Configuration.Status(NewExt, <empty list>). If
some but not all FBlocks can be registered, NetworkMas-
ter.Configuration.Status(NewExt, <partial list>) is sent.

Beyond that, all implementations of MOST25/50 concepts have to be removed that
were abandoned for MOST150. These are, for example:

 MAMAC is no longer available. If MAMAC is used, it is replaced by Ethernet
over MOST in MOST150.

 The SourceConnect/SourceDisconnect approach, which is specific to MOST25,
has been abandoned.

 Secondary Nodes are not supported.

15.3 MOST25/MOST150 Bridge Concept 261

 MOST High over Control Channel is not supported.

 The “data link layer 48 bytes mode” is no longer required; however, the maxi-
mum payload may still be limited by device specific characteristics (e.g., used
I/O interface or buffer sizes).

 The SourceHandles function is no longer supported.

 Large updates to the Central Registry are no longer announced by sending
NetworkMaster.Configuration.Status(OK).

Additionally conditional and optional features have to be considered. Conditional
means, for example, if the system does not use the Packet Data Channel, there is no
need to support low level retries on that channel. Optional features are new
MOST150 features, for example, isochronous transfer was introduced, supporting
the use cases DiscreteFrame Isochronous, A/V Packetized Isochronous, and QoS IP.

Note: If you have to migrate to MOST150, attend to the latest revision of the Appli-
cation Note MOST150 Migration from the MOST Cooperation [AppN Mig].

15.3 MOST25/MOST150 Bridge Concept
The second proposal, when migrating from the actual MOST25 infotainment sys-
tem to a MOST150 based one, is the so called MOST25/MOST150 Bridge Concept.
That approach assumes that at first only the components with high bandwidth re-
quirements are upgraded to MOST150. The other nodes continue to be MOST25
based. Obviously, two optical rings are required with this concept, linked by an ad-
ditional new device, a so-called MOST25/MOST150 Bridge. Although the bridge
could be integrated in an ECU, e.g., the HU, this concept is cost-intensive and,
hence, is not recommended.

15.3.1 General Bridge Architecture

The bridge device is intended to be used to connect a MOST25 network to a
MOST150 network, whereby streaming, packet and control data need to be routed.
Figure 15.5 gives an overview of the general bridge architecture.

Both MOST INICs (INIC_A and INIC_B) use the respective MediaLB interfaces
[MediaLB] to connect to the EHC (Enhanced Host Controller). MediaLB (Media
Local Bus), or MLB, is a MOST specific high speed interface, providing full access
to the whole bandwidth of the MOST bus. For synchronous data bridging, the

262 15: MOST150 Migration

INICs are linked via their I2S streaming ports, in order to transport the data content
of synchronous channels directly without the need of interaction of the EHC.

MOST150
Subnet B

MOST25
Subnet A

Bridge

INIC_B INIC_A

EHC

Device: 0x101

Device: 0x102

Device: 0x103

Device: 0x103

Device: 0x101

Device: 0x102

I2S

MediaLB MediaLB

Fig. 15.5: General architecture of a MOST25/MOST150 bridge device

15.3.2 Addressing Concept

For seamless migration, it is essential that a common MOST device can be inte-
grated into a subnet without change. Thus, the usual addressing method needs to
remain unaffected by the bridge and the local addressing inside a subnet is not al-
lowed to differ from the addressing found in today’s MOST networks.

A method for addressing a target beyond the bridge in another subnet had to be de-
fined. A solution is quite obvious. As common MOST devices, so far, only make
use of the three lowest nibbles (12bit) of the device ID, and ignore the four highest
ones, the idea is that the highest nibble (4bit), henceforth called SubnetID, of
MOST’s DeviceID should be used for subnet addressing. The message sequence
chart in figure 15.6 depicts how the source address and the target address are
mapped through the MOST25/MOST150 Bridge.

If a message, incoming from a subnet, is passed to the EHC of the bridge, the de-
vice addresses, respective SubnetIDs, need to be adapted before forwarding to the
opposite subnet as follows: Device 0x0101 of subnet A in figure 15.6 wants to send
a request to device 0x0102 in subnet B. As the target device is located in the oppo-
site subnet, it is registered by the bridge’s special NetworkMaster with DeviceID
0xB102 in subnet A. So device 0x0101 addresses its request to that ID. The bridge
processes that telegram by adapting source and target device addresses before for-
warding to subnet B. SubnetID A will be added to the source address and at the

15.3 MOST25/MOST150 Bridge Concept 263

same time, the highest nibble of the target address will be set to zero as it needs to
be in the local subnet. The response of device 0x102 of subnet B to device 0x0101
in subnet A is processed in the same manner.

Controller
0x0101

Subnet A
MOST Bridge

Slave
0x0102

Subnet B

0101.B102.FBlock.InstID.FktID.Get(…)

ACK
A101.0102.FBlockID.InstID.FktID.Get(...)

0102.A101.FBlock.InstID.Status(…)
B102.0101.FBlockID.InstID.FktID.Status(…)

Subnet of source
Always zero (local subnet)

Subnet of source

Always zero (local subnet)

Fig. 15.6: Message sequence chart description of the subnet addressing method

15.3.3 Network Management

It is essential that each subnet is managed by its own NetworkMaster. Therefore, a
network scan has to be done only within the local network. The configuration states
of all subnets are completely independent from each other. A change in the configu-
ration state thereby is recognized in other subnets by broadcasting added or re-
moved services.

The central registry of each subnet contains all MOST services found in the whole
system. Services in the local network are stored with their ‘normal’ DeviceID (high
nibble equal to 0). Services located in the remote subnet are stored with a DeviceID
in which the high nibble represents the subnet identifier of the appropriate network.
Therefore a device which requests the central registry always has the ability to
communicate with the correct services without the necessity to use additional
mechanisms.

Figure 15.7 presents a proposal for a bridge from a network management point of
view. Here the bridge acts as NetworkMaster in both subnets. A constraint to this
concept is that, if the bridge is not integrated into the head unit – as the head unit
recently normally is the master in a legacy MOST25 system – it will be necessary to
implement the head unit as a slave device.

However, the advantages of that ‘master-bridge’ concept are:

The validation of MOST service instances (FBlockID / InstID) can be done across
all subnets. Therefore, it is possible to solve all address conflicts inside the bridge.

264 15: MOST150 Migration

Fig. 15.7: Network management bridge architecture
 NWMS: NetworkMaster Shadow
 NMW: NetworkMaster

If exactly two subnets are coupled by a MOST bridge it is an advantage to imple-
ment both NetworkMasters inside the bridge. In this configuration a common in-
stance may validate the registries of both subnets. So the pairs of FBlockID and In-
stID can be made unique over both subnets.

The ‘master-bridge’ contains the TimingMaster for both subnets to ensure that the
system frequency is 100% identical. This allows the connection of the two INICs
directly via the I2S interface to transmit synchronous data between the subnets
without the need for buffering or sample rate conversion (refer to chapter 15.3.4).

MOST150
Subnet @ 48.0 kHzB Subnet 4.1 @ 4 kHzA

MOST25Bridge

INIC_B INIC_A

EHC

Device: 0x101

Device: 0x102

Device: 0x103

Device: 0x103

Device: 0x101

Device: 0x102

44.1 kHz Data

44.1 kHz CLK
44.1 kHz FSY

MediaLB
@ 48.0 kHz

MediaLB
@ 44.1 kHz

CLK:

Crystal for 48.0
kHz Timebase

CLK:

Crystal for 44.1
kHz Timebase

Fig. 15.8: Bridge architecture for bridging asynchronous sub-networks

15.3 MOST25/MOST150 Bridge Concept 265

15.3.4 PCM Data Bridging

If the system frequencies differ, either a sample rate conversion has to be imple-
mented or isochronous transmission in the MOST150 network has to be used for the
handling of MOST25 synchronous data. Figure 15.8 illustrates a legacy MOST25
ring with 44.1 kHz and a MOST150 ring with 48 kHz. As MOST150 provides
isochronous capabilities, synchronous/isochronous data also can be linked using the
streaming ports.

In addition, the establishing of the synchronous connections in both networks via the
bridge has to be considered.

For more information about the bridge concept, attend to the latest revision of the Ap-
plication Note MOST150 Migration from the MOST Cooperation [AppN Mig].

266

267

16 Manufacturing and Processing of
MOST Components

The manufacturing process of devices with an optical MOST interface involves a
number of changes and amendments compared to the manufacturing process of
electronic components without opto-electronic interfaces. These changes and
amendments can be categorized into two groups.

On the one hand there are parameters which are influenced by the processing of the
opto-electronic components and their characteristics and which require particular
measures compared to conventional electronics components.

On the other hand completely new processes and methods must be established for
manufacturing the opto-electronic MOST components, which are not used normally
in the manufacturing of electronic components.

Both aspects will be discussed in the following sections and the requirements with
regard to the manufacturing process will be described in detail.

16.1 Structure and Testing of Opto-Electronic MOST
Components

The assembly of electro-optical (FOX, Fiber-Optic Transmitter) and opto-electrical
(FOR, Fiber-Optic Receiver) converters, mechanical adaptations and, as the case
may be, fibers inside the device is represented by a pigtail. It depends on the respec-
tively realized form of the product, whether the pigtail module must be treated as a
mechanical unit in the manufacturing process.

There are two basically different mechanical design concepts for pigtails. One com-
prises the group of flexible pigtails with a horizontal or a vertical fiber output. They
are connected to a connector by means of an external pair of fibers (here referred to
as “set of fibers”). The connector is the optical MOST interface to the wire harness.
The distance between the fiber face end and optically active elements (PIN diode or
optical transmitter) must be kept as small as possible at both ends of the fiber.

The other structural concept comprises the rigid pigtails (with the product names
µPigtail or Minipigtail, for example), where no external set of fibers is used. The
FOX and FOR are integrated into a connector into which the optical plug-in con-
nections at the side of the harness can be directly plugged.

268 16: Manufacturing and Processing of MOST Components

In this case, the connection between FOX or FOR and the plug-in connection of the
harness is effected via short POF pieces, glass sticks or via lens structures for opti-
cally bridging the gaps.

Fig. 16.1: SMD FOT as complete pigtail header
solution as specified for MOST150

16.1.1 Header

In this context, a header is meant to be the mechanical entity comprising the follow-
ing functional elements: optic-electrical conversion, lightguide alignment, light-
guide fixture, EMI- and crosstalk shielding. The header may be an assembly of in-
dividual parts each providing one or more of these aforementioned functions. For
header products using FOTs in Through Hole Mount (THM) package technology
these sub-parts are typically the FOX and FOR, a required plastic adapter, the re-
spective sheet-metal case and a holding fixture for the fibers.

Ferrule Holders
Sheet Metal Housing

Fig. 16.2: Rigid Pigtail without addi-
tional electrical contacts

In case of a rigid pigtail header, additionally there are optical interface elements
bridging the distance between the FOX/FOR and the plug-in connections of the
harness. In exchange, the fixtures for the internal fiber set are dropped. Figure 16.1
shows a header in SMD package technology based on SOIC24 standard. For
MOST150, this SMD-package is specified in the MOST150 oPHY Sub-
Specification. As it includes all interfacing and holding elements for the device in-
ternal fiber set, as defined above, it is to be assigned to the class of headers.

16.1 Structure and Testing of Opto-Electronic MOST Components 269

In contrast to this, the ferrule adapters in the rigid pigtails serve for a direct contact
to the vehicle wire harness. Header and connector form one unit. Figure 16.2 shows
an example of the constructive design of a header in the rigid version. In this ver-
sion there is no connection for an internal fiber set.

Functional Elements of a Header

Within the class of headers different technical solutions can be found on product
level. Despite their actual technical realization they have to provide a set of func-
tions. These functions can be realized by dedicated elements. Several functions can
also be combined into sub-components.

The main function of a header is to convert the data signal from the electrical into
the optical domain or vice versa. Therefore, opto-electronic semiconductors are
bonded onto a leadframe or pre-molded leadframe. The leadframe, with attached
IC-dies, gets packaged by insert molding, using transparent mold compound or by
opaque while relieving appropriate windows for the optical signal. For pre-molded
leadframes, a transparent globetop may be applied.

For FOR and FOX packaged separately, a dedicated component is used to mechani-
cally support the FOTs and to fix them at a specific relative position. Some spacer
designs additionally take special care to restrict the position tolerance of the THM-
pins of the FOTs.

A mechanical interface structure, giving reference to the optical axis, is needed to
enable sufficient alignment of the pigtail fiber or lightguide element. To ensure
good optical coupling—under all conditions and over lifetime—the fiber ferrule
must be fixed to the alignment structure. This fixture can be designed for repeatable
attaching and deattaching of the fiber or for one time attachment. With the SMD
package, a clamp fixation is specified that holds the ferrule into its position when a
specific insertion force is exceeded. The pigtail fiber can be detached from the
header by pulling with a force exceeding the retention force.

An appropriate shielding may be required to guarantee EMI conformity. A shield
case could additionally prevent electrical and optical crosstalk between receiver and
transmitter unit. In many header designs, the shield case provides the overall fixa-
tion and stabilization of the assembly.

Structure

By means of a suitable assembly process, the components are assembled in the
sheet metal case in such a manner that the FOXs or FORs in their target position are
fixed relative to the fibers or the optical path.

The actual alignment of the optical axes is not effected by means of the sheet metal
case or the plastic adapter, as their tolerances are too high. It is rather the cavity of

270 16: Manufacturing and Processing of MOST Components

the FOX or FOR case itself which is used for alignment. In all constructions, the
optical waveguide extends into the cavity of the FOX or FOR. Thus it is possible to
determine the relative position towards each other of the converter and the fiber
face. The position tolerances only depend on the tolerances of the cavity and the
waveguide.

Testing

After the mechanical assembly and before the actual mounting, the headers are sub-
jected to a performance and function test. In the test, system-relevant parameters
(radiation power (FOX), timing parameters at low input power (FOR) and power
consumption) are measured and documented. This ensures that only good parts are
mounted into a device.

Fig. 16.3: Pair of fibers for the
internal connection of the
MOST150 SMD header to the de-
vice connector

16.1.2 Set of Fibers

Depending on the design (flexible pigtail or rigid pigtail), respective sets of fibers
are used within a device. In contrast to the wire-set fibers, the internally used fibers
have a single coating and are thus considerably thinner (ca. 1.5 mm) than the har-
ness fibers. A set of fibers consists of two POF fibers of a predetermined length
which have ferrules attached to their two ends. The ferrule geometry at the wire
harness end must comply with the MOST Specification- In contrast to MOST25,
the internal ferrules on the MOST150 SMD-header side are specified within the
MOST Standard, too. Thus, the fiberset and SMD-header are compatible independ-
ently form their respective manufacturer. For MOST25, the ferrule at the side of the
header can be designed differently depending on the manufacturer of the FOX or
FOR. Figure 16.3 shows such an internal set of fibers. On the one side one can see
the ferrules with the Standard MOST Interface, on the other side the ferrules with
the proprietary internal interface.

The internal ferrules are considerably smaller than the ferrules with the MOST
geometry. The length of the POF depends on the respective requirements of the
device.

16.1 Structure and Testing of Opto-Electronic MOST Components 271

POF

The POF is cut into pieces of required length by means of a saw. The basic structure
of such a separating device can be found in figure 16.4. Arrows in the sketch show
the direction of transport of the fiber.

Fig. 16.4 Structure of a
separating device for POF fi-
bers

The POF raw material is delivered on a roll. The POF feed roll feeds the saw unit.
The fiber is deflected by a number of deflection pulleys to ensure constant tension
and avoid mechanical stress on the fiber. This reliably prevents the POF from being
damaged by the unwinder-sawing fixture.

It is, moreover, very important that the end faces of the fibers not be damaged or
soiled by the sawing process. Thus specific saw blades developed for that applica-
tion are used in the sawing fixture. The blades have to be cleaned at regular inter-
vals.

Besides the optical characteristics, the temperature stability is an important parame-
ter for specifying the POF. The POF currently used in the wire harnesses of vehicles
is specified for temperatures of up to 85 °C. In contrast to this, the fibers used inside
the devices are approved for temperatures of up to 105 °C. Excess temperatures
during processing which exceed the limiting values can cause deterioration of the
optical performance and are thus to be avoided by all means.

Ferrules

There are several different basic methods of attaching ferrules to an optical wave
guide. These methods comprise gluing, crimping or laser welding. The method used
determines the manufacturing process of the ferrules and the costs involved. For
standard MOST products, the laser welding process is used for connecting ferrules
and POF. With a high power short-pulsed laser both the black plastic coating of the

272 16: Manufacturing and Processing of MOST Components

fiber and the surrounding ferrule material are melted. When they harden again, the
ferrule and the POF coat form a high-strength plastic connection. The cross-
sectional drawing of such a welded connection is shown in figure 16.5 (dashed oval
line). The actual welded joint is only recognizable due to the missing air gap.

Fig.16.5: Micrograph of a
laser-welded ferrule

Pull tests have shown that it is generally not the welded joint itself, but the POF
coat which breaks. Figure 16.6 shows the schematic view of the structure of such a
welding fixture (welding unit with manually operated fiber feed).

In this machine, two fibers are processed simultaneously in order to improve the
throughput. Both fibers are welded to the ferrule in one step. The ferrules are fed to
the actual welding point from two rolls as an endless tape. The operator must insert
the fibers into the feeds of the fiber ends and start the welding process manually.

Ferrule-Tape
Supply

Ferrule-Tape
Supply

Fiber-End Supply

Fig. 16.6: Structure of a semi-
automatic laser welding fixture

The plastic of which the ferrule is made must be suitable for laser welding. Cur-
rently only one material is known and available on the market. It is a polyamide 12,
which is sold in different versions under the product name Grilamid. It contains a
certain percentage of glass and can also be colored without impairing laser weld-
ability.

The manufacturing process must ensure that the fibers keep a defined backward
clearance of greater than or equal to 0 mm with regard to the end face of the ferrule.
This is necessary in order to reliably prevent a collision between fiber and

16.1 Structure and Testing of Opto-Electronic MOST Components 273

counterpart. For MOST150, the clearance at the side of the header is defined by the
MOST150 FO-Transceiver (SMD-header) drawing to be 0.01 to 0.1mm behind the
ferrule endface. For MOST25, the clearance is within the scope of the respective
manufacturer. At the side of the connector, the MOST Specification defines the
values -75 µm +/- 25 µm. A pin which is situated in the ferrule holding fixture of
the laser welding unit and advances by the corresponding value ensures that the
required clearances are kept with sufficient accuracy.

In general, one tries to keep the attenuation of a fiber as low as possible. There are,
however, special cases in which a pre-defined optical attenuation must be intro-
duced. This is ensured by way of an additional backward clearance of the fiber with
regard to the end face of the ferrule. Compliance with the value of the backward
clearance is ensured by means of a pin advancing by a respective value in the laser
welding unit, analogous to the fibers with a standard attenuation.

The ferrules are delivered in rolls as an endless tape. Both welding and cutting are
conducted on the laser welding unit, i.e., the ferrule is cut from the endless tape and
the burr is reduced to an admissible value.

Testing

If the sets of fibers are manufactured and processed separately from the header, it
must be ensured by special testing measures that their attenuation is not higher than
a defined limiting value. MOST150 gives an attenuation limit of 1.5 dB for the pig-
tail fiber. Thus it is ensured that even a combination of a header with the worst
permissible performance and a set of fibers with the highest permissible attenuation
still comply with the permissible tolerances for output radiation efficiency and re-
sponsively according to the MOST Specification. Otherwise it would be necessary
to conduct an end-of-tape selection test for the overall layout of the set of fibers and
the header with regard to radiation efficiency.

In addition, random testing using a pull strength measurement setup must ensure
that the pull-off strength at the welding point is sufficient.

The values for the pull-off strength are found to be very constant. Additionally, the
mechanical stress is very low, in contrast to a vehicle wire harness.

With regard to the optical attenuation of the fiber pieces, the following influencing
factors are known or possible:

 Fresnel losses (~0.2 dB/end face, ca. 0.4 dB per connector)

 Axial displacement of the fibers relative to each other

 Radial displacement of the fibers relative to each other

 Slanting position of the fibers relative to each other

274 16: Manufacturing and Processing of MOST Components

 Damaging of the cladding due to errors in the laser parameters and variations in
the thickness of the fiber coating

 Optical quality of the saw face / condition of the saw blades

Fresnel losses occur at each transition from one medium to another. They add up to
ca. 0.4 dB per connector.

The maximum axial displacement is defined by the MOST Specification (connector
side) and by the manufacturer’s specification (header side).

A measurement setup in the laser welding device ensures that the value for each
manufactured fiber be within the permissible mechanical tolerances.

The radial displacement results from the diameter tolerances of ferrule and fiber and
from the maximum eccentricity of the POF coating.

The slanting position of the fibers relative to each other may result from a tilting
within the connector or from a slanting position of the fibers during the sawing
process. The latter is prevented by a correct setup of the sawing fixture. The first is
only very small for constructive reasons.

The wrong power setting of the laser in the welding unit in combination with un-
avoidable variations in the thickness of the coating can theoretically cause damage
to the POF cladding. This could result in higher attenuation.

Experience has taught that the condition of the saw blades is the one factor influ-
encing the attenuation of the fibers that has to be supervised most closely during
manufacture. The other parameters are subject to only slight variations or can be
virtually neglected. As mentioned before, this is achieved by exactly defined main-
tenance intervals and the 100% testing of the fiber attenuation.

For determining the fiber attenuation, the insertion loss method according to IEC 61
300-3-4 is suggested by the MOST150 Measurement Guideline. The test setup is
calibrated periodically by measurement without DUT. The DUT’s attenuation is the
difference of the measured optical power with the DUT included and not included.

The substitution method according to IEC 61 300-3-4 is also used as testing method
for determining the fiber attenuation. The test set up is calibrated periodically by
means of a reference standard (Golden Fiber). This is a fiber with exactly defined
attenuation capacities and structure. The underlying measurement setup can be
gathered from figure 16.7:

16.1 Structure and Testing of Opto-Electronic MOST Components 275

Mode-
Mixer

Fig. 16.7: Basic setup for measuring the attenua-
tion of a fiber

Fiber F to be tested is clamped into test contacts A, B in a calibrated measuring de-
vice and the measurement process is started. By using an attenuation measuring de-
vice, it is compared to a fiber with known characteristics. Thus the respective at-
tenuation is ascertained.

The following apply for both measurement methods: The radiation is induced into F
according to IEC 793-1-1. The output signal of the FOX is conducted through a
mode scrambler. This ensures that there is the same angular distribution and inten-
sity density allocation at its output as can be expected at the end of a “long” POF
stretch. This is necessary to ensure comparability of the measurement data gained
and independence of the radiation source used (dimension and geometry of the
bright spot, angular dependence).

16.1.3 Connectors

A device is connected externally via the device connector/s to the wire harness. The
nomenclature (2+N and 4+N) used for the connectors indicates that they are suit-
able both for connecting electrical as well as optical signals to the respective device.
In order to ensure compatibility, the MOST Standard defines the interface geometry
towards the wire harness. The interior design of the device may vary, however. The
2+0 connector for MOST150 is an exception to that. Here the footprint and maxi-
mum dimension of the connector is defined within the physical layer specification.

Figure 16.8 shows a 2+4 connector for use with flexible pigtails. At the right edge
one can see the four electrical contacts. The two ferrule holes accommodate the
MOST ferrules.

2+0 connectors are usually only used with rigid pigtails, although a 2+0 connector
with a flexible pigtail would be possible. In contrast to this, connectors with optical
and electrical contacts are mostly implemented as flexible pigtails (see fig. 16.8).

276 16: Manufacturing and Processing of MOST Components

Consequently, all connectors at the device have electrical contacts – either the elec-
trical connections of FOX and FOR, or any signal lines required within the MOST
component. Thus all connectors have to be run through the soldering process.

Spring fixation

Ferrule-
Holes

electrical
Contacts

Fig. 16.8: 2+4 device connector

16.2 Processing within the Scope of Electronics Manu-
facture

Opto-electronic components are more delicate with regard to processing during sol-
dering than other comparable electronic components. This is particularly the case
with MOST components if not only FOX and FOR but also the POF must pass
through the thermal process during soldering. The SMD-header for MOST150 was
specified to break up the pigtail into separate parts: one part is the header designed
for automated assembly, the other part is the pigtail fiber set that can be kept out of
thermal processes.

16.2.1 Mounting and Soldering of Headers

THM based headers

Headers based on FOR/FOX in THM packages are components that typically can-
not be mounted by means of a mounting machine. They must be positioned manu-
ally before the soldering process. The header may be mounted by machine if it is
guaranteed that the position of all THM-pins of the header is within the overall tol-
erance range of the PCB’s pinhole position and diameters without overlap. If the
pigtail fibers are already premounted and are thus led through the soldering process,
precautions have to be taken to avoid damage. With regard to the protection of the
fibers and the handling convenience, it is better if the internal set of fibers is
mounted only after the thermal process in the soldering bath.

For wave soldering and partial soldering the assembly is usually first preheated us-
ing infrared radiators on the soldering side. This is required in order to avoid
thermo-mechanical stresses. Temperatures of up to 100 °C are reached at the solder-
ing side. The assembly then passes over the soldering wave.

16.2 Processing within the Scope of Electronics Manufacture 277

The housing and the pins of the FOX and FOR, as well as the sheet metal case of
the exterior shielding are heated up significantly during this process, even though
immersion into the soldering bath only takes a few seconds. A soldering bath has a
temperature of 240 to 260 °C. If a lead-free soldering process is used, these values
are about 20 °C higher, because the lead-free solder has a higher melting point. The
FOXs and FORs used must be specified to be processed at such high temperatures.
Due to the structure and the optically transparent plastic material used, damages to
the assemblies may be caused by high thermo-mechanical stresses. The plastic ma-
terial and the leadframe have different coefficients of thermal expansion. The heat-
ing of the material nearly reaches the glass transition temperature of the potting
compound used. In this range, the coefficient of thermal expansion changes consid-
erably, which results in additional stresses. Unfavorable soldering profiles may
cause delaminations and debonding.

In the case of premounted sets of fibers, it must be ensured by measuring that the
fiber end faces do not heat above the maximum temperature permissible for the op-
tical wave guide. Characteristic damage patterns are concave vaultings at the fiber
end face. In such a case, the fiber attenuation rises significantly.

Usually, the transparent potting compounds used here are also hygroscopic. A typi-
cal humidity class of the FOTs is 2A. Long-lasting, unprotected storage should thus
also be avoided. If necessary, the components will have to be dried before process-
ing.

SMD headers

The header package for surface mount technology, as defined in the MOST150
physical layer specification, is typically delivered within tape-on-reel. It can be
processed by standard pick-and-place equipment as commonly used in electronic
assembly lines. The SMD-header is placed in a pocket of the packaging-tape which
is furled on a reel according to DIN EN 60286-3:2008-4. Typically, the SMD-
header is delivered with a Kapton™ tape on top providing a flat and clean surface
for vacuum pick up nozzles. Thus it can be picked up and placed on the printed cir-
cuit board just like any other SMD component of similar size and weight.

16.2.2 Mounting and Soldering of Connectors

In line with the headers, device connectors are components that have to be posi-
tioned before the soldering process. That applies to both the standard connectors
with an optical interface and to µPigtails with and without additional electrical con-
tacts. Due to their geometry, these components cannot be effectively mounted
automatically.

278 16: Manufacturing and Processing of MOST Components

The soldering of the standard connectors is not a critical process. They are passive
elements with a high thermal stability. Rigid pigtails have to be treated differently,
as was mentioned before with regard to the headers. In this case the FOXs and
FORs used must be specified to be processed at the respective soldering tempera-
tures. Both the plastic lenses and the short fiber pieces used for bridging the gap be-
tween the FOX or FOR and the set of fibers are exposed to high processing tem-
peratures.

16.2.3 Mounting of Internal Sets of Fibers

There are pigtail types in which the internal sets of fibers are processed separately
from the headers as it is standard by concept for the SMD header, and others in
which the set of fibers and the header already form a unit when they are delivered.
The latter require specific handling for processing. The connection of the set of fi-
bers at the end of the tape is, however, easier. If the set of fibers and the header are
mounted separately, the fibers are mounted at the header side and at the connector
side after the last thermal process. The holding spring for the ferrules at the connec-
tor side not only ensures fixture, but also the springing behavior required by MOST.
Previous to mounting the fiber on the SMD header side, the Kapton™ tape on top
of the SMD transceiver needs to be removed. The fibers can then be plugged into
the respective cavity. To prevent mixing up receive with transmit path, the FOT-
cavities and fiber ferrules are coded by diameter. The cylindrical part and the flar-
ing ring on the ferrule, both contribute to the coding. Their diameters are inversely
different on receive and transmit ferrule. The flaring ring on the ferrules provides
the bearing surface for the clamp mechanism integrated in the SMD header. Fixa-
tion of the pigtail fiber on the SMD header is done by a snap in mechanic that holds
the ferrule with a certain force within the header cavity after the plug in force has
been exceeded. To remove the fiber, a higher pull-out force is needed.

16.2.4 Device Testing

At the end of the manufacturing steps, an additional final test of the MOST device
is conducted. In contrast to the previously described tests, this test is conducted on
the physical and the logical level. The test aims to verify the reliable function of the
device and to detect possible errors from the manufacturing process.

By suitably choosing the stimulating signals (radiation power, signal curve form),
the system reliability at low input signal levels can be tested. Additionally, the
power of the FOX is tested at the optical outputs for compliance with the require-
ments of the MOST Specification. Characteristic error patterns are complete fail-
ures of FOX or FOR, insufficient transmission level at the TX output, or an early
rise of transmission errors at low signal levels.

16.3 Summary 279

This procedural method ensures that devices that are delivered to a customer have
no problems with MOST communication.

16.3 Summary
This chapter deals with the manufacturing and processing of opto-electronic MOST
components. It explains the differences with regard to the processing of conven-
tional electronics components and points to the demands made on the assembling
and testing methods.

Several years of experience with MOST25 in the field have proven that the methods
described no longer pose any practical problems. They are well-established and sta-
ble.

With MOST150, the demand for an increased data rate has been answered but may
be not satisfied for all times. The SMD FOT gives an answer on the demand for
components that simplify handling with regard to manufacturing. It can be placed
by a machine and soldered within the reflow soldering process potentially eliminat-
ing the need for selective wave soldering. Due to its nature of being a true surface
mount component, the area on the opposite side of the PCB is not blocked for other
electronic components. Thus valuable PCB area is deallocated by using an SMD
header.

280

281

17 Gateways to MOST
Several communication systems are often used and connected via a central gateway
in a car. Signals interact via this gateway.

17.1 Distribution of Signals via a Gateway
Figure 17.1 shows an example of the distribution of signals in a vehicle network.
The ABS sensors generate speed sensor pulses depending on the speed of the
wheels. The ECU converts the pulses into the signal WheelSpeed, which is made
available to all ECUs connected to this CAN and to the gateway via the Powertrain
CAN. This kind of transmission of information is based on the Publisher Subscriber
Model. The sender (publisher) cyclically sends its data and the receivers (subscrib-
ers) read the data from the bus if required. In the example given, the central gate-
way receives the data and transmits them to the Infotainment CAN. There, the data
are transferred into the MOST system by the HMI, which implements the gateway
functionality. The signal WheelSpeed is used, for example, by the navigation system
for correcting the navigation data, or for detecting the vehicle position in tunnels
where GPS signals cannot be received (dead reckoning). The radio, too, needs the
information for adjusting the volume. In the MOST system the signal WheelSpeed
is converted to a property of the FBlock Vehicle.

Central Gateway

Body CAN 100 kbit/s

ABS
Sensors

ECU
Chassis

Impulse

WheelSpeed

WheelSpeed

Nav

Radio

Infotainment

MOST
25 Mbit/s

Infotainment CAN 100 kbit/s

Fig. 17.1: Example of a signal transmission from the ABS sensor into the MOST system

Whereas the Powertrain CAN uses a bit rate of 500 kbit/s, the Infotainment CAN
uses a bit rate of 100 kbit/s. A CAN – MOST Gateway is integrated into the Head
Unit (Human Machine Interface, HMI). As shown in figure 17.1, the signal Wheel-
Speed must be converted both, in the central Gateway and in the HMI. A bit rate

282 17: Gateways to MOST

adaptation must be performed in both gateways and, additionally, a protocol con-
version in the HMI.

Stack
System 1

Stack
System 2

Gateway

Slow Bus Fast Bus

Fig. 17.2: Basic structure of a Gateway

17.2 Architecture of a Gateway
Figure 17.2 shows the basic architecture of a Gateway. Usually, the complete stack,
comprising all seven layers of the OSI communication model (Open Systems Inter-
connection Reference Model), must be implemented for each bus system. The
Gateway Engine is placed above, routing the signals from one system to the other
on the basis of the static Routing Table. The Gateway Engine lists all signals with
source and target and is generated from the central In-car Network Database of the
OEM. The following are the tasks of a Gateway:

 Address conversion

 Message conversion

 Intermediate buffering of the messages

 Packet confirmation

 Flow control and bit rate adaptations

 Routing of the signals

 Network management

 Error management

 Locking/separating of the buses, if required (e.g., flashing/programming of two
buses at the same time)

 Authentification of message senders/receivers (e.g., only ECU x in MOST may
send to ECU y in the CAN)

17.3 MOST – CAN Gateway 283

The listing shows that the implementation of gateways is usually complex and er-
ror-prone. The different bit rates of the networks can result in delays and loss of
messages.

The structures mentioned will now be explained in detail, taking the MOST – CAN
Gateway and the MOST – Bluetooth Gateway as examples.

17.3 MOST – CAN Gateway
The MOST – CAN Gateway is implemented in the HMI or in the central gateway.
Figure 17.3 shows the structure. There are different levels of abstraction for the
CAN bus and the MOST Interface. Whereas there are signals that are transported to
a specified position in the CAN frame, the MOST Interface consists of a function
block, i.e., the signals on the MOST side are treated as properties of the function
block. All important signals that have to be exchanged between the MOST system
and the rest of the vehicle network are represented in one FBlock, e.g., Vehicle
[FBVehicle 1.6] or, when reflecting also the source domains of the information, in
multiple FBlocks, e.g., Powertrain, BodyCompartment, HumanInterfaceController
and so on.

Data: 60.00 km/h

Data: data

Data:

Data: 10000.1 km

Data:

Data: key present

Data: data

Data:

Data:

Data:

Function ID: GetData

Function ID:

Function ID: HiResDistance

Function ID:

Function ID: IgnitionKey

Function ID: PutData

Function ID:

Function ID:

Function ID:

FBlock: Vehicle

FBlock: Diagnosis

FBlock:

Wheel
Speed

MOST interfaceCAN frames

(2)

(3)

(1)

Ignition
Key

HiRes
Distance

CAN

MOST

Fig. 17.3: Structure of the MOST CAN Gateway [according to Por 2004]

284 17: Gateways to MOST

In the example given in figure 17.3, the signals WheelSpeed and HiResDistance
(high-resolution odometer reading) are copied from the CAN frame 1, and the sig-
nal IgnitionKey (status of the ignition lock) from the CAN frame 2 onto the corre-
sponding properties of the FBlock Vehicle. The MOST devices interested in these
properties can subscribe to these properties by using the notification mechanism at
the FBlock Vehicle in the gateway.

If a diagnostic protocol is used in the gateway, flow control must be implemented
due to the different bit rates.

The opposite direction, where signals are originated on MOST and need to be gated
on CAN, the Gateway is instantiating one or more Shadows. These Shadows are
keeping themselves registered for notification, in order to get posted upon status
changes on the properties of the related FBlocks.

A Protocol-Gateway therefore is—from the perspective of any other native MOST
element, FBlock or Shadow in the ring—following all MOST stereotypes in a fully
MOST Specification compliant way.

17.4 MOST – Bluetooth Gateway
The Hands Free Profile [HFP 1.5] was defined for connecting a cell phone with a
headset or the telephone unit in a car. The profile comprises the role of the Audio
Gateway (AG), which is usually adopted by the cell phone, and the role of the
Hands Free Unit (HF), which occupies the headset or the MOST Bluetooth Gate-
way in the car (fig. 17.4).

Hands-Free
Unit
(HF)

Bluetooth
Audio Gateway

(AG)

Cellular
NetworkCellular

ConnectionBluetooth
Connection

Fig. 17.4: Roles of the Hands Free Profile [according to HFP 1.5]

In addition to the Control Channel, the audio channel also has to be routed in the
Bluetooth Gateway.

17.5 Routing of the Control Channel 285

17.5 Routing of the Control Channel
Figure 17.5 shows the stack architecture of the Control Channel in a MOST – Blue-
tooth Gateway. It becomes clear that Bluetooth and MOST have a similar architec-
ture. While the FBlock Bluetooth is placed on the MOST Stack, Bluetooth uses the
profile Hands Free Control for controlling the Hands Free Unit. It basically stan-
dardizes the Call Handling. This comprises taking calls and setting up and terminat-
ing the audio channel (see also appendix B 2.5). The Gateway Engine connects the
services of the Bluetooth profile with the properties and functions of the MOST
function block Bluetooth.

Baseband

RadioRadio

Baseband

Application
(Audio driver)

LMPLMP L2CAPL2CAP

SDPSDP RFCOMM RFCOMM

Hands-Free
control

Hands-Free
 control

Network Interface
Controller

Network Interface
Controller

NetService
Basic Level

NetService
Basic Level

Bluetooth
Hands-Free

Unit

Bluetooth
Audio Gateway

Gateway

MOST
Audio Gateway

MOST
Device

Fig. 17.5: Architecture of the Control Channel

Figure 17.5 shows the simplified structure of a possible audio connection setup in
the case of an incoming call. The audio connection setup is initiated by the HFP
(AG). The information about the successful setup is then available in the HFP (HF)
and is passed on to the Gateway Engine. It is only now that the audio setup via
MOST takes place. For that purpose, the Gateway Engine calls the method
BuildSyncConnection of the FBlock ConnectionManager (CM), which then sets up
the synchronous MOST connection between the Bluetooth Gateway and the ampli-
fier by using the methods SourceConnect and Connect. Using BuildSyncConnec-
tion.ResultAck, the ConnectionMaster reports the successful setup to the Bluetooth
Gateway. At the same time the ring tone is created in the MOST system.

Entries in the phone book can be exchanged between the cell phone and the MOST
system by means of AT commands or the Synchronization Markup Language
(SyncML), if the latter is implemented. Another possibility is the Phone Book Ac-
cess Profile (PBAP) defined for that purpose, which then has to be implemented in
the cell phone and in the gateway [PBAP].

286 17: Gateways to MOST

HFP
(HF)

HFP
(AG)

Established Service
Level Connection

Audio Connection
set up

 Audio Connection Audio Connection

Incoming
Call

BuildSyncConnection

SourceConnect

Connect of sink

BuildSyncConnection.ResultAck

+CIEV: (callsetup = 1)

Fig. 17.6: Basic sequence for the setup of a synchronous connection

In cars, the SIM Access Profile (SAP) is also of interest [SAP]. It is used exclu-
sively for exchanging the SIM data between the cell phone and the car. By means of
the SIM Access Profile, the telephone integrated in the car can read out the SIM
data from the cell phone and use them as long as it is registered via Bluetooth. This
makes a second SIM card unnecessary.

17.5.1 Routing of the Synchronous Audio connections

In addition to the Control Channel, the synchronous audio connection also has to be
routed. In this context, the frequency spectrum and, if necessary, the amplitudes
have to be adapted. The Bluetooth SCO channel is adapted to the audio quality of
an ISDN channel, i.e., it has a sample rate of 8 kHz, which allows a signal spectrum
of up to 4 kHz.

Bluetooth uses the Pulse Code Modulation (PCM) or the Continuous Variable Slope
Delta Modulation (CVSD) for source coding of the audio signals on the SCO chan-
nel.

The PCM format can be used with a logarithmic A-characteristic (A-law) or a loga-
rithmic µ-characteristic (µ-law). As the sampling values are quantized with 8 bits
and the sample rate is 8 kHz, a bandwidth of 64 kbit/s is required on the SCO chan-
nel.

The CVSD modulation transmits the differences between the anticipated and the ac-
tual sampling value. It is a type of delta modulation, in which the sampling period
of the approximated signal is incremented or decremented progressively, in order to
improve adaptation of the signal to the analog input signal. For the conversion, only
the positive or negative changes compared to the preliminary value are indicated by
a bit. The sample rate is 64 kHz and the amplitude is 16 bits. As only one bit is
transmitted at a time, the channel also requires 64 kbit/s.

17.5 Routing of the Control Channel 287

Usually PCM modulation is used for Bluetooth. The adaptation of the different
sample rates is effected by using a bi-directional asynchronous sample rate con-
verter, as is shown in figure 17.7. In the case of audio data transmitted from the
Bluetooth channel into the MOST system, the converter increments the sample rate
to 44.1 kHz by means of interpolation. In the opposite direction, it decrements the
sample rate to 8 kHz. A low pass filter is integrated into the converter.

Asynchronous
sample

rate converter

PCM
Codec

PCM
44.1kHz

8 kHz

8 kHz

44.1kHz

PCM
16 Bits 8 kHz

Cell phone

Bluetooth
MOST

Gateway

INIC Amplifier

Fig. 17.7: Architecture of the Audio Gateway

The controls of the Streaming Channel and the Control Channel must be coordi-
nated by the gateway. A valid signal must first be applied to the synchronous con-
nection, for example, before the amplifier switches to the telephone source. Other-
wise whistling or other noises might occur.

288

289

18 MOST Applications
This chapter deals with an overview of some MOST based applications, starting
with a glance on the history of infotainment systems and an outlook into the future
from today’s perspective.

18.1 Overview
Back in the mid 90’s, the automotive entertainment market was confronted with
new technical and operational requirements:

1. The growing number of entertainment components supplying and consuming all
kinds of information in the car increased the complexity of interconnecting and
controlling such components.

2. The car makers struggled with Electro Magnetic Interference (EMI), as well as
the weight and cost of the wiring harnesses, caused by the multiple different
hardware platforms. The diagnosis of the different components could not be in-
herently handled by the system, but only through each individual component.

3. The final user (driver or passengers) had and still has the need to operate all the
components through different, individual human machine interfaces.

To build a system, each component (whether a sink or a source of information) has
to have the capability and possibility to communicate with other components in
such a way that the information can be used in real time (minimum latency). Fur-
thermore, the information sometimes is enhanced and post-processed (synchronous
co-processing), and re-used again as a new set of information. The infotainment
Head Unit, sometimes also named ‘system controller’ should govern all events in
all components in such a way that the user is no longer confronted by the complex-
ity of the system, but has to deal with the results produced by the system only!

This set of requirements lead to the design of the MOST system, enabling the trans-
port and ’broadcasting’ the information (data) and the control commands in such a
way, that media-signals could also be transported in real time.

MOST quickly became the backbone of all modern infotainment systems and is
now the de facto standard for infotainment networking in the automotive industry.
However, MOST does not only stand for the transport of the data. Equally impor-
tant is the fact that MOST offers a standardized set of APIs enabling the design of

290 18: MOST Applications

an appropriate software structure around the logical representation of all compo-
nents (proxies) in the system controller.

And last but not least, MOST was and still is the enabler to overcome the real chal-
lenge in infotainment system design: Provide the flexibility and the scalability to
cover different market requirements with different levels of functionality and per-
formance based on a unique but still stable system architecture.

The FIRST Generation of MOST based Infotainment Systems in the market can
be characterized by a strongly distributed architecture, driven by a large variety of
infotainment functions and features with limited and at the same time expensive
computing horsepower. The result was a pretty strongly modularized approach with
many dedicated system components carrying dedicated functions. The system com-
ponents were designed and manufactured by several suppliers, represented by their
individual, sometimes diverse skill sets in hardware and software design and manu-
facturing. Hence, the difference in quality and performance of the components was
high, until a later stage when everybody had caught up in the learning curve. Figure
18.1 shows such a system.

Fig. 18.1: 1st Generation MOST based Infotainment Systems

The SECOND Generation of Infotainment Systems is characterized by a higher
physical integration of the external components into the headunit. The number of
components could be typically reduced from 12-15 to 6-8. Cost, weight and power
consumption were typically down by up to 30%, compared with 1st generation sys-
tems of similar functionality and performance. Examples for such physical integra-
tion are ‘Tuner-Amplifier’ modules or the integration of navigation computing
modules into the headunit (see fig. 18.2). The field results of the 1st generation
MOST cars (BMW’s 7 Series E65 or Daimlers E-Class W211) vs. the 2nd genera-
tion cars (BMWs 5 Series E60, MB C-Class W203) are the proof of this.

18.1 Overview 291

Fig. 18.2: 2nd Generation MOST based Infotainment Systems

The THIRD Generation of Infotainment Systems are the basis for the systems
established on the market from 2005 onwards. They are characterized by the re-
placement of hardware components through software modules (see fig. 18.3). Fur-
ther cost, weight and power consumption reduction are achieved (-30%). Many sys-
tem functions are absorbed by the Head Unit and a lower number of external system
components. In some cases, the entry level infotainment system does not even con-
tain any external system components anymore, while through the built-in MOST in-
terface still offering the possibility to attach advanced options such as external
sound amplifiers, media changers or country specific tuner options like satellite ra-
dios.. Here, devices identical to those in the mid and high-end system can be used.

Fig. 18.3: 3rd Gen Mid Level Infotainment System

292 18: MOST Applications

The FOURTH Generation of Infotainment Systems will be seen in the Market
from 2013 onwards. With the functions and features of MOST150 and particularly
its enhanced bandwidth, it will finally be possible to transport all infotainment re-
lated video data over the MOST network. The video content is transported in a
compressed way, as all media data is provided in a compressed format anyway
(over the air through digital broadcast or wireless LAN, on DVD or Blu-ray discs or
in the memory of portable media).

Typical systems will comprise an infotainment headunit and some external compo-
nents like sound amplifier, digital tuner (country/region specific), media interface,
and rear seat entertainment units or the inststrument panel cluster (IPC), which in
times of LCD panels, are gaining more and more video capabilities. Optionally, a
back-up camera, which as of today is still connected to the headunit via separate
video cable, may be integrated into the MOST system (see fig. 18.4).

Fig. 18.4: 4th Generation MOST based Infotainment System

The following three sections will elaborate on three examples of MOST system
components: infotainment headunit, media interface and sound systems.

18.2 Infotainment Headunit 293

18.2 Infotainment Headunit
In 2010’s systems, a typical infotainment headunit is a scaleable computing plat-
form optimized for the harsh automotive environment with computing power reach-
ing from 32-bit based 400 MIPS up to 2 GIPS dual processor architectures. In addi-
tion, dedicated hardware (DSPs) for Audio/Tuner and graphic processing is used.
State-of-the-art 32-bit operating systems are applied like Microsoft
WinCE4Automotive, QNX, embedded Linux or Micro-Itron.

Accordingly, a respective software suite is required to be matched to the scalability
of the hardware. Innovations concerning minimum start up time, real-time process-
ing, processing streaming data, server capability of the modules, multiple graphic
drivers for multi-user applications and multimodal HMI operation are realized
through advanced application software modules, advanced frameworks and real-
time operating system (RTOS). It is extremely useful to implement pervasive soft-
ware architecture from entry level up to high-end systems, following the MOST
philosophy.

In order to guarantee fast startup of the individual system components, which is
very important for providing the functionality of all system components to the user
quickly, very often an additional 16-bit microcontroller, often called I/O processor,
with a different, lean OS is used. This device also typically implements the gateway
functionality (MOST-CAN), in case the headunit carries the gateway.

Fig. 18.5: Infotainment Headunit based on FPGA architecture

294 18: MOST Applications

As MOST defines a comprehensive set of data types to exchange information ‘sig-
nal based’ and includes an expandable and customizable set of already defined
APIs, a very interesting approach consists of a unified communication architecture
for a): the communication over the physical MOST network, b): the communication
between the main CPU and the I/O processor and c) the ‘on chip’ communication
inside the 32-bit engine. The majority of the MOST based headunits from the 1st
and 2nd generation MOST systems have been using such SW architecture, however
at the time being pretty much proprietary solutions.

Today, SW frameworks offering ready-made solutions for such software architec-
tures are widely used and commercially available, e.g., from K2L (www.K2L.de)

Market leaders in field-programmable gate arrays (FPGA) have committed their
next generation devices to support scaling the main board and interfacing hardware
in a very flexible and optimized way. The advantage of such a concept is a scalable
approach providing a number of hardware levels, which can be re-configured by the
FPGA code through the system software (see fig. 18.5).

A different approach is shown in figure 18.6. It is the even stronger re-use of PC-
like architectures. In this case, the FPGA is replaced by a dedicated south bridge
chip (I/O Hub), similar to what can be found in PCs. However the south bridge
chips used in PCs cannot be used due to missing Audio/Video ports. Here, the still
significant difference between car applications (embedded multimedia units) and
PC applications becomes obvious, forcing the development of automotive specific
I/O hubs.

Fig. 18.6: Infotainment Headunit based on PC architecture

18.3 Media Interface Devices 295

It has to be seen if and until when the complete integration of the multimedia (A/V
Processing) functionality into the main processor will be realized. In any case, such
an integration will require the existence of a comprehensive set of software suites
starting from RTOS and framework, offering different packages of well debugged
software suites, incl. applications as network subsystems (MOST), graphic libraries
and drivers, navigation, voice control and voice enhancement, multi standard media
decoders, discrete and enhanced sound processing, digital radio processing, generic
system diagnosis, system start-up and shutdown including the network control, etc.

As of 2010, different initiatives exist to create such an ecosystem. However, the
migration is quite challenging from a performance, scalability and design/software
integration perspective, particularly given the constantly and rapidly growing fea-
ture set of mobile/portable devices such as smartphones and media players, which
are driven by the much higher volume consumer industry.

Another trend which may become even more relevant for the design of future Info-
tainment headunits is the emerging requirement for driver assist functions and fea-
tures. As the infotainment system provides the main user interface, it is obvious that
there will be some overlap between the classical infotainment domain and the up-
coming driver assist cluster, which will also affect the infotainment headunit design
and architecture.

Given the fact that both non safety related as well as safety related functions need to
be considered, a more modular approach may be even better, allowing the devel-
opment of different parts of the headunit according to different Automotive Safety
Integrity Levels (ASIL) according to the ISO 26262 standard.

In any case it is obvious that a powerful communication backbone providing differ-
ent levels of communication methods, as MOST provides it, becomes even more
important than before.

18.3 Media Interface Devices
The variety in media devices is constantly expanding and the design of the devices
is rapidly changing. MP3 players (the most prominent one being the iPod) using
different APIs and sometimes also copy protection/content management methods
require more or less frequent changes on the vehicle side. Some companies even re-
quire dedicated hardware (ICs) to authenticate and enable the communication with
their respective products.

Implementing such changes in the multimedia headunit implies a relatively large
development and in particular test and requalification efforts. Other media devices
may not even be available during the time the headunit and the multimedia system
is developed, or may even emerge only during the production time of the car. From

296 18: MOST Applications

a car makers perspective, this discrepancy of the vehicle lifecycle and the consumer
products has become an ever increasing nightmare.

For obvious reasons, it does make a lot of sense to de-couple the rapidly changing
consumer world from the more stable car environment. This is often achieved
through so-called ‘media interface devices’ or sometimes called ‘universal commu-
nication interfaces’. Such devices may contain different types of card readers, mul-
tiple USB interfaces, and, respective authentication devices, to communicate with
specific, proprietary equipment. Figure 18.7 shows the block diagram of a media in-
terface device.

As discussed in the previous section, today’s smartphones carry more and more
functions and features: navigation, voice control and, multi standard media servers
and wireless communication including GSM/UMTS and also WLAN. The demand
to attach such devices to the car and use the built-in features is constantly rising.
Using a MOST based media interface device, the car maker has also the flexibility
to react on fast market changes coming from the consumer industry on the one side
while still being able to keep the well defined, carefully architected and debugged
infotainment infrastructure.

Fig. 18.7: MOST based
Media Interface Device

18.4 Sound Systems
Quite often manufacturers offer several optional equipments for each vehicle type.
Different trim levels, reaching from basic systems up to (often branded) premium
sound systems, are available. It is obvious that, although offering different features
and in particular output power and signal processing capabilities, it is extremely
important that all these trim levels can be controlled in a consistent way from the
network side. A unified control API as provided by MOST is the key to a clean and
straightforward system architecture and integration process.

18.4 Sound Systems 297

Speed-dependent volume control is one example, where the sound system needs to
be networked to the rest of the vehicle. It compensates for disturbing vehicle noises
that swell with increasing driving speed.

Another example is the generation of acoustic warning signals (chimes), e.g., for
park distance control or seat belt warnings. With growing feature sets of driver as-
sist applications, where the driver is more and more overloaded with visual infor-
mation, it can be expected that the acoustic information channel to the driver will
get more important. Such signals are transmitted to the Head Unit via the MOST or
CAN bus system, where the real-time behavior is extremely important.

Premium System

In a premium system a multitude of signals is transmitted from the Head Unit or
other sources via MOST to a separate DSP (Digital Signal Processor) amplifier,
which contains multiple amplifier outputs. This amplifier is also referred to as digi-
tal sound processor (see fig. 18.8).

DSP D/A V

DControllerDAB
DVB
Phone
TV
DVD
CD Changer
Internet

DSP D/A Amplifier

DiagnosticsController

AF Source

MOST

Fig. 18.8: Block diagram of a DSP Sound Amplifier

The DSP used does not only allow for a broadband, speed-dependent volume level
increase, but also influences the spectral reproduction characteristics by counteract-
ing the masking influence of low-range noises by a low-frequency level rise at the
wanted signal. Noise in a vehicle is mostly very low-frequent and decreases by ap-
proximate 20 dB per frequency decade. Thus, a simple broadband level rise of the
wanted signal – as in the case of the premium system – leads to a high-range im-
pression, because only low frequencies of the wanted signal are masked by the
noise and are thus less audible. Due to the fact that noise depends on the speed, it
can be estimated via the rev counter or be measured directly by a microphone. This
results in a high-grade closed-loop control system. Typically, the microphone signal
(one or multiple microphones may be applied) is also transmitted via the MOST
bus.

298 18: MOST Applications

18.5 Audio and Video Transmission Formats

18.5.1 Audio Streaming

A multimedia system in a vehicle must be able to read the different storage media
and their coding formats. In addition, the different transmission formats of digital
audio broadcasting and digital video broadcasting must be identified. Depending on
the equipment variant, high transmission rates may be generated, which must be
processed by the MOST system.

In contrast to the vast majority of other bus systems coming from different applica-
tion areas, MOST has been designed for Multimedia Data Transport throughout a
system, as its name already indicates.

In contrast to home systems, the car requires a multi source / multi sink environ-
ment, where multiple audio and video sinks, amplifiers, headphones and multiple
displays are operated at the same time.

There is a great variety of transmission formats in the audio field. In addition to ste-
reo reproduction, different surround formats are relevant for the use in vehicles and
are often employed in professional systems. The following is a rough overview:

Stereo

The uncompressed signal has a data rate of 1.4 Mbit/s at a sampling rate of 44.1
kHz and a 16-bit resolution. The most widely used compression rate is 128 kBit/s
for MP3.

Analog Dolby Surround Pro Logic

This system consists of the channels front right, front center (center speaker for
voices), front left, and rear left, rear right as one channel. The surround channel is
applied to the two rear speakers and is time-delayed with regard to the front chan-
nels and band-limited to 100 to 7,000 Hz. The center speaker positions the voices to
the center, which, in a car, makes localization rather independent of the listening
position.

Analog Dolby Surround Pro Logic II

The Dolby Surround Pro Logic II enhances the Pro Logic to a 5.1 system by incor-
porating two separate surround channels without band limitation, and a subwoofer
channel.

18.5 Audio and Video Transmission Formats 299

Dolby Digital, AC3

AC3 comprises five separate channels without band limitation and a separate sub-
woofer channel (Low Frequency Effect, LFE) limited to 120 Hz. At a sampling fre-
quency of 48 kHz and a 16-bit resolution, transmission rates of 384 to 448 kbit/s
accrue for the data which have a lossy compression ratio of 10:1. For two-channel
stereo, the data rate is reduced to 192 kBit/s. Whereas MPEG-2 is the DVD stan-
dard in the video field, AC3 is the DVD standard in the audio field. MPEG-2 can
only be used on a DVD as an additional audio coding format.

MPEG-2

MPEG-2 is a coding standard which can also be found on a DVD for audio signals,
in addition to AC3. The data rate for six channels is about 400 kbit/s. MPEG-2
AAC (Advanced Audio Coding) is an enhancement which manages with half the
data rate for the same quality as MPEG-2 and admits the coding of up to 48 audio
channels, 16 subwoofer channels and 16 commentary channel. MPEG-2 is used as a
standard in digital TV d(DVD satellite, DVD cable, DVD terrestrial). In Japan,
MPEG-2 has been used as the exclusive sound format for all digital broadcasting
systems since the beginning of the year 2000.

Digital Theatre System (DTS)

DTS is also a 5.1 system. Compared to AC3 it is distinguished by a better sound
quality and increased dynamics. DTS has considerably less data compression and
works with 1.536 Mbit/s for surround coding.

Logic 7

The 7.1 surround system developed by Lexicon controls the eight independent
channels either digitally or develops a corresponding control from a stereo signal on
the basis of a matrix decoding. It is thus possible to simulate the surround impres-
sion and achieve a very good ambient sound reproduction. A 5.1 source signal is
enhanced to 7.1. Logic 7 is often used as professional system in vehicles.

18.5.2 Video Streaming

In the video field, a variety of different formats is applied, driven by different com-
panies and different markets. Figure 18.9 gives an overview of the common
graphic/video standards.

300 18: MOST Applications

Fig. 18.9: Overview of common graphic/video standards

Rotating media like video CD, DVD, BD, digital video streams from DVB or DMB
tuners, or any kind of portable device will contain compressed video.

Usually, consumer video applications depend on digital data in a compressed for-
mat. The reason is clear: it is the cost for either the data transport channel (over the
air or the Internet) or the storage capacity (disk space, memory).

For pre-recorded content, there is no need to transport uncompressed video. For
compressed video transport, two different principle scenarios are possible. Each
scenario has advantages and disadvantages, and these must be weighted under the
specific project requirements, including aspects of multi-seat capabilities, function
related costs, global costs, flexibility, expandability, bandwidth and other hardware
requirements.

Scenario 1: Transcoding at the source

Stream navigation and decoding is done directly at the source. Video and audio are
put onto MOST separately from each other. Video is transcoded or re-encoded into
a common, to be defined MOST format, e.g., H.264 or MPEG2/4. Audio is
transcoded to PCM. Due to the separation of audio and video, the video sink and the
audio sink can be independent from each other (example: video is sent to one or
more displays, audio is sent to the amplifier). The system uses a push mode from
the source towards the sinks. The synchronous nature of MOST with its determined,
minimum and constant delay supports the separate transmission of the Audio and
Video stream in an optimum way.

Also for DVD (and potentially DivX also) the handling of subpicture information
must be considered. It can either be imprinted on the transcoded frame or sent sepa-
rately (with the video) to the sinks.

18.6 MOST for Driver Assist Applications 301

Scenario 2: Transfer of program stream and decoding at the video sink

The data is transferred in the original format (Audio + Video, Transport stream or
program stream) as provided by the source over MOST to the sink, e.g., a display
unit. Decoding and navigation/control are done in the sink.

Audio can be routed back onto MOST towards a detached audio sink (Main Ampli-
fier, detached headphone amplifier). The system may either use a pull mode to re-
quest data packets from the source, in case the source is a memory based medium
(HDD, Media Drive, …) or a push mode, e.g. for sources like digital tuners. The
video sink may then use a push mode to transmit decoded audio and video data to
additional sinks which are in copy mode (i.e., viewing/listening to the same con-
tent).

18.6 MOST for Driver Assist Applications
Driver assistance systems are about to conquer the market. The latest studies fore-
cast an annual market growth from 9 to 62 million units between 2005 and 2013. In
current and future vehicles, driver assistance functions are starting to complete and
extend the feature set of traditional infotainment systems. Along with information
features such as navigation systems, traffic information, and function warnings, the
number of vehicles with driver assistance features like camera systems, distance
controls, or lane departure warnings will be rapidly increasing. In this application
domain, communication faults become a serious issue since they can lead to se-
verely damage objects or even injure persons. Necessary improvements are being
investigated, and recent studies show that MOST might be able to support safety-
critical applications as well.

Fig. 18.10: Evolution of Electric/Electronic
Domains in the vehicle

Driver assistance systems are on the way to become an integral part of the car, with
interfaces to many different clusters of automotive Electric/Electronic systems.

302 18: MOST Applications

Taking into account the complexity of the applications and the different areas of the
car that have to exchange information, it will become obvious that an appropriate
network infrastructure is of crucial importance for the efficiency of the system. So
in addition to the five classical domains of an electric/electronic network architec-
ture in the car, a new one dedicated to Driver Assist Systems is being introduced
(see fig. 18.10).

The existing incarnation of MOST, having been developed and optimized for info-
tainment, can probably only be used ‘as is’ for very limited use cases of driver as-
sist applications. On behalf of the MOST Cooperation, investigations are being
made on which measures have to be taken in order to fulfill the requirements of the
forthcoming safety standard for the automotive industry ISO 26262, which also re-
spects necessary requirements of current standards, e.g., IEC 61508.

With respect to the physical layer, the ring architecture alone has too many limita-
tions for driver assist applications. Therefore, alternative topology options like star
or daisy chain are being developed. On the wiring side, fiber optics may not be suit-
able for all use cases, while at the same time the well established UTP physical
layer for MOST50 may either limited in bandwidth expansion or not robust enough
for upcoming EMC requirements from hybrid or electric cars. Consequently, the
MOST standard is being completed by cost effective, robust alternatives, e.g., Coax
cable based physical layers.

As a solution on the protocol side, an architecture with a safety layer as the basis for
safety related applications has been proposed. A safety layer provides safe commu-
nication over a MOST network using safety codes and a dependable service for the
transmission of safety related application data over a MOST network.

Looking into the future, one possible incarnation of the 5th generation MOST sys-
tems could be the use in both the infotainment and the driver assist area, supported
by different topologies and different physical layers.

303

Appendix

304

305

A The Description Language Message

Sequence Chart (MSC)

The automotive area mostly uses MSCs for describing the dynamic behavior of dis-
tributed telematics and infotainment systems. The syntax and the semantics of the
Message Sequence Charts were standardized in the ITU-T Z.120 [ITUZ120] and in
the Corrigendum 1 by the International Telecommunications Union, ITU. A large
number of graphic notations for describing the interaction of components were sug-
gested in the past. The Message Sequence Charts proved an intuitive form of de-
scribing the asynchronous exchange of messages between the instances of a com-
munication system.

The semi-formal notation originates from the telecommunication area, particularly
the areas Requirements Engineering, specification, and the design of telecommuni-
cation distribution systems. MSCs were then always considered as one aspect of an
SDL (Specification Description Language) model. Meanwhile, however, MSC has
detached itself from SDL and the standardization has been pushed on by the ITU.

MSC aims at creating a technical language for specifying and describing the com-
munication behavior of system components among each other and with their envi-
ronment by means of exchanging messages. As the communication behavior in
MSCs is described in an intuitive and transparent manner, the MSC language is
easy to learn, use and interpret. In combination with other languages, it supports
methods for system specification, system design, simulation, test and documenta-
tion.

MSC is independent of the used communication protocol. In addition to the bus
communication, the communication models can be specified between the software
components within a device, if they are relevant for the system behavior.

The MSC standard supports a modular structure. Recurring communication proce-
dures only have to be described once and can then be used as often as desired as
reference. There is no obligatory completeness (in contrast to statecharts) and it is
possible to itemize, depending on requirements. Difficult and unclear items are
specified in more detail.

However, when describing MOST sequences, a necessary extension for complex
data types became obvious. For that reason the so-called Named Parameters were
introduced, which are described in the MOST MSC Cookbook Specification, chap-
ter 5, appendix A: Extension to MSC2000 (Named Parameters).

306 A: The Description Language Message Sequence Chart (MSC)

MSC defines the two categories: Basic MSCs and HMSCs (High Level MSCs).
Figure A.1 illustrates an example of a Basic MSC, referred to as TuneNextFmSta-
tion. It describes the sequence of changing from a currently selected FM radio sta-
tion (BBC) to the FM station (RadioTokyo) stored next in the list. The Basic MSC
abstracts the sequence and only shows the exchange of information between the
main components AmFmTuner_Controller and AmFmTuner. At the start, the sys-
tem is in its initial state – radio station BBC is selected. The HMI sends the message
USERDEF_HMI_Event with the parameter User selects new Station in ListFM to
the AmFmTuner_Controller. The latter sends the message ListFM.Set with the re-
spective parameters to the AmFmTuner, which executes the action. If the new radio
station (RadioTokyo) is tuned, the AmFmTuner sends the new list status
(ListFM.Status) and the station name (StationInfo.Status) received via RDS to the
AmFmTuner_Controller.

msc TuneNextFmStation page 1 of 1

HU

AmFmTuner_Controller

ANT

AmFmTuner

Initial State

Current selected Fm radio station
"BBC"

USERDEF_HMI_Event
(User='User selects new station from

ListFM')

ListFM.Set
(Data={Selection[0]='aktiv'})

if (new sender is selected)

Current Fm radio station
"RadioTokyo"

ListFM.Status
(Data={Selection[0]='aktiv'})

StationInfo.Status
(Data={SenderName='RadioTokyo',
SenderNameInfo='via RDS received

name (orginal)'})

Fig. A.1: Example of a Basic MSC

Instances

Instances are, apart from the messages, the most important language constructs of
Basic MSCs. Instances are components which exchange messages among each
other or with the system environment. CAN nodes, MOST FBlocks etc. are exam-
ples of instances. Instances are illustrated as instance head attached to a vertical
line. The instance head contains the instance name. Admissible instance names in
the MOST domain are, for example, NetBlock, AmFmTuner and PowerMaster.
Additionally, the type of instance can be indicated above the instance head (cf. fig.
A.1). The end of the instance is described by an instance end symbol (▬). That

A: The Description Language Message Sequence Chart (MSC) 307

does not necessarily mean that the instance is completed here. It only means that
within this MSC no further events are described for this instance.

MOST uses MOST Instances, as they are called, General Instances and User-
Defined Instances. MOST Instances have a function block name (FBlockID) and an
optional instance ID (InstID). The General Instances can be defined freely and are
used for instances which cannot be illustrated by a MOST function block.

A user-defined instance is the user interface of a MOST instance, such as the Hu-
man Machine Interface (HMI). An abstraction layer separates the user activities in
the head unit from the user-defined instance. It translates, for example, the actuation
of a pushbutton or switch into events which the user-defined instance can trigger or
receive. When the system is modeled, only one single event is thus necessary for
the HMI instance for selecting the next radio station stored in the list
(TuneNextFmStation, cf. fig. A.1), irrespective of the complexity of the menu navi-
gation.

Messages

MOST Messages in MSCs should always correspond to the MOST function cata-
log. Messages are illustrated by arrows indicating the time lapse. The arrow end de-
scribes the sending and the arrow tip the processing of a message. The labeling con-
sists of the message name and optional parameters which are indicated in brackets
underneath the arrow. Messages are arranged along the instance axis according to
their chronological appearance. Since the order of sequence is firmly defined, this
arrangement is also referred to as total order.

Prefixes were introduced to facilitate the differentiation between MOST, CAN and
HMI messages. Messages sent by an HMI Instance get the prefix HMI_Event and
messages received by the HMI Instance get the prefix HMI_Update.

The messages Processing or ProcessingAck can occur in a MOST system if a
method was triggered by means of the OPType StartResult or StartResultAck. If the
called instance cannot answer within the predetermined period of time, it sends the
message Processing, in order to inform the sender that its query is still being proc-
essed. Processing messages can occur at any time in any part of an MSC, after the
method has been queried. For that reason it does not always make sense to integrate
these messages into the MSC, as this makes reading the MSCs difficult.

Environment

The diagram area of an MSC is confined by a rectangular frame, referred to as En-
vironment. It defines the system environment of the MSC. The messages coming
from the system environment or being sent there, start and end on the environment
(cf. the message USERDEF_HMI_Event in fig. A.1). In contrast to the total order
along the instance axes, there is no order defined for events on the Environment.

308 A: The Description Language Message Sequence Chart (MSC)

Actions

In addition to the messages, actions can be specified by instances. An action in an
MSC is presented by a rectangular symbol, which can contain any text (cf. fig. A.1
– “currently selected fm station BBC”).

Timer

MSC offers the language constructs Timer-Start, Timeout and Timer-Stop for label-
ing Timers. Timer-Start defines the starting, Timeout the lapse and Timer-Stop the
reset of a Timer. A Timer is always assigned to an instance. For that reason the
graphical Timer symbol (cf. fig. A.2) is always connected to the corresponding in-
stance. A Timer symbol includes the name of the Timer and optional Timer pa-
rameters. An hourglass symbolizes the Timer-Start, an arrow starting at the hour-
glass symbolizes the Timeout, and a cross symbolizes the Timer-Stop.

msc Timer page 1 of 1

FBlock1 FBlock2 FBlock3

Timer
[10] Timer

Timer

Fig. A.2: MSC Timer symbols

Condition

A condition relates to a number of instances of an MSC. Conditions are graphically
represented by hexagons covering the instances they are relating to. In MSCs, con-
ditions are used for describing important system states (e.g., initial state in fig. A.1).

Apart from the Basic MSCs, there are structural language constructs, as they are
called, which exceed the description of the message sequence. By means of these
language elements, MSCs and parts of MSCs can be combined to complex se-
quences (Inline-Expression and High-Level MSC), MSC diagrams can be reused in
other MSC diagrams (References), MSC instances can be refined (Decomposition),
and general event structures for instances can be defined (Coregion and General-
Ordering). However, this clause will only describe High-Level MSC (HMSC). A
detailed description of the other language constructs is given in the MSC Specifica-
tions ([Z.120 99], [Z.120AB 98], [Z.120C1 01]) and the MOST MSC Cookbook
[MSC].

A: The Description Language Message Sequence Chart (MSC) 309

High-Level MSC

Whereas the Basic MSCs describe the communication between different partici-
pants on the message level, the High-Level MSCs (HMSC) offer a graphical way of
combining individual MSCs with each other (see fig. A.3).

msc Overview

g_eMarket

JAPAN USA

Fig. A.3: Example of a High-Level MSC [MSC]

An HMSC abstracts instances and the message sequence. It is designed for present-
ing the combination of MSCs. Diagrams of this kind are thus often referred to as
Roadmaps. By means of the HMSCs, it is possible to present parallel, sequential
and alternative combinations of MSCs in a simple manner. The HMSC illustrated in
figure A.3 describes the sequence determining the features of a MOST infotainment
system depending on the sales market, i.e., the global enum-constant g_eMarket,
JAPAN or USA.

This chapter could only deal with the most important elements of the MSC lan-
guage. Apart from the mentioned constructs, further concepts are specified, making
MSC a complete specification language. More information and a complete descrip-
tion of the MSC language, as well as MOST-specific adaptations can be gathered
from the SDL forum (http://www.sdl-forum.org) and the MOST Cooperation server
(http://www.mostcooperation.com) in [MSC].

http://www.sdl-forum.org/�
http://www.mostcooperation.com/�

310

B Data rate of the Packet Data

Channel of MOST25

The net data rate of the Packet Data Channel of MOST25 basically depends on the
bandwidth of the channel and the length of the telegram. The number of telegram
segments is calculated according to the following equation [DS 8104]:

Frames
SBC

Pd
roundup

SBC

PhPd
roundup

Af

PhPd
roundupTp

4*)15(

10

4*)15(
 (Equation B.1)

The transmission time of a telegram depends on the sample rate (number of frames
per second) and a delay time, which is required by the MOST Network Interface
Controller for providing the next telegram:

s
Fs

TaTp
Tt

 (Equation B.2)

The net data rate is calculated with Tt and Pd according to the equation:

sBit
Tt

Pd
R /

8*
 (Equation B.3)

with:

Tp: Number of telegram segments

Pd: Number of data bytes in a telegram

Ph: Number of control bytes in a telegram

Arbitration 1 Byte

Target address 2 Bytes

Data area length 1 Byte

B: Data rate of the Packet Data Channel of MOST25 311

Source address 2 Bytes

CRC 4 Bytes

Total 10 Bytes

Af: Bandwidth of the Packet Data Channel

Tf: Transmission time of a telegram

Ta: Interval between two telegrams of a node; indicated in number of
the frames (always 4 frames in the case of the NIC)

SBC: Value of the synchronous bandwidth control register (between 6
and 15)

Fs: Sample rate (typically 44.1 kHz)

R: Net data rate

Table B.1 summarizes the net data rates for typical telegram lengths and possible
bandwidths of the packet data:

SBC Pd Unit

 1014 512 256 128 64 48

6 10.841 9.507 7.526 5.645 3.226 2.822 Mbits/s

7 9.937 8.602 6.947 5.018 3.226 2.822 Mbits/s

8 8.725 7.854 6.451 5.018 3.226 2.419 Mbits/s

9 7.611 6.947 5.645 4.516 2.822 2.419 Mbits/s

10 6.388 5.827 5.018 4.105 2.822 2.419 Mbits/s

11 5.261 4.882 4.301 3.474 2.509 2.117 Mbits/s

12 3.975 3.763 3.345 2.822 2.053 1.882 Mbits/s

13 2.710 2.580 2.377 2.053 1.613 1.411 Mbits/s

14 1.376 1.338 1.272 1.158 0.982 0.891 Mbits/s

15 0 0 0 0 0 0 Mbits/s

Table B.1: Net bit rate of the packet data with Ta=4 and Fs=44.1 kHz

Note: For the data rate of the Packet Data Channel of MOST50 and MOST150, see
sections 5.1 and 5.6.

312

C Abbreviations

8B10B 8B/10B Code
A/V Audio/Video
A2DP Advanced Audio Distribution Profile - a Bluetooth profile
AAC Advanced Audio Coding
ABY All-Bypass
ACL Asynchronous Connection-Less - an asynchronous Bluetooth

link
ADS Asynchronous Data Service
AG Audio Gateway - Bluetooth
AH Address Handler
AM Amplitude Modulation
AMA Active Member Address
AMS Application Message Service
ANT Antenna Tuner
API Application Programming Interface
APWD Average Pulse Width Distortion
ASYNC Parallel Asynchronous Mode of the SP; pin of the NIC
AV/C Audio-Video Compatibility Specifications
AVDTP Audio/Video Distribution Transport Protocol - a Bluetooth pro-

file
BAP Operation and Display Protocol (German: Bedien- und

Anzeigeprotokoll)
BOSS Bus-Owner/Supervisor/Selector
BPF Bits-per-Frame
PACK preemptive acknowledge
CACK complete acknowledge
CAI Cavity-as-Interface
CAL CAN Application Layer
CAN Controller Area Network
CAPL Communication Access Programming Language; programming

language similar to C by Vector Informatik
CDEF CAN Data Exchange Format
CI Configuration Interface
CM ConnectionMaster (also: Connection Manager)
CMD Command Interpreter
CMS Control Message Service
CP Control Port of the NIC
CSMA Carrier Sense Multiple Access

C: Abbreviations 313

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
CSMA/CD Carrier Sense Multiple Access/Collision Detection
CSR Control and Status Register
CU Critical Unlock
DAP Diagnostic Adaptation Protocol
DDJ Data-Dependent Jitter
DHWG Digital Home Working Group
DoC Declaration of Compliance
DSD Direct Stream Digital
DSP Digital Signal Processor
DSP Digital Sound Processor
DTC Diagnostic Trouble Code
DTD Document Type Definition
DTS Digital Theatre System
ECL Electrical Control Line
EHC External Host Controller
EHCI-State External Host Controller Interface State Machine
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
EOC Electrical/Optical Converter
EOP End of Production
ePhy electrical Physical Layer
ET FBlock EnhancedTestability
FBlock Function Block
FBlockID Function Block Identifier
FCS Frame Check Sequence
FHSS Frequency Hopping Spread Spectrum (Bluetooth)
FIFO First-In First-Out Buffer
FktID Function Identfier
FM Frequency Modulation
FOR Fiber Optic Receiver
FOT Fiber Optic Transceiver
FOX Fiber Optic Transmitter
FPGA Field-programmable Gate Array
FS Frame Synchronization; sample rate
FSY Synchronization Pin of the INIC
FTDMA Flexible Time Division Multiple Access
FWHM Full-Width at Half-Maximum
GAVDP Generic Audio/Video Distribution Profile - a Bluetooth profile
GMI Golden MOST Implementations
GOEP Generic Object Exchange Profile - a Bluetooth profile
GSM Global System for Mobile Communications - a Bluetooth pro-

file

314 C: Abbreviations

GW Gateway
HAVi Home Audio-Video Interoperability
HCI Host Controller Interface - a Bluetooth interface
HF Hands-Free Unit - a Bluetooth interface
HMI Human Machine Interface
HU Head Unit
IEEE Institute of Electrical and Electronics Engineers
IFG Inter Frame Gap
INIC Intelligent Network Interface Controller
InstID Instance ID of a function block
IP Intellectual Property
ISM Industrial Scientific Medical Band; unlicensed frequency band
ITU International Telecommunications Union
JPEG Joint Photographic Experts Group
JTAG Joint Test Action Group
L2CAP Logical Link Control and Adaption Protocol - a Bluetooth pro-

tocol
LAN Local Area Networks
LED Light Emitting Diode
LEG LEG OS8104 compatibility mode; pin of the NIC OS8104A
LFE Low Frequency Effect
LLC Logical Link Control
LLD Low Level Driver
LMP Link Manager Protocol - a Bluetooth protocol
MAC Media Access Control
MAMAC MOST Asynchronous Medium Access Control
MBM Message Buffer Management
MCA MOST Compliance Administrator
MCPL MOST Compliance Product List
mCRA Channel Resource Allocation Table
MCS MOST Transceiver Control Service
MCSB MOST Compliance Supervisory Board
MCTG MOST Compliance Technical Group
MCTH MOST Compliance Test House
MDM MOST Debug Message Module
MDP MOST Data Packets
MEP MOST Ethernet Packets
MediaLB Media Local Bus
MHP MOST High Protocol
MIMO Multiple Input-Multiple Output
MIS Message Interface Service
MLBCLK MediaLB Clock
MLBDAT MediaLB Data

C: Abbreviations 315

MLBSIG MediaLB Signal
MNS MOST NetServices Kernel
MPEG Moving Picture Expert Group
MPR Maximum Position Register
MRT MOST Routing Table
MSC Message Sequence Chart(s)
MSV MOST Supervisor
Mutex Mutual Exclusion
NA Numerical Aperture
NAV Navigation Device
NB NetBlock
NBEHC NetBlock on EHC (cooperates with NBMIN)
NBMIN Minimum NetBlock on INIC
NCE Network Change Event
NDIS Network Driver Interface Specification
NIC Network Interface Controller
NTFS Notification Service
OEC Optical/Electrical Converter
OEM Original Equipment Manufacturer
OpCodes Operation Codes
oPhy optical Physical Layer
OpType Operation Type
OS Operation System
OSI Open Systems Interconnection Reference Model
OUI Organizationally Unique Identifier
PAL Protocol Adaption Layer
PAR_CP Control Port Parallel; pin of the NIC
PAR_SRC Source Port Parallel; pin of the NIC
PARC Xerox Palo Alto Research Center
PC Physical Channel
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCM Pulse Code Modulation
PCS Plastic Clad Silica
PDC Packet Data Channel
PIM Personal Information Management
PLL Phase-locked Loop
PM Port Message Protocol
PMA Parked Member Address
PMMA Polymethyl Methacrylate
PMS Port Message Service
POF Plastic Optical Fiber
ppm parts per million

316 C: Abbreviations

PWD Pulse Width Distortion
PWV Pulse Width Variation
PXI PCI eXtensions for Instrumentation; modular instrumentation

platform originally introduced in 1997 by National Instruments
QA Quality Assurance
QoS Quality of Service
RCLED Resonant Cavity Light Emitting Diode
RBD Ring Break Diagnostic
RFCOMM Radio Frequency Communication - a Bluetooth protocol
RMCK Recovered Master Clock of the NIC or INIC
RMS Root Mean Square
RTCP Real Time Control Protocol
RTP Real Time Transport Protocol
RTR Remote Transmission Request
SA Super Audio by Sony
SCK Clock Pin
SCL Clock of the serial CP Interface; pin of the NIC
SCO Synchronous Connection Oriented – a Bluetooth link
SCS Synchronous Connection Service
SDP Service Discovery Protocol - a Bluetooth protocol
SH Socket Handle
SI Step Index
SIG Special Interest Group
SIM Subscriber Identity Module
SNAP Sub Network Access Protocol
SOP Start of Production
SP Source Port of the NIC
SR Streaming Data Receiver
SSO Sudden Signal Off
STP Shielded Twisted Pair
SX Streaming Data Transmitter
SyncML Synchronization Markup Language
SW Software
TCU Telephone Control Unit
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TP2.0 proprietary Volkswagen Transport Protocol
TSI Transport Stream Interface
TV Television Tuner
UDS Unified Diagnostic Services
UI Unit Interval; shortest pulse in the data signal
UJ Uncorrelated Jitter
UPnP Universal Plug-and-Play

C: Abbreviations 317

USB Universal Serial Bus
UTP Unshielded Twisted Pair
vMSV Virtual MOST Supervisor
wADS Asynchronous Data Service Wrapper
wAMS Application Message Service Wrapper
wCMS Control Message Service Wrapper
WLAN Wireless Local Area Network
wMCS MOST Processor Control Service Wrapper
wSCM Socket Connection Manager Wrapper
www World Wide Web

318

D Glossary

API
The application programming interface is an interface which allows other programs
to access a software element (e.g., communication interface).

Attenuation
The positive (decrease) or negative (increase) attenuation of a signal is usually
given in dB (decibel).

Biphase Mark
Biphase mark code refers to a line code that differs slightly from the Manchester
code. There is always a transition at the start of a bit. A 1 has a transition at the
middle of the bit. For a 0, there is no transition until the end of the bit.

Bond Breakage
Bond breakage is an interruption of the wires that connect a chip electrically to the
lead frame.

Boundary Descriptor
The boundary descriptor determines the rate of streaming and packet data within a
frame.

Bypass
The bypass is a function in the MOST Network Interface Controller. It is closed
during the initializing phase, in the case of a device error or when the device is de-
liberately switched off. It transmits all data arriving at the input (RX) directly to the
output (TX).

Cavity
A cavity is a hollow space in the pigtail.

Central Registry
The Central Registry is a table containing the function blocks existing in the sys-
tem, as well as the logical addresses of the devices on which the function blocks are
implemented. It is implemented on the NetworkMaster.

Cladding
Cladding is the optical coat of the POF.

Coating
Coating is the exterior coating of the POF. Vehicle applications use a double exte-
rior coating.

D: Glossary 319

Codec
Codec is a portmanteau word formed from the words coder and decoder. It refers to
a process or program for digitally coding and decoding data or signals.

ConnectionMaster
The function block ConnectionMaster manages the streaming channels in a MOST
system.

Control Command
Control commands are data packets for controlling the MOST system. They are
transmitted mostly on the Control Channel, but can also use the Packt Data Chan-
nel.

Controller
A Controller controls function blocks. It is often responsible for a specific function
in the MOST system (e.g., audio function).

Decentral Registry
The Decentral Registry is an image of the Central Registry (or of a section thereof)
in a NetworkSlave, which accesses other function blocks in a MOST system.

Delamination
The disconnection of pottant and lead frame of an IC is referred to as delamination.
It is a characteristic damage after cyclic thermal stress.

Deployment
Deployment is the distribution of functions to the actual hardware structure of the
on-board electrical infrastructure.

Device
A MOST device is a physical device that is connected to the MOST system via a
Network Interface Controller.

DeviceID
The DeviceID stands for a physical device or a group of devices in the network.
The DeviceID (RxTxAdr) can represent a node position address (RxTxPos), a logi-
cal address (RxTxLog) or a group address.

Errata
Errata is the complementary document of a specification in which errors are cor-
rected or matters are clarified. In MOST specifications, it is used in compliance
specifications.

Extrusion
Extrusion (Latin: extrudere = to eject, to extrude) refers to a continuous process in
which plastics are pressed through a nozzle.

320 D: Glossary

f(x) = f(f(x)), i.e., if the repeated application of a function is equivalent to the single
application.

FBlock Shadow
The FBlock shadow is an implementation concept in which the FBlock is controlled
via a proxy.

Ferrule
A ferrule is a guide tube which accommodates the POF fiber and forms the me-
chanical interface for fixing the fiber.

Flash Memory
Erasable/re-writable memory; in the automotive area the software of the micro con-
trollers is usually filed in flash memories.

Frame
A frame is the basic data structure of the MOST data link layer which is transmitted
cyclically in the MOST ring. A frame carries data belonging to the Streaming
Channel, Packet Data Channel and the Control Channel.

Fresnel Losses
Losses occurring at the radiative transition between media of differing refractive in-
dices are referred to as Fresnel losses.

Function Block or FBlock
A function block or FBlock is an object containing the interface, i.e., the methods
and properties, for controlling a specific application (e.g., a radio tuner or a tele-
phone interface) or system service.

Function
Function is the generic term for the properties and methods of a function block.

Gateway
A gateway connects different data transmission systems. In this connection the
complete communication stack of each system must be implemented (all existing
layers of the OSI model).

Golden Fiber
Golden fiber is the term for a reference standard (reference fiber).

Hygroscopic Material
Hygroscopic material is a material that absorbs moisture. If mishandled, it can
cause problems during the welding process.

Idempotent
Idempotent refers to the property of a function or a method if the following applies:

D: Glossary 321

Init Ready
The Init Ready event informs the application of the MOST system having changed
into NetInterface Normal Operation.

Leadframe
A thin layer of metal that has pre-stamped connecting pins and bond pads of inte-
grated circuits (ICs) is referred to as a leadframe.

Light-off State
The light-off state refers to the state in which the modulated signal is switched off
by any node. All nodes then change to the light-off state, pass to the NotOK system
state and and finally end in the NetInterface Off state.

Light-on State
Light-on describes the state in which the modulated signal is switched on.

Lock Event
The lock event is generated when the MOST Network Interface Controller could
synchronize steadily onto the signal for the first time or after an unlock event.

Lock
Lock refers to the TimingSlaves synchronizing onto the MOST signal.

Method
A method is a function of a function block by means of which an action is started,
which then leads to a result after a specified period of time.

Mode Dispersion
Mode dispersion is the pulse broadening in optical fibers due to differing propaga-
tion constants of the modes or light beams.

NetBlock
NetBlock is a function block that is implemented in each device for administering
functions.

NetInterface
The NetInterface comprises the entire MOST interface consisting of the physical
layer, MOST Network Interface Controller and Network Service.

NetServices
See Network Service

Network Change Event (NCE)
A network change event occurs if the number of active nodes in the ring changes,
e.g., if during the start-up a device needs more time for the boot-up process and
closes its bypass late or if a node fails or changes into sleep mode.

Network Scan
See: system scan

322 D: Glossary

Network Service
The Network Service is the driving layer that must be implemented in each device
of a MOST system for controlling the MOST Network Interface Controller. Appli-
cations and system services access the MOST system via the Network Service.
NetServices is the trade name for the implementation of the SMSC Network Ser-
vice.

NetworkMaster
The function block NetworkMaster controls the system state and manages the Cen-
tral Registry.

Numerical Aperture
The numerical aperture describes the aperture angle in optical fiber technology, un-
der which optical radiation can be coupled into an optical fiber.

Operation
The MOST standard defines specific standard operations that can be used for prop-
erties and methods.

Packet Data
Packet data are large data packets that are transmitted on the Packet Data Channel,
e.g., when tunneling a TCP/IP connection via the MOST bus.

Pigtail
A two-fiber cable with a POF connector pre-assembled at one end, consisting of an
optical transmitter, an optical receiver, two POF fibers and the mechanical adapta-
tion is referred to as a pigtail.

PLL (phase locked loop)
A phase locked loop is a control circuit that tries to keep an oscillator in the phase
of the input frequency by means of phase detection.

POF (polymeric optical fiber, plastic optical fiber)
A polymeric optical fiber is a plastic optical fiber for transmitting data. The core of
the POF is mostly made of polymethyl methacrylate (PMMA). The optical fiber is
often coated in order to achieve a higher stability.

PowerMaster
The PowerMaster is responsible for booting up and shutting down a MOST system
and supervises its power management.

Property
A property is a function that corresponds to a specific property of a function block.
The properties serve to query or change the current state of a function block

Quadlet
A quadlet consists of 4 bytes.

D: Glossary 323

Recombination
Recombination refers to the combination of positive and negative charge carriers
(ions, electrons) to form an electrically neutral product (atom, molecule).

RxTxAdr
Generic term for the three address types of a MOST node: logical node address
(RxTxLog), node position address (RxTxPos) or group address. The transmitter ad-
dress is TxAdr and the receiver address RxAdr.

RxTxLog
RxTxLog is the logical address. TxLog refers to the logical transmitter address and
RxLog to the receiver address. It may only appear once in the MOST ring.

RxTxPos
RxTxPos describes the node position address of a node. It depends on the position
of the node in the ring. TxPos refers to the transmitter and RxPos to the receiver ad-
dress.

S/PDIF
S/PDIF stands for Sony/Philips Digital Interface. It is a bus and interface specifica-
tion for transmitting digital audio signals between different devices and is also re-
ferred to as Sony/Philips Digiconnect Format, S/P-DIF or TOSLINK.

Slave
A slave is a function block that is controlled by a Controller, or the device in which
it is implemented.

SPY Mode
The SPY mode is an operational mode for analysis tools. They are not visible in the
network but can listen into the entire bus communication.

Streaming Data
Streaming data can be audio or video data, for example. In MOST, they are trans-
mitted on the Streaming Data Channel.

Substitution Method
The substitution method is a comparative measuring method, in which the charac-
teristics of a fiber under test are compared to the respective characteristics of a ref-
erence fiber.

System Scan
System scan describes how the function block configuration data of the Network-
Slaves are read by the NetworkMaster. This is also often referred to as network
scan.

System State
During normal operation the system is in the OK state, during the initialization or in
the case of an address conflict the system is in the NotOK state.

324 D: Glossary

tDiag_Signal

Time a TimingSlave node waits for activity at its Rx input before switching to ring
break TimingMaster mode.

TimingMaster
The TimingMaster generates the system clock for the frames and blocks. The Tim-
ingSlaves synchronize onto the system clock.

Transceiver
Transceiver is a portmanteau word formed from the words transmitter and receiver.

tSSO_ShutDown

Time between setting the Shutdown Flag and switching off the signal at the output.

UCritical
Critical voltage UCritical is the limit at which the application might no longer work
safely but where communication is still possible. In that case, a source must route
zeros and a sink must secure its output signals. The Mute property remains un-
changed. In case of a recovery, the output signals can be restored immediately.

ULow

Low voltage ULow is a device specific limit, where even the NetInterface no longer
works reliably, so even communication cannot be maintained. If ULow is reached,
the device switches off the modulated signal and switches to DevicePowerOff
Mode. The device stays in DevicePowerOff mode, even if the supply voltage re-
covers.

Unlock Event
The unlock event is generated for the application by the Network Service if the
MOST Network Interface Controller can no longer generate a stable clock from the
PLL.

Unlock
A TimingSlave that can no longer synchronize with its PLL to the input signal at
the Rx input detects an unlock.

Wave Soldering
Wave soldering is a processing procedure in electronics production. Printed circuit
boards are passed across a wave of molten solder, creating a reliable connection be-
tween the PCB and the component.

325

E Bibliography

[AppN Mig] Application Note MOST150 Migration, Rev 1.0; 05/2009;
MOST Cooperation

[Bluetooth] Specification of the Bluetooth System-Profile, Version 1.1, 02/
2001; Special Interested Group Bluetooth

[Burton 2004] Automotive Testing of Automotive Telematics Systems using
TTCN-3, Simon Burton, Andre Baresel, Ina Schieferdecker,
Proceedings of the 3rd Workshop on System Testing and Vali-
dation (SV04), December 2004.

[Cat 02] MOST Function Catalog Read Me First; Rev 1.0; 12/2002;
MOST Cooperation

[Com_ePhyL] MOST ePHY Compliance Test Spec (with ePhy Compliance
Test Patterns) Rev 1.0; 06/2006; MOST Cooperation

[ComPhyL 1.0] MOST Specification MOST Compliance Test of Physical
Layer; Rev 1.0; 12/2003; MOST Cooperation

[ComPhyL 150] MOST150 oPhy Compliance Measurement Guideline; Rev.
1.1; 08/2010; MOST Cooperation

[ComPhyL_Err] ERRATA MOST Compliance Test of Physical Layer; Rev 1.0,
05/ 2006; MOST Cooperation

[ComPhyLP 1.0] MOST Compliance Verification Procedure Physical Layer;
Rev. 1.0; 07/2004; MOST Cooperation

[ComPhyLP 150] MOST150 oPhy Compliance Verification Procedure – Physical
Layer; Rev. 1.1; 07/2010; MOST Cooperation

[ComPhyLP_Err] ERRATA MOST Compliance Verification Procedure Physical
Layer; Rev. 1.1; Rev. 1.0; 07/2005; MOST Cooperation

[ComProf] MOST Profile Compliance Test Specification; Rev 1.0;
10/2005; MOST Cooperation

[ComReq] MOST Specification - MOST Compliance Requirements, Rev
2.1; 04/2009; MOST Cooperation

[ContProt] MOST Content Protection Scheme DTCP Implementation;
Rev. 3.0; 08/2009; MOST Cooperation

326 E: Bibliography

[Core] MOST Core Compliance Test Specification; Rev 1.1.01;
06/2005; MOST Cooperation

[Core_Err] ERRATA MOST Core Compliance Test Specification; Rev
1.3; 07/2009; MOST Cooperation

[Dau 01] Daum W. et al.: „POF – optische Polymerfasern für die
Datenkommunikation", Springer Verlag, 2001

[DPA] Diagnostic Protocols Adaptation Specification, Rev. 1.0.1;
08/2009; MOST Cooperation

[DS 8104] OS8104 – MOST Network Transceiver – Final Product Data
Sheet; Jan. 2003; www.smsc-ais.com

[DS FCM110] MOST Fiber Optic Transceiver, FCM110R/ FCM110D, Fire-
comms Ltd.

[DTD Cook] MOST DTD Cookbook; Rev 1.2; 12/2009; MOST Cooperation

[DynSpec] MOST Dynamic Specification; Rev 3.0; 07/2008; MOST Co-
operation

[ECL] Electrical Control Line, Rev. 1.0.1; 08/2009; MOST Coopera-
tion

[ETS 300 406] ETS 300 406 „Methods for Testing and Specifications (MTS);
Protocol and Profile Conformance Testing Specifications;
Standardization methodology” http://portal.etsi.org/mbs

[ETSI 2003] ETSI ES 201873: The Testing and Test Control Notation
TTCN-3, Part 1 (Core Language), Part 2 (Tabular Format), Part
3 (Graphical Format), Part 4 (Operational Semantics), Part 5
(TTCN-3 Runtime Interface), Part 6 (TTCN-3 Control Inter-
faces), Sophia-Antipolis, France, October 2003.

[FBADiskPl 2.4] MOST FunctionBlock AudioDiskPlayer; Rev 2.4; 09/2003;
MOST Cooperation

[FBAmFmT 2.4] MOST FunctionBlock AmFmTuner, Rev 2.4.2; 09/2003;
MOST Cooperation

[FBAudioA 2.4] MOST FunctionBlock AudioAmplifier; Rev 2.4.2; 09/2003;
MOST Cooperation

[FBAuxIn 3.5] MOST FunctionBlock AuxIn, Rev 3.5; 10/2008; MOST Coop-
eration

[FBCM] MOST FunctionBlock ConnectionMaster; Rev 3.0.1; 09/2010;
MOST Cooperation

E: Bibliography 327

[FBET] MOST FunctionBlock EnhancedTestability; Rev 3.0; 8/2010;
MOST Cooperation

[FBGenPl 2.5] MOST FunctionBlock GeneralPlayer; Rev 2.5.1; 01/2008;
MOST Cooperation

[FBVehicle 1.6] MOST FunctionBlock Vehicle, Rev 1.6 09/2002; MOST Coop-
eration

[FBX Cook] MOST FIBEX Cookbook; Rev 1.0; 03/2009; MOST Coopera-
tion

[Found 04] MOST Foundation Training; Training Handout; Oasis Silicon-
Systems; 2004

[GADV] 4CS, GADV Gmbh, http://www.gadv.de/

[GenFB] MOST FunctionBlock GeneralFBlock; Rev 3.0.2; 09/2010;
MOST Cooperation

[Gus 98] D. Gustedt, W. Wiesner: „Fiber-Optic-Übertragungstechnik",
Sende- und Empfangsgrundlagen, Franzis-Verlag, 1998

[HFP 1.5] Hands-Free Profile 1.5; HFP1.5_SPEC; 2005-11-25
www.bluetooth.org

[ISO 14229] Road vehicles -- Unified diagnostic services (UDS), ISO
14229. ISO, Geneve 2009

[ISO 14230] Road vehicles -- Diagnostic systems -- Keyword Protocol 2000,
ISO 14230, Geneve 1999/2000

[ISO 9646] Information Technology, Open Systems Interconnection, Con-
formance Testing Methodology and Framework. International
Standard IS-9646. ISO, Geneve 1991

[ITUZ120] Z.120: Message Sequence Charts, MSC-2000, Geneva, Swit-
zerland, October 1999.

[Lehmann 2000] Test Case Design by Means of the CTE XL. E. Lehmann;
Wegener, J Proceedings of the 8th European International Con-
ference on Software Testing, Analysis & Review (EuroSTAR
2000), Kopenhagen, Denmark, December 2000.

[MAMAC] MAMAC Specification; Rev. 1.1; 12/2003; MOST Cooperation

[MediaLB] Media Local Bus Specification; Physical Layer and Link Layer;
Version 3.0; SMSC; www.smsc-ais.com

[Mercury] Test Director, Mercury Interactive Limited,
http://www.testerlyzer.de/

328 E: Bibliography

[MHP] MOST High Protocol Specification; Rev 2.3; 12/2008; MOST
Cooperation

[MNS L1 1.x] MOSTNetServices; Basic Services (Layer I); Programmers’
Library for Interfacing to MOST User Manual and Specifica-
tion of Layer I; Preliminary Version 1.10; www.smsc-ais.com

[MNS L1 2.x] MOST NetServices Layer I; Wrapper for INIC; V2.1.x; User
Manual/Specification; www.smsc-ais.com

[MNS L1 3.x] MOST NetServices Layer I; Wrapper for INIC; V3.x; User
Manual/Specification; www.smsc-ais.com

[MNS L1 Exa] MOST NetServices; Layer 1 Example; Version 1.10-01;
www.smsc-ais.com

[MNS L2] MOST NetServices Layer II; User Manual/Specification; Rev.
1.10.x / 2.1.x; www.smsc-ais.com

[MOST 2.4] MOST Specification; Rev 2.4; 05/2005; MOST Cooperation

[MOST 2.5] MOST Specification; Rev 2.5; 10/2006; MOST Cooperation

[MOST 2003] Empfehlungen für Optische MOST Interfaces in Automotive
Anwendungen (Version 1.0), MOST Co, Audi AG, BMW AG,
DaimlerChrysler AG, RMCTech GmbH, 2003.

[MOST 3.0] MOST Specification; Rev 3.0 E2; 07/2010; MOST Cooperation

[MOST AARSMD] Automotive Application Recommendation for optical MOST
Components - Surface Mount Device (SMD) Rev. 1.0,
10/2010, MOST Cooperation

[MOST AARTHM] Automotive Application Recommendation for optical MOST
Interfaces, Rev. 3.0-06, 06/2009, MOST Cooperation

[MOST AppTF] Application Note POF Transfer Function, Rev. 1.0, 03/2009,
MOST Cooperation

[MOST BaPhy] MOST Physical Layer Basic Specification, Rev. 1.0, 12/2008,
MOST Cooperation

[MOST ePhy] MOST Specification of Electrical Physical Layer, Rev. 1.0, 12/
2004, MOST Cooperation

[MOST Org] MOST Cooperation Organizational Procedures Rev 3.5
04/2007; MOST Cooperation

[MOST Phy150] MOST150 oPHY Automotive Physical Layer Sub-
Specification, Rev. 1.1, 05/2010, MOST Cooperation

E: Bibliography 329

[MOST Stream] Stream Transmission Specification Rev. 3.0. 08/2009, MOST
Cooperation

[MSC] MOST MSC Cookbook; Rev 1.2; 08/2005; MOST Cooperation

[NetBlock] MOST FunctionBlock NetBlock; Rev 3.0.1; 09/2010; MOST
Cooperation

[Optitas] Tool4M-XL, Optitas GmbH, http://www.optitas.de/

[PBAP] Phone Book Access Profile; PBAP_SPEC; www.bluetooth.org

[PFLNet] MOST NetServices API – The Interface to the MOST Network;
Product Flyer 04/03; SMSC; www.smsc-ais.com

[Por 2004] Vernetzte Systeme im Cayenne; Porsche Engineering
Magazine; Ausgabe 01/2004; S. 12 - S.15

[Praesideo] Praesideo data sheet; www.bosch-sicherheitsprodukte.de (Nov.
2010)

[RFC 2616] Hypertext Transfer Protocol – HTTP/1.1; Juni 1999; R. Field-
ing, J. Gettys, H. Frystyk, L. Masinter, P. Leach, T. Berners-
Lee

[Ruetz] Testerlyzer, Ruetz Technologies GmbH,
http://www.testerlyzer.de/

[SAP] SIM Access Profile; SAP_SPEC; www.bluetooth.org

[Schr 01] A. Schramm, ”MOST Investigations at BMW, Migration or
Evolution“, Annual All Members Meeting, Frankfurt, Ger-
many, 11th March 2008

[Schr 02] A. Schramm, “MOST in der dritten Generation: MOST150
Systemaspekte und Migrationsalternativen“, ElektronikPraxis;
8th August 2008

[SMSC] Optolyzer G2, SMSC, Automotive Infotainment Systems
GmbH, www.smsc-ais.com

[Stream] MOST Specification for Stream Transmission; Rev. 3.0;
07/2010; MOST Cooperation

[Tutorial] MOST Tutorial-CD; MOST Cooperation

[Vector] CANoe- Development and Test Tool for CAN, LIN, MOST,
FlexRay, Ethernet and J1708, www.vector.com

[Vog 02] E. Voges, K. Petermann: „Optische Kommunikationstechnik“,
Springer Verlag, 2002

http://www.bosch-sicherheitsprodukte.de/�

330 E: Bibliography

[Wei 99] Weinert A.: „Plastic Optical Fibers“, Publicis MCD Verlag,
Erlangen, 1999

[Z.120 04] ITU-T Message Sequence Chart (MSC); Geneva; (04/2004);
http://www.itu.int

[Z.120 99] ITU-T Recommendation Z.120 (MSC2000) Message Sequence
Chart (MSC); Geneva; (11/1999); http://www.itu.int

[Z.120AB 98] ITU-T Message Sequence Chart (MSC) Annex B: Formal se-
matics of Message Sequence Charts; Geneva; (04/1998);
http://www.itu.int

[Z.120C1 01] ITU-T Z.LC-Text: Recommendation Z.120 Corrigendum 1;
Geneva; (11/2001); http://www.itu.int

331

Index

Acceptance angle, 122
AM/FM tuner, 81
AmFmTuner, 81, 306
Amplifier, 80
API, 318
Application Framework, 30, 49
Application Protocol, 29, 51
Application Recommendation, 48
Array, 68
Attenuation, 128, 141, 144, 273, 318
Audio amplifier, 30, 80
Audio Streaming, 298
 Analog Dolby Surround Pro Logic, 298
 Analog Dolby Surround Pro Logic II, 298
 Digital Theatre System (DTS), 299
 Dolby Digital, AC3, 298
 Logic 7, 299
 MPEG-2, 299
 Stereo, 298

AudioAmplifier, 30, 80, 159
AudioDiskPlayer, 80, 159
AuxIn, 81
Bandwidth, 41, 74, 88, 89, 93, 97, 129
Biphase Mark, 318
Bit rate, 37, 89, 311
BitSet, 68
BlockWidth, 74
Bond Breakage, 318
BoolField, 68
Boundary Descriptor, 88, 318
Broadcast address, 52, 109, 111
Broadcast message, 102, 111
Bus load, 249
Bypass, 39, 110, 158, 318
Cavity, 318
CD changer, 30, 39, 80, 186
CD Player, 80
Central gateway, 281
Central Registry, 40, 46, 72, 156, 185, 223,

318
Cladding, 122, 148, 274, 318
Cleaving, 149
Coating, 318
Codec, 39, 319
Coding errors, 169
Command Interpreter, 184
Compliance Level, 229
Compliance Process, 229
Compliance Test, 78, 229, 248

Compliance Test House, 230
Compliance Verification, 27
ConnectionLabel, 74
ConnectionMaster, 39, 41, 53, 73, 76, 77,

94, 190, 236, 285, 319
Connections, 200
Container, 68
Control Channel, 35, 115
Control Command, 319
Control Port, 206, 214
Controller, 32, 44, 50, 63, 83, 319
Converter, 226
Cookbook, 48
Cooperation contract, 24
Core Compliance, 230
Core Compliance Test, 234
Crimping, 127, 271
Critical Unlock, 168
Data Link Layer, 34
Data link layer protocol, 97, 109
Decentral Registry, 160, 185, 319
Declaration of Compliance, 231
Delamination, 319
Deployment, 319
Device, 319
Device Address, 52
DeviceID, 52, 319
Diagnosis, 45
Diagnostic Adaptation Protocol, 171
Digital Transmission Content Protection, 42
DoC, 231
Double ring, 38
Driver assistance, 301
DTCP, 42
Dynamic Device Behavior, 45
DynamicArray, 68
EHC, 39
EHCI-Attached, 204
EHCI-Protected, 203
EHCI-Semi-Protected, 204
Electrical Control Line, 169
Electrical Physical Layer, 38, 152
Electromagnetic Compatibility, 122
Electromagnetic Interference, 122
EMC, 37, 122, 152, 243
EMI, 122
EnhancedTestability, 47, 53, 71, 183
Enumeration, 68
Errata, 319

332 Index

Errata Sheets, 47
Error Management, 45
ErrorCode, 64, 65
ErrorInfo, 65
ET, 71
Ethernet MAC address (only MOST150),

109
Ethernet MAC address filter, 117
Executing Method, 61
External Host Controller, 39, 191
 Interface State Machine, 203

Extinction ratio, 139, 142
Extrusion, 319
Eye diagram, 152
FBlock, 49, 320
 AmFmTuner, 81
 AudioAmplifier, 80
 AudioDiskPlayer, 80
 AuxIn, 81
 ConnectionMaster, 73
 EnhancedTestability, 71
 NetBlock, 70
 NetworkMaster, 71
 PowerMaster, 73
 Vehicle, 78

FBlock Identifier, 53
FBlock Shadow, 320
FBlock Vehicle, 281
FBlock Viewer, 223
FBlockID, 53
FBlockIDList, 155
Ferrule, 127, 149, 270, 320
Fiber Optic Receiver, 38
Fiber Optic Transceiver, 38
Fiber Optic Transmitter, 38
FktID, 54
Flash Memory, 320
FOR, 38
FOT, 38
FOX, 38
Frame, 320
Frame Control, 89
Frame rate, 135
Fresnel losses, 273, 320
Function, 31
Function block, 49, 320
Function class
 Array, 68
 BitSet, 68
 BoolField, 68
 Container, 68
 DynamicArray, 68
 Enumeration, 68
 LongArray, 69
 Map, 69

 Number, 67
 Record, 68
 Sequence Method, 69
 Sequence Property, 69
 Switch, 67
 Text, 67
 Trigger, 69
 Unclassified Method, 67
 Unclassified Property, 67

Function Identifier, 54
Function model, 44
Functional address, 50, 53
Functional addressing, 172
Gateway, 226, 320
GeneralFBlock, 79
GeneralPlayer, 80
GMI, 238
Golden Fiber, 274, 320
Golden MOST Implementation, 238
Group address, 70, 109
Guideline, 48
Header, 268
Headunit, 293
High-Level MSC, 309
HMI, 32, 186
Hub, 37, 226
Human Machine Interface, 32
Hygroscopic Material, 320
Idempotent, 320
INIC, 37, 101, 111, 192
 Peripheral interfaces, 195

INIC Connectivity, 197
INIC Control Messages, 199
INIC Family, 194
INIC Message Interface, 198
INIC Remote Viewer, 226
Init Ready, 321
Inline connector, 150
Instances of FBlocks, 54
InstID, 54
Intelligent Network Interface Controller, 37
Jitter, 136, 233
Laser diode, 130, 148
Laser welding, 125, 271
Leadframe, 321
Light off, 139
Light-off State, 142, 321
Light-on State, 321
Limited Physical Layer Compliance Test,

234
Lock, 36, 321
Lock Event, 321
Logical node address, 109
LongArray, 69
MAMAC, 34, 48, 112

Index 333

Map, 69
Master Delay Tolerance, 146
Maximum position register, 155
MCA, 230
MCPL, 232
MCSB, 230
MCTG, 231
MCTH, 231
Media Interface Devices, 295
Media Local Bus, 208
MediaLB, 208
MediaLB Analyzer, 227
Message Sequence Chart, 33, 60, 305
 Actions, 308
 Condition, 308
 Environment, 307
 High-Level MSC, 309
 Instances, 306
 Messages, 307
 Timer, 308

Message Sequence Chart Editor, 220
Message Type, 101
Method, 31, 54, 321
MHP, 112
Mode dispersion, 123, 321
MOST Asynchronous Medium Access

Control, 48
MOST based Infotainment
 First generation, 290
 Fourth generation, 292
 Second generation, 290
 Third generation, 291

MOST Certification Test Process, 229
MOST Compliance Administrator, 230
MOST Compliance Product List, 232
MOST Compliance Requirements, 46
MOST Compliance Supervisory Board, 230
MOST Compliance Technical Group, 231
MOST Compliance Test House, 231
MOST Compliance Verification Procedure –

Physical Layer, 47
MOST Content Protection Specification, 48
MOST Control Messages, 199
MOST Core Compliance Test Specification,

47
MOST Data Packets, 117, 199
MOST device, 38
MOST Dynamic Specification, 46
MOST Ethernet Packets, 117
MOST Frame
 Control Channel, 35
 Packet Data Channel, 35
 Streaming Data Channel, 34

MOST function block, 30, 66
MOST function catalog, 77

MOST High Protocol, 32, 48, 112
MOST Interface Controller, 191
MOST IP (Intellectual Property), 229
MOST NetServices, 175
MOST Profile Compliance Test

Specification, 48, 236
MOST Profile ConnectionMaster

Compliance Test Specification, 48
MOST ring, 37
MOST Stream Transmission Specification,

48
MOST150, 37, 90
MOST150 Evolution Concept, 257
 Hardware, 258
 Software, 259

MOST150 frame, 91
MOST150 reference platform, 252
MOST25, 36, 37
MOST25 frame, 87
MOST25/MOST150 Bridge Concept, 261
 Addressing, 262
 Network Management, 263
 PCM Data Bridging, 265

MOST50, 37, 89
MOST50 frame, 90
MPEG, 42
MPR, 155
MSC, 33, 246
NCE, 321
NetBlock, 40, 53, 70, 156, 183, 187, 199,

321
NetBlockMin, 199
NetInterface, 321
NetServices, 321
NetServices MiniKernel, 199
Network Change Event, 71, 321
Network Interface Controller, 37, 213
NetworkMaster Shadow Module, 186
Network Scan, 321
Network Service, 30, 34, 53, 72, 109, 112,

175, 322
NetworkMaster, 40, 53, 71, 155, 159, 185,

186, 190, 322
NetworkSlaves, 41
NIC, 37, 97, 101, 111, 193, 213
Node Position, 109
Node position address, 109, 155
Notification, 63
Notification Matrix, 63, 161, 184
Notification Mechanism, 63, 161
Notification Service, 184
NotificationMatrixSize, 46
Number, 67
Numerical aperture, 123, 322
Offline analysis, 223

334 Index

Online analysis, 223
Operation, 322
 AbortAck, 63
 Decrement, 61
 Error, 65
 ErrorAck, 65
 Get, 60
 GetInterface, 69
 Increment, 61
 Interface, 69
 ProcessingAck, 62
 ResultAck, 62
 Set, 60
 SetGet, 61
 StartAck, 62
 StartResultAck, 62
 Status, 60

Operation Type, 55
Optical fibers, 122
 Acceptance angle, 122
 Mode dispersion, 123
 Numerical aperture, 123
 Pulse distortion, 123

Optical Physical Layer, 37
Optical power, 121, 130, 139
Optical power budget, 143
Optical spectrum, 142
OPType, 55
Over-Temperature, 164
Packet data, 34, 322
Packet Data Channel, 34, 35, 115
Parameter type
 BitField, 57
 Boolean, 57
 Classified Stream, 58
 Enum, 58
 Short Stream, 58
 Signed/Unsigned Byte, 58
 Signed/Unsigned Long, 58
 Signed/Unsigned Word, 58
 Stream, 58
 String, 58

Parity Bit, 89
PCM, 42, 286
PCS, 148
Peaking, 130
Phase Locked Loop, 322
Physical addressing, 172
Pigtail, 268, 322
 µPigtail, 267

PIN photodiode, 131
Plastic Optical Fiber, 37, 122, 322
PLL, 35, 88, 322
POF, 37, 122, 322
Polymer Clad Silica, 148

Polymer fibers
 Bending radius, 127
 Buffer, 125
 Optical attenuation, 126
 PMMA, 125
 Polycarbonate fibers, 126
 Structure, 125

Polymer Fibers, 124
Polymeric Optical Fiber, 322
Port Message Protocol, 202
Ports, 200
Position, 68
 PosX, 68
 PosY, 68

Power Management, 46, 178, 212
Power-Down, 162
PowerMaster, 40, 53, 73, 162, 190, 322
Powertrain, 281
Profile Compliance Tests, 236
Property, 31, 54, 322
Pulse Code Modulation, 286
Pulse distortion, 123
QoS IP channels, 119
Quadlet, 88, 89, 91, 322
Radio Tuner, 81
RCLED, 130
Recombination, 323
Record, 68
Remaining Bus Simulation, 219
Repeater, 226
Reserved, 53
Ring break diagnosis, 167
Routing Engine, 94
RxTxAdr, 323
RxTxLog, 109, 323
RxTxPos, 109, 323
S/PDIF, 323
Sample rate, 89, 286, 310
Sequence Method, 69
Sequence Property, 69
Shared Packet Data Channel, 119
Shutdown, 73, 162, 178
SinkNr, 74
Slave, 32, 50, 323
Socket Connection Manager Wrapper, 182
Sockets, 200
Sound system, 296
Source Port, 214
SourceNr, 74
SPI port, 208
SPY Mode, 323
Start-up, 71, 178
Stream cases, 58
Stream signals, 58
Streaming connection, 74

Index 335

Streaming data, 34, 323
Streaming Data Channel, 34
Streaming port, 207
Stress tool, 223
Substitution Method, 323
Sudden Signal Off, 163, 163
Switch, 67
Synchronous data, 94
System FBlock, 69
System Master, 44
System scan, 71, 323
System State, 323
tDiag_Signal, 324
TDM, 94
Temperature stability, 271
Test case, 232, 241
Test process, 241
 Risk analysis, 241
 Test design, 241
 Test evaluation, 242
 Test implementation, 242
 Test management, 242

Text, 67
Time Division Multiplexing, 94
TimingMaster, 35, 70, 71, 88, 110, 110, 146,

167, 234

TimingSlave, 35
Total reflectance, 122
Transceiver, 129, 324
Transformer, 153
Transport Stream Interface, 208
Trigger, 69
tSSO_ShutDown, 324
UCritical, 324
ULow, 324
Unclassified Method, 68
Unclassified Property, 67
Undervoltage, 164
Unlock, 36, 324
Unlock and Critical Unlock, 163
Unlock Event, 324
VCSEL, 148, 149
Vehicle, 78
Video standards, 300
Video Streaming, 299
Wake-up, 40, 71, 234
Watchdog, 205
Wave Soldering, 324
Working Group, 26
XML, 31, 46, 221

MOST is a communication system with a new, flexible architecture, used by
many different manufacturers. It is the most widely used multimedia
network in the automotive industry.

In 2010, more than 100 car models are already equipped with MOST Tech-
nology. MOST defines the protocol, hardware, software and system layers
that are necessary for the high-performance and cost effective transport of
realtime data in a shared medium. MOST Technology is developed and
standardized within the MOST Cooperation through a joint effort of car-
makers and their suppliers. It is now evolving into a third generation with
MOST150 Technology.

The MOST Cooperation commissioned this updated book with the goal of
making it easier to understand and use MOST Technology. The authors of
the book work for carmakers, suppliers and scientific institutes. The
emphasis of the first part of the book is the MOST standard itself. After descri-
bing the organization of the MOST Cooperation, the general communica-
tion architecture of an automobile using MOST is presented. Then the
chapter “Survery of the System Architecture” gives an overview of MOST
Technology. The most important aspects of the technology are then presented
in detail in subsequent chapters.

The book is aimed at engineers at suppliers and carmakers that want to get
started with MOST Technology. It also provides an overview of an effective
communication architecture to interested engineers outside the automo-
tive industry.

Visit our website: www.franzis.de

ELECTRONICS LIBRARY

EDITOR: PROF. DR. ING. ANDREAS GRZEMBA

THE AUTOMOTIVE
MULTIMEDIA NETWORK

FRANZIS

FRANZIS

EUR 49,95 [D]
ISBN 978-3-645-65061-8

MOST (Media Oriented Systems Transport) is
a multimedia network technology developed
to enable an efficient transport of streaming,
packet and control data in an automobile.
It is the communication backbone of an

infotainment system in a car. MOST can also
be used in other product areas such as driver
assistance systems and home applications.

THE AUTOMOTIVE
MULTIMEDIA NETWORK

FROM MOST25 TO MOST150

65061-8 U1+U4_R25mm 14.01.2011 10:12 Uhr Seite 1

	Contents
	1 MOST Cooperation
	1.1 Motivation and History
	1.2 Fast Standardization
	1.3 Structure and Specification Work
	1.3.1 The Steering Committee
	1.3.2 The Administrator
	1.3.3 The Technical Coordination Group
	1.3.4 The Working Groups
	1.3.5 The Technical Coordinator

	1.4 The Compliance Verification Program

	2 Survey of the System Architecture
	2.1 MOST Layer Model
	2.2 Application Framework
	2.3 New isochronous transmission mechanisms for MOST150
	2.4 Network Services
	2.5 MOST Data Link Layer
	2.5.1 MOST Frame
	2.5.2 TimingMaster, TimingSlave

	2.6 Physical Layer
	2.6.1 Optical Physical Layer
	2.6.2 Electrical Physical Layer

	2.7 MOST Device
	2.8 Network Management
	2.8.1 NetBlock
	2.8.2 PowerMaster
	2.8.3 NetworkMaster; NetworkSlave
	2.8.4 ConnectionMaster

	2.9 Error Management and Diagnosis
	2.10 Transmission of Multimedia Data

	3 Survey of the MOST Specifications
	3.1 Structure
	3.2 MOST Specification
	3.3 MOST Dynamic Specification
	3.4 MOST Function Catalog
	3.5 MOST Compliance Test Specifications
	3.6 Further Specifications, Guidelines and Cookbooks

	4 Application Framework
	4.1 Device Model
	4.2 Application Protocol
	4.2.1 Data Format
	4.2.2 Dynamic Behavior

	4.3 MOST Function Blocks
	4.3.1 Structure of a Function Block
	4.3.2 Function Classes
	4.3.3 Function Interfaces
	4.3.4 System FBlocks
	4.3.5 Administration of Streaming Connections

	4.4 Standardized Application Interfaces
	4.4.1 Function Library
	4.4.2 Common Functions (GeneralFBlock)
	4.4.3 Application Interfaces
	4.4.4 Example of Use (AuxIn)

	5 MOST Protocols
	5.1 MOST Frame
	5.1.1 MOST25 Frame
	5.1.2 MOST50 Frame
	5.1.3 MOST150 Frame

	5.2 MOST Data Transport Mechanisms
	5.3 Streaming Data
	5.3.2 Synchronous Data
	5.3.3 Isochronous Data

	5.4 Packet Data Channel
	5.4.1 Packet data protocol for MOST25 and MOST50
	5.4.2 Packet data protocol for MOST150
	5.4.3 Arbitration algorithm

	5.5 Control Channel
	5.5.1 CMS for MOST25
	5.5.2 CMS for MOST50
	5.5.3 CMS for MOST150

	5.6 Summary
	5.7 Addressing
	5.8 Higher Protocols
	5.8.1 MOST High Protocol (MHP)
	5.8.2 Ethernet over MOST
	5.8.3 MOST Isochronous QoS IP (Streaming)
	5.8.4 MOST Ethernet with QoS IP
	5.8.5 MAMAC

	6 Physical Layer
	6.1 Introduction
	6.2 POF Plastic Optical Fibers
	6.2.1 Basic Principles
	6.2.2 Polymer Fibers – Properties and Advantages

	6.3 Contacting of PMMA Fibers
	6.4 Opto-Electronic Transceivers
	6.4.1 LED Transmitter Devices
	6.4.2 PIN Photodiodes
	6.4.3 Transceiver Housing and Connectors

	6.5 System Considerations for the MOST Physical Layer
	6.5.1 Basic Principles of Electrical and Optical Parameters
	6.5.2 Optical and Electrical Requirements
	6.5.3 Power Budget
	6.5.4 Timing Requirements

	6.6 Alternative Transmission Media

	7 Network and Fault Management
	7.1 System Initialization
	7.1.1 System Query
	7.1.2 Central Registry
	7.1.3 Dynamic Addressing
	7.1.4 Examples of System Starts

	7.2 Notification
	7.3 Power-Down
	7.4 Fault Types
	7.4.1 Network Faults
	7.4.2 Device Faults caused by Temperature and Voltage Violations

	8 Network Diagnostics
	8.1 Network Fault Detection
	8.1.1 Ring Break Diagnosis
	8.1.2 Sudden Signal Off/Critical Unlock Detection
	8.1.3 Localizing the Origin of Coding Errors
	8.1.4 Electrical Control Line

	8.2 Device Fault Diagnosis

	9 Network Service
	9.1 Overview
	9.2 MOST NetServices
	9.2.1 Models of MOST NetServices
	9.2.2 Dependencies on MOST Specification Baseline

	9.3 Modules of the MOST NetServices
	9.3.1 Layer I Version 1.x
	9.3.2 Layer I Versions 2.x and 3.x
	9.3.3 Layer II Versions 1.x, 2.x and 3.x

	9.4 Integration of the MOST NetServices onto the Target Platform
	9.4.1 Callback Functions
	9.4.2 Main Loop Architecture
	9.4.3 Multitasking Architectures
	9.4.4 System Management Module

	10 MOST Interface Controller
	10.1 MOST Network Interface Controller and MOST Device
	10.2 MOST Network Interface Controller Families
	10.2.1 INIC
	10.2.2 NIC

	10.3 The INIC Family
	10.3.1 Members
	10.3.2 Overview of Features

	10.4 Interfaces to the INIC
	10.4.1 Available Interfaces
	10.4.2 Interfaces from Software Perspective
	10.4.3 Ports, Sockets and Connections
	10.4.4 Port Message Protocol

	10.5 Protection, Encapsulation and the EHC
	10.5.1 Interaction between INIC and the EHC
	10.5.2 The Watchdog Functionality

	10.6 Configuration through Configuration String
	10.7 Control Port
	10.8 Streaming Port
	10.9 SPI Port
	10.10 Transport Stream Interface (TSI)
	10.11 MediaLB Port
	10.12 Power Management
	10.13 Intelligent Muting
	10.14 Network Interface Controller (NIC)
	10.14.1 Available Interfaces
	10.14.2 Serial Operation
	10.14.3 Parallel Operation of CP and SP
	10.14.4 Possible Configurations (Serial/Parallel)
	10.14.5 The Basic Configuration of a NIC
	10.14.6 Interfaces for Control Data in NICs
	10.14.7 Interfaces for Streaming Data in NICs
	10.14.8 Interfaces for Packet Data in NICs

	11 Tools
	11.1 Overview
	11.2 Specification Tools
	11.2.1 MSC Editor
	11.2.2 MOST Editor

	11.3 Simulation and Analysis Tools
	11.4 Rapid Prototyping Tools
	11.4.1 Plug-in for Simulation and Analysis Tools
	11.4.2 Hardware platform for Rapid Prototyping and Evaluation
	11.4.3 PC Tool Kit
	11.4.4 System components

	11.5 Hardware Development Tools
	11.5.1 INIC Remote Viewer
	11.5.2 MediaLB Analyzer

	12 Compliance Tests
	12.1 Objectives of Compliance Tests
	12.2 Organization of the Compliance-Process
	12.2.1 Authorities for the Compliance Process
	12.2.2 Workflow of the Compliance Process

	12.3 Physical Layer Compliance Tests
	12.4 Core Compliance Tests
	12.5 Profile Compliance Tests
	12.6 Interoperability Tests

	13 Testing MOST based Infotainment Systems
	13.1 Challenges in Testing MOST Systems
	13.2 Overview of the OEM Test Activities
	13.3 The Test Process
	13.3.1 Risk analysis
	13.3.2 Test design
	13.3.3 Test implementation
	13.3.4 Test evaluation
	13.3.5 Test management

	13.4 Component Tests
	13.5 Integration Tests
	13.6 System Tests
	13.7 Test Tools

	14 Introduction of MOST150 in Series Production
	14.1 Application of MOST150
	14.2 MOST150 technology evaluation
	14.2.1 Requirements and evaluation structure
	14.2.2 MOST150 reference platform
	14.2.3 MOST150_InCar
	14.2.4 Results of the technology evaluation

	14.3 Conclusion
	14.4 Outlook

	15 MOST150 Migration
	15.1 Introduction
	15.2 MOST150 Evolution Approach
	15.2.1 Hardware Evolution
	15.2.2 System Software Evolution

	15.3 MOST25/MOST150 Bridge Concept
	15.3.1 General Bridge Architecture
	15.3.2 Addressing Concept
	15.3.3 Network Management
	15.3.4 PCM Data Bridging

	16 Manufacturing and Processing of MOST Components
	16.1 Structure and Testing of Opto-Electronic MOST Components
	16.1.1 Header
	16.1.2 Set of Fibers
	16.1.3 Connectors

	16.2 Processing within the Scope of Electronics Manufacture
	16.2.1 Mounting and Soldering of Headers
	16.2.2 Mounting and Soldering of Connectors
	16.2.3 Mounting of Internal Sets of Fibers
	16.2.4 Device Testing

	16.3 Summary

	17 Gateways to MOST
	17.1 Distribution of Signals via a Gateway
	17.2 Architecture of a Gateway
	17.3 MOST – CAN Gateway
	17.4 MOST – Bluetooth Gateway
	17.5 Routing of the Control Channel
	17.5.1 Routing of the Synchronous Audio connections

	18 MOST Applications
	18.1 Overview
	18.2 Infotainment Headunit
	18.3 Media Interface Devices
	18.4 Sound Systems
	18.5 Audio and Video Transmission Formats
	18.5.1 Audio Streaming
	18.5.2 Video Streaming

	18.6 MOST for Driver Assist Applications

	Appendix
	A The Description Language MessageSequence Chart (MSC)
	B Data rate of the Packet DataChannel of MOST25
	C Abbreviations
	D Glossary
	E Bibliography
	Index

